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Abstract—Federated Learning (FL) has been adopted in prac-
tical network applications and plays a critical role. As FL allows
participants to contribute to the global model by training locally
with private data, it is known particularly vulnerable to neural
backdoor attacks. This paper proposes a new defense, ScanFed,
against neural backdoor attacks to FL systems. It leverages the
synchronic nature of FL to effectively single out the malicious
neuron candidates and further validate if they indeed hijack
the model’s behaviors. Compared to existing neural backdoor
defenses, ScanFed has the following distinct properties. First,
it is a plug-n-play scheme that can be seamlessly integrated
into existing FL systems. Second, it is extremely computation-
friendly that is six orders of magnitude faster than state-of-the-
art backdoor defenses, rendering it highly suitable for large-scale
FL systems. Third, it is robust to biased models uploaded by
clients with non-IID (Independent and Identically Distributed)
data, which is very common in practical FL systems. To the
best of our knowledge, this is the first defense that enables
efficient and accurate neural backdoor detection of FL systems in
non-IID scenarios. This work delivers a ScanFed prototype and
fully tests it in various settings of datasets, neural architectures,
and backdoor attacks. The experiments demonstrate ScanFed
achieves competitive accuracy and minimal detection time.

Index Terms—Deep learning, federated learning, neural back-
door, security.

I. INTRODUCTION

Deep Learning (DL) has achieved proven success and been
adopted in a variety of intelligent network applications, includ-
ing network traffic classifier [1]–[5], intrusion detection [6],
and traffic forecasting [7], [8] to name just a few. DL takes
a data-driven approach, requiring a tremendous amount of
training data to gain competitive performance. In a centralized
learning framework, users upload their personal data to a
global server to perform training. This approach triggers
privacy concerns as the training data may contain individuals’
sensitive, proprietary or even safety-critical information. To
this end, Federated Learning (FL) has been recently proposed,
aiming to train a DL model without direct access to users’ data.
FL employs a large number of participants, as described in
Fig. 2 (a), where each participant maintains a copy of the DL
model and uses his/her private data for local training. Then,
each participant uploads the locally trained model weights to
the server, which are subsequently aggregated to update the
global learning model. FL has been adopted in various types
of practical applications [9]–[15] and is expected to play a
critical role in future intelligent networks and cyber physical
systems [16], [17].

While FL has demonstrated promising success, it provides
venues for new cyberattacks due to its large-scale and de-
centralized nature. For example, since a participant can use

arbitrary data without being examined by the server to update
the shared model, it can construct data poisoning attacks to
plant neural backdoor to manipulate the global model. This
paper focuses on developing novel and effective methods to
detect neural backdoor attacks in FL.

A. Neural Backdoor Attacks

Neural backdoor attacks (NBAs) have introduced serious
concerns about the integrity and reliability in machine learning
(ML) applications. It is a type of data poisoning attacks to
plant a hidden malicious behavior in a DL model, which can
be further exploited by an attacker to hijack the model with
a designated trigger [18]. The attacker can design a trigger
pattern without a target label, such as clean-label attack [19],
[20], or with a target label, such as poisoned-label attack [18],
[21], [22], injected into a subset of training data. The resulting
backdoor model behaves normally with clean inputs. However,
whenever a trigger is presented, the input will be misclassified
into the target class. For example, BadNets [18] is one of the
earliest NBAs by adopting a simple pattern as the trigger. For
instance, in the context of image recognition [18], a small
white square can be used to plant and activate the backdoor,
as shown in Fig. 1 (a). The attacker first poisons the training
dataset with images stamped with the trigger and labels them
as the target class. After training with the poisoned dataset, the
model will misclassify any input embedded with the trigger
as the target class (e.g., “cat” in Fig. 1 (a)). Similarly, unique
network traffic patterns, as in Fig. 1 (b), can be adopted as the
trigger to build a backdoor in a network traffic classifier.

Subsequent studies have demonstrated more advanced
NBAs. For example, the blend attack [22] creates stealthier
triggers by making them translucent. The trigger can also
appear in the form of natural reflection [20]. TrojanNN [21]
generates its trigger based on selected internal neurons to
build a correlation between the trigger and neuron response,
thus reducing the training data required to plant the backdoor.
Hidden Backdoor Trojan [19] intends to poison a third-party
model by injecting perturbation, equivalent to adding triggers
in the feature space, into the training samples. The trained
neural network model thus contains a backdoor.

Since FL allows participants to contribute to the global
model by training locally with private and unaudited data, it
is particularly more susceptible to NBAs. Recent studies [23],
[24] have shown that adversaries are able to effectively plant
backdoor in the global model using advanced algorithms that
can survive through the federated aggregation. For example,
the model replacement attack (MRA) [23] is introduced to poi-
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Fig. 1: Example neural backdoor attacks: (a) An infected model misclassifies the image with the trigger (i.e., a white square)
as the target class while showing normal behaviors with clean inputs. (b) An infected network traffic classifier misclassifies
malicious traffic embedded with trigger (i.e., a number of predesigned packets) to the target class (i.e., normal traffic).

son the global model by scaling up the adversarial contributes,
thus avoiding dilution due to aggregation. The distributed
backdoor attack (DBA) [24] distributes the poisonous power
by decomposing a global trigger into separate local triggers to
be injected by a set of collaborative adversaries. After training,
the attacker can activate the backdoor using the global trigger
where the poisonous power of local triggers is concentrated. In
this paper, we propose an novel, robust, and efficient backdoor
detection scheme for FL and demonstrate its outperformance
in detecting aforementioned attacks.

B. Neural Backdoor Defense
Backdoor Detection. The security community has taken initial
steps to detect neural backdoor by reverse-engineering the
trigger [25]–[27], identifying malicious neurons [28], and
analyzing intermediate neuron outputs [29]. However, they
cannot be directly applied to the FL system because of
two fundamental limitations. First, they are computationally
intensive (with a running time ranging from minutes to hours
per model on a powerful sever). Thus, they cannot be scaled
to detect hundred of thousands of models in large FL systems.
Based on our experiments, to employ Neural Cleanse [25] in
a FL system with 100 participants, one round of detection
takes 15.3 hours on a Dell R630 server (with one Intel Xeon
E5-2600 v4 CPU and NVIDIA V100 GPU), which is clearly
unacceptable. The detection time will further increase propor-
tional to the number of users and FL training rounds. Second,
since all existing neural backdoor detection approaches target
DL models trained with IID (Independent and Identically
Distributed) data, they fail to differentiate NBAs from biased
benign models trained using non-IID data. The latter is rare
in centralized training, but common in practical FL systems,
since individual users often have biased non-IID data and their
locally trained model parameters will be aggregated to remove
the bias in the final global model [17], [30].
Generic Defenses Against Poisoning Attacks. On the other
hand, a range of generic approaches [31]–[33] are proposed
to mitigate data poisoning attacks by statistically assessing
uploaded models to identify anomalies and remove them
(i.e., clip heavily shifted gradients [33] or reduce weight of
suspicious contributions [32]) before aggregation. However,
due to the high complexity of deep neural networks (DNNs)

and heterogeneity of uploaded models caused by non-IID
data distribution, the existing approaches often result in a
low detection rate and high false-positive rate, as shown in
Table V. Worse yet, recent studies [24], [34] demonstrated that
advanced attackers can intentionally craft stealthier malicious
models to evade such defenses by leveraging the heterogeneity
in FL.

In a nutshell, there is an urgent need to develop scalable
and accurate backdoor detection schemes for heterogeneous
FL systems. To this end, we propose a lightweight, robust, and
plug-and-play scheme, named ScanFed, that can be seamlessly
integrated with existing FL approaches to perform neural
backdoor detection.

C. Key Contributions

The proposed ScanFed leverages the unique attributes of
FL to efficiently and accurately identify malicious neurons in
infected models. Compared to the existing defenses [31]–[33],
ScanFed’s advantages are two-fold: (1) It is significantly more
effective than statistical defenses as it specifically identifies
infected models by analyzing their abnormal behaviors caused
by malicious neurons; (2) It is also compact and plug-and-play,
introducing minimum computation costs to the FL system, in
sharp contrast to existing backdoor detection schemes with the
six orders of magnitude faster than them.

It maintains high efficiency in non-IID scenarios where
the participants have imbalanced data, which is common in
practical FL systems. To the best of our knowledge, this
is the first practical work to mitigate backdoor attacks in
FL in non-IID settings. This paper makes the following key
contributions:
1) ScanFed is a scalable backdoor detection scheme that can

be plugged into any existing FL systems to achieve fast and
accurate detection of NBAs. Existing backdoor defenses
have examined a model by iteratively probing the model
based on back-propagated gradients, which is computa-
tionally extensive due to the costly back-propagation over
the entire model. In contrast, ScanFed features a novel
design via: (a) leveraging the synchronic nature of the
FL system to efficiently identify malicious neurons in the
uploaded models by comparing their weights with those of
the distributed global model before local training; and (b)



validating the detection of malicious neurons using a one-
time forward pass though a small portion of the model. This
approach makes ScanFed’s computation cost six orders of
magnitude faster than the state-of-the-art backdoor defenses
while maintaining competitive detection accuracy.

2) We further introduce a novel pooling-based strategy to
achieve high performance in detecting NBAs in biased
models trained using non-IID data. To our knowledge, this
is the first work that enables efficient and accurate neural
backdoor detection in FL systems under non-IID settings.

3) This work delivers a well-engineered prototype as it is
implemented using Pytorch [35] and extensively tested on
three popular benchmark datasets and four widely adopted
neural network architectures. It is compared against seven
existing backdoor defenses under two FL backdoor attacks.
We also conduct ablation studies to investigate the effec-
tiveness of ScanFed under adaptive attacks.

The rest of the paper is organized as follows. Section II pro-
vides the overview of existing reverse-engineering-based and
outlier detection-based approaches. Section III describes the
details of our proposed ScanFed scheme. Section IV presents
the experimental results and discusses the performance of the
proposed ScanFed. Finally, Section V summarizes our key
contributions and concludes our paper.

II. RELATED WORK

This section discusses the overview of existing backdoor
detection algorithms based on reverse-engineering and outliers.

Reverse-Engineering-Based Approaches. Neural Cleanse
[25] is one of the first neural backdoor defenses. It uses
gradient optimization to reverse-engineer a neural backdoor to
reconstruct the trigger for the infected class. It leverages the
well-known method for generating adversarial examples [36]
to induce a minimal perturbation required to misclassify all
samples from their original labels into a target label. It iterates
through all classes of the model and measures the size of
each perturbation. If a perturbation is significantly smaller
than others, it represents a trigger while the label matching
the trigger is the target label of the attack. The approach is
further improved in GangSweep [26], which reverse-engineers
the trigger by training a generative network mapping to the
trigger distribution using gradient descent. To better single
out the malicious features of the planted backdoor, Artificial
Brain Stimulation (ABS) [28] identifies malicious neurons by
exhaustively stimulating each neuron in the model and finding
unique output signatures. The identified malicious candidates
are then used to reconstruct the trigger using back-propagation
to detect the infected model.

Despite the demonstrated effectiveness of the above neural
backdoor detection algorithms, they largely rely on iterative
gradient-based optimizations, which are computation-intensive
and sensitive to the quality of the model under testing
(MUT) [25], [26], [28]. In addition, exhaustively examining
each neuron is both costly and inaccurate since modern DNNs
can be extremely large and often comprise correlate neurons

with entangled representations [37]. Moreover, existing back-
door defenses commonly assume that the MUT is a mature
model trained using balanced data. However, this assumption
is not necessarily true in practical FL systems where most
participants own imbalanced data. Therefore, the existing
reverse-engineering-based backdoor detection schemes are not
directly applicable in large FL systems.

Outlier Detection-Based Approaches. A range of generic
schemes are designed to statistically assess uploaded models
to identify and mitigate malicious outliers in the FL system.
For example, the diversity of the clients’ contribution is used
to detect malicious outliers [31]. Specifically, this work assigns
lower learning rates for clients with similar historical updates
to defend label-flipping and backdoor attacks. The malicious
contributions are also mitigated by replacing the weighted
arithmetic mean with an approximate geometric median [32].
In addition, traditional backdoor attacks are mitigated by sim-
ply clipping heavily drifted gradients in infected models [33].
However, recent studies [24], [34] demonstrate that advanced
attacks can evade those defenses by regulating their malicious
contributions.

III. PROPOSED APPROACH: SCANFED

This section describes the defense setting and the details of
the proposed ScanFed.

A. Threat Model

We adopt a setting where a synchronous FL server is honest
and there exists a small portion of malicious participants trying
to inject backdoor into the global model. We assume the ratio
of the adversaries among all participants is small because
otherwise the global model would be inevitably corrupted. For
example, in our experiments, we consider 10-15% participants
to be malicious, which is deemed extremely high in practical
FL applications. In each round of training, the current global
model is distributed to each participant for local training.
We assume the distributed global model in the first round
of training is benign, which is reasonable since the model
is initialized by the honest server. In each round, the server
randomly selects a number of participants to upload their
locally trained model parameters. To ensure security, the server
always examines the acquired models before aggregation. Our
goal is to detect malicious models among all uploaded local
models, which can plant backdoors in the aggregated global
model. We follow the common assumptions where the server
has adequate computation resources and validation data. We
allow the participants to have non-IID data.

B. Key Steps of the Backdoor Detection in ScanFed

We first introduce the basic design principles of ScanFed
to detect neural backdoors. For a lucid presentation, we focus
on the case where the clients have IID data in this subsection,
and then introduce the enhanced algorithm to effectively detect
backdoor in non-IID scenarios in the next subsection.



ScanFed

ScanFed FedAvg

New Global 
Model

Our Plug-n-play 
Approach

Malicious Neuron Identification

Stimulate and Detect

~

~

~

~
~Infected Benign

θ0 θ1 θ2 θn-3 θn-2 θn-1

(a) (b)

Fig. 2: An overview of the proposed ScanFed: (a) ScanFed can be seamlessly plugged into existing FL systems before the
model aggregation to detect and remove malicious contributions using (b) a two-step detection scheme.

1) Overview & Intuition: The fundamental difference
between an infected model and a benign model is that the
former comprises malicious features, which can dominate
other features and hijack the model’s behaviors when a trigger
is presented in the input. The learned malicious features are
stored in a set of neurons (see Fig. 1), which can be activated
by the trigger to misclassify the input sample [28]. Thus,
the key to detect an infected model is to identify embedded
malicious neurons.

Liu et al. [28] identify possible malicious neurons by stim-
ulating each individual neuron and observe the output change.
The malicious neurons usually exhibit unique signatures. How-
ever, this approach may lead to a high false-alarm rate and
low detection accuracy, as demonstrated in Table I. This is
because stimulating a single neuron may not create significant,
observable signature impact on the model, in which the learned
features are entangled and distributed across multiple neurons,
as shown in [37]. At the same time, it is obviously infeasible
to exhaustively examine all possible combinations of neurons
due to the massive search space. For example, the GPT-3
model [38] comprises hundreds of millions of neurons with
185 billion associated weights. To this end, we leverage the
unique attributes of FL to propose a new backdoor detection
scheme by (1) identifying the candidates of malicious neuron
combinations of an uploaded model by comparing it with
the distributed global model before local training, and (2)
validating and detecting true malicious neurons based on their
dominative power, i.e., the ability to manipulate the model’s
predictions to the target class.

2) Malicious Neuron Identification: In the first step, we
identify the malicious neuron candidates of a given MUT
(θi) to be the ones whose weights are significantly changed
after the local training. More specifically, for each neuron in
a given model, we compute their total weight change to be
the Euclidean (L2) distance between its associated weights in
the uploaded model and the base model (i.e., the previously
distributed global model). Note that, for convolution layers,

we consider an individual feature channel to be a neuron and
calculate the total weight change based on its associated kernel
weights. We then identify the malicious neuron candidates by
detecting the outliers of the computed total weight changes
using the classical z-score algorithm [39], which offers a more
efficient and robust measure of statistical dispersion than the
sample variance or standard deviation. The z-score algorithm
uses the median and Median Absolute Deviation (MAD) to
normalize the data. The z-score is calculated by:

Z =
(w − w̃)

c ·median(|w − w̃|)
, (1)

where w represents the total weight change of a neuron,
w̃ is the median of the weight change of all neurons, and
c is a constant (e.g., 1.4826 if the data satisfies Gaussian
distribution) such that with 95% percent confidence level, the
data point with z-score larger than 2 (Anomaly Index) is
considered as an outlier [39].

He et al. [40] show that the weights of a DNN generally
follow a Gaussian distribution thus they can be similarly
initialized for model training to achieve better performance.
Recall that our goal is to identify the outliers (i.e., malicious
neurons candidates) with a large total weight change. To this
end, we adopt 2 as our Anomaly Index (AI). We compute
the z-score of the total weight change of all neurons and
consider the neurons with z-scores larger than 2 to be possibly
malicious.

This approach is effective due to two reasons. First, the
backdoor information (i.e., convolution kernels to recognize
the trigger and/or fully-connected neurons to manipulate the
decision boundary) is injected and stored in the model during
local training, resulting in noticeable change on corresponding
weights. Second, to effectively inject the backdoor into the
aggregated global model, the weights of malicious neurons
must be amplified [23] to avoid being diluted by the federated
averaging algorithm.



Algorithm 1 ScanFed Backdoor Detection
1: Input: A set of MUT {θi}i∈{0,1,...,n−1} with p neurons, Neuron

Anomaly Index of z-score τ , threshold ρ for standard deviation
of the stimulated model prediction, current global model f with
parameter θg , and mean µl and variance σl of the activations for
its intermediate layer l

2: Output: A set of indices of infected local models E
3: procedure SCANFEDDETECTION
4: E = ∅
5: for each MUT θi do
6: for each neuron in θi with index q do
7: compute weight change wq

i ← ∥θ
q
i − θqg∥

8: compute z-scores zqi for neuron q in θi by Eq. (1)
9: end for

10: stimulate layer l using a batch (m) of random activation
values ãl ∈ N (µl, σl)

11: while l is not the output layer do
12: for each neuron with index q in layer l do
13: if zqi > τ then assign a high activation value

ac
l = max(1,max(recorded(al))

14: end if
15: end for
16: compute activation values of layer l + 1
17: l← l + 1
18: end while
19: compute standard deviation si of categorical predictions
{pk}k∈{0,1,...,m−1} of the current batch

20: end for
21: E = {i | si < ρ}
22: end procedure

3) Stimulation & Detection: In the second step, we vali-
date the identified malicious neuron candidates by stimulation,
where we anticipate the activation of true malicious neurons
should manipulate the model’s prediction to a target category.
To this end, we select an appropriate intermediate layer l to
inject stimulation signals, and run the inference from this layer
to the last layer 1. We select the last convolution layer as l in
our experiments since it contains highly-abstracted features.
More specifically, we assign random activation values with
a distribution N (µl, σl) to benign neurons in layer l, based
on the fact that activations after the linear or convolutional
layers tend to have a Gaussian distribution [41]. The mean
µl and variance σl are estimated and updated periodically on
the global model by feeding it with a number of validation
data. On the other hand, we activate the identified malicious
neuron candidates in layer l by assigning them a large con-
stant activation value acl = max(1,max(recorded(al)), where
recorded(al) is the recorded activation values in layer l during
the calculation of µl and σl. After that, for any downstream
layer j, we activate its malicious neurons by changing their
activation values to acj = max(1,max(recorded(aj)).

We repeat this process for m times to obtain m prediction
results {pk}k∈{0,1,...,m−1}, which are subsequently normalized
(i.e., divided by the total number of classes) to compute an
unbiased standard deviation si using Bessel’s correction [42].
We compute si for each uploaded MUT θi to construct a
set {si}i∈{0,1,...,n−1}. Note that we consider infected models

1Note that all preceding layers are omitted in this inference process.

to be the ones whose predictions have significantly higher
central tendencies (i.e., smaller standard deviation, see Fig. 4
(a)), as the activation of malicious neurons should flip most
predictions to the target class. Thus, to detect infected models,
we look for the models with small si. To this end, we identify
infected models with highly concentrated predictions where
their standard deviation are smaller than a small threshold
(si < ρ). This step can effectively differentiate malicious
neurons from false-alarms caused by moderate update of
regular training.

This two-step detection approach has significant advantage.
It efficiently identifies malicious neuron candidates based
on their weight change, which is significantly faster than
exhaustively stimulating each neuron [28]. For instance, given
a model with a size of p neurons, finding a set of malicious
neurons by exhaustively stimulating each combination takes a
time complexity of O(2p), which is significantly higher than
the complexity of ScanFed which is O(1) o(P)? (one-time
forward pass). In our implementation, we further reduce the
search space to the neurons on the last convolution layer since
they are highly abstracted to represent the trigger features. The
second step only involves forward pass on the remaining part
of the neural network, which is much computational-friendly
than existing backdoor defenses [25], [26], [28] that require
iterative full-model inference or even costly back-propagation.

(a) (b) (c)

(d) (e) (f)

Fig. 3: An overview of the triggers used in our preliminary ex-
periments: (a) small white block at the right-bottom for Model
Replacement Attack (MRA); (b) global trigger (a composite
of four small blocks) for Distributed Backdoor Attack (DBA);
and (c)–(f) distributed local triggers for individual attackers.

4) Demonstration & Validation: To validate the above de-
sign principles and demonstrate a new challenge that motivates
our next design, we present here the preliminary experimental
results based on the MNIST dataset [43]. The experimental
settings and full results will be presented in Section IV.
We consider a FL system with 100 participants (including
10 adversaries) where the local data are Independent and
Identically Distributed (IID). Note that we intentionally adopt
this setting to eliminate the impacts of other experimental
elements. For the FL training, we adopt a compact model
with the backbone of a MobileNet V2 [44], and assume all



TABLE I: PERFORMANCE COMPARISON OF BACKDOOR DETECTION ALGORITHMS IN IID SETTINGS

Attack Metric NC GS ABS ScanFed

MTA
True Positive Rate 97.60 98.20 95.39 98.10
False Positive Rate 0.83 0.75 0.93 0.90

Per-model Detection Time (s) 552.12 523.45 620.08 0.0007

DBA
True Positive Rate 97.20 97.10 94.30 97.10
False-alarm Rate 0.71 0.64 0.81 0.75

Per-model Detection Time (s) 549.61 533.22 619.38 0.0007

clients participate in the training where each local training
comprises 5 epochs. The entire FL training takes 100 rounds
of local training. We assign equal weights (i.e., non-weighted)
to each client for aggregation. We evaluate the defense using
its averaged performance at checkpoints (i.e., round 1, 10,
30, and 60, where the adversaries inject backdoor) uniformly
sampled over the entire FL training.

A simple trigger (i.e., a small white block at the right-
bottom area, as shown in the poisoned image in Fig. 3 (a))
is adopted in the MRA. Similarly, the white square (global
trigger) is split into four components (see Fig. 3 (b)) where
each one (Fig. 3 (c-f)) is used for local backdoor injection
of an individual attacker. We select an arbitrary class as the
target class to plant a backdoor, and repeat this process until
all classes are used as the target class once. We assume
that attackers have the same target class in this preliminary
experiment for simplicity, but ScanFed generalizes well to
scenarios where they have different target classes as long as
they still lead to malicious neurons to hijack the model’s
prediction. We compare ScanFed (τ = 2, ρ = 0.15) to the
three state-of-the-art backdoor detection counterparts: Neural
Cleanse (NC) [25], GangSweep (GS) [26], and ABS [28]
under two FL backdoor attacks: MRA [23] and DBA [24]
in terms of detection accuracy, false-alarm rate, and average
detection time per model.

As shown in Table I, ScanFed achieves competitive perfor-
mance in terms of detection accuracy (see the 2nd and 5th row)
and false-alarm rate (3rd and 6th row) as compared to the other
three detection schemes. Note that those three defenses all rely
on sophisticated gradient-based schemes to improve detection
accuracy by reverse-engineering the trigger (in NC), learning
the trigger’s distribution (in GS), or stimulating and visualizing
the trigger pattern (in ABS). In contrast, ScanFed leverages the
synchronic nature of FL to efficiently and accurately identify
infected models that comprise malicious neurons, resulting
in a lightweight detection algorithm with significantly lower
computation costs (decreased by six orders of magnitude) than
the state-of-the-art defenses.

Although ScanFed has demonstrated its effectiveness in the
IID settings where data are balanced and evenly distributed, it
is critical to evaluate its performance under non-IID settings
because different clients may own drifted, imbalanced, and
heavily skewed local training data in practical applications.
For instance, a person’s face image might be included in only
one or a few clients’ local datasets. A unique stroke width and
slant of handwriting digits or letters might be available at only

one or a few users. Also network traffic can be significantly
different due to the regions and local network conditions. This
is in a sharp contrast to centralized learning where a large
organization or group could collect rich and balanced training
data as compared to individual users. To this end, we conduct a
similar experiment to test the performance of ScanFed under
the DBA attack in non-IID settings where we simulate the
imbalanced data using a Dirichlet distribution [45] and vary
the imbalance level using a hyperparameter, α, where a larger
α represents a higher imbalance level.

(a) (b)

Fig. 4: (a) Standard deviation (STD) of predictions for infected
and benign models; and (b) STD of predictions for biased
benign models. Box plot shows min/max and quartiles.

TABLE II: PERFORMANCE OF SCANFED IN TPR AND FPR
UNDER NON-IID DATA

Metric (α) 0.05 0.5 2.0 5.0 10.0
True Positive Rate 98.1 98.2 99.1 99.7 99.8
False Positive Rate 0.92 1.12 56.06 65.42 84.15

As shown in Table II, FPR increases significantly when the
imbalance level of data distribution increases to 2.0, where the
majority of clients have biased datasets dominated by samples
from a few categories. We speculate that the heavily imbal-
anced training dataset leads to dominative neurons that can flip
predictions to a few classes, making them extremely difficult to
be differentiated from malicious neurons. To demonstrate this,
we plot and compare the standard deviations of the predictions
of infected and imbalanced models in Fig. 4 (b). As shown
in Fig. 4 (b), the predictions of imbalanced benign models
become narrow (i.e., with smaller STD values) and cannot
be separated from infected models, resulting in a significant
performance degradation in detecting malicious neurons.

5) Lessons Learned: The above results show that our base
version of ScanFed is extremely effective in detecting infected
models uploaded by clients with data distributions that are in



general IID (α < 2). However, it fails in non-IID scenar-
ios where the imbalanced models become not distinguished
from the infected models, thus FPR increases significantly.
The clients’ data are often non-IID in practical FL systems.
Therefore, there is a critical need to develop a scheme that
can identify infected models in non-IID settings.

C. Pooling-Enhanced ScanFed

While it is infeasible to perfectly separate infected and
imbalanced models, we propose a novel approach to cancel
out the imbalance by leveraging the FL framework. More
specifically, a unique attribute of the FL system is to ag-
gregate a well-generalized model from diverse contributions
from local participants, where the model bias is canceled
through averaging. Therefore, we anticipate one can randomly
average a group of biased individual models to generate a
balanced representative model, which inherits the attributes of
the group members. The aggregated representative model can
thus be used as the input to ScanFed. If the detection result
is positive, the corresponding group should contain infected
models. Note that the infected models must survive through the
federated average to inject a backdoor in the aggregated model;
otherwise they would not be able to implant the backdoor in
the global model, which eliminates our concerns about the
backdoor attacks in FL. In addition to canceling out the model
imbalance, it also has an additional benefit of expediting the
detection as elaborated below.
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Group 0: size = n

ScanFED

θ0 θ3θ1 θ4 θn
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θ0 θ3θ1 θ2 θ4 θn
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Fig. 5: An overview of the pooling-enhanced ScanFed.

1) Pooling Strategy: As illustrated in Fig. 5, we consider
the first group (G0) consisting of all n models uploaded to
the server in the current round. We then derive a representative
model, θr, to be examined by the ScanFed. If θr is identified as
infected, we split G0 into two groups G1 and G2 with an equal

size to be further examined in the next iteration. Otherwise
(i.e., if θr receives a negative result), we can claim that all
models in G0 are benign and can proceed with performing
the federated aggregation.

Next, we compare the size of G1 and G2 to a threshold
r, which is the required minimum size of a group to derive
a balanced representative model. If the size of the current
group is smaller than r, we expand the group size to r
by appending individual models that have been identified as
benign in the previous round of FL. We also use the initial
global model to fill the group in the first round. We assume
the distributed global model in the first round of training is
benign, which is reasonable because the model is initialized
by the honest server. We then examine the expanded group
using the ScanFed and repeat this recursive process until the
result is negative or all members in the current group are
individually examined. We provide the details of the pooling-
enhanced ScanFed in Algorithm 2 below.

Algorithm 2 Pooling-enhanced ScanFed

1: Input: A set of MUT {θi}i∈{0,1,...,n−1}, minimum group size r
2: procedure POOLING-ENHANCED SCANFED DETECTION
3: Group G = {θi}i∈{0,1,...,n−1}
4: end procedure
5: procedure POOLINGSCANFED(G)
6: while length(G) ≥ 1 do
7: if length(G) < r then
8: Append G with benign models from previous round
9: Perform ScanFed detection on the appended G

10: end if
11: Perform ScanFed detection on G
12: if infected then
13: Evenly split G to two groups Ga and Gb

14: PoolingScanFed(Ga)
15: PoolingScanFed(Gb)
16: end if
17: end while
18: end procedure

2) Minimum Group Size: One of the key factors of
the pooling strategy is the hyper-parameter r, which defines
the minimum group size that can mitigate model bias. To
appropriately determine it, we define it to be proportional to
the total number of submitted models n and their variability
v (i.e., the standard deviation of their L2 distances to the
averaged model), or formally,

r = ⌊λn tanh (v)⌋, (2)

where λ is an empirically defined coefficient. For example,
Table III shows the result of the pooling-enhanced ScanFed
by varying λ to obtain different minimum group size r.
The results are in sharp contrast to Table II by achieving
significantly reduced false positive rate. As shown in Table III,
the best results (i.e., the combination of high TPR, low FPR,
and low PDT) are achieved by adopting a proper group size
with λ = 0.5. While increasing the group size does not hurt the
general detection accuracy (as shown in row 2-4 of Table III),
it slightly slows down the detection (i.e., PDT = 0.0004s)



as it increases the total number of malicious groups and
aggregation cost. On the other hand, the performance degrades
significantly (i.e., high FPR in Table III) if the group size is
too small (see row 8-10 of Table III), indicating that the bias
cannot be removed with a small group. Moreover, the average
per-node detection time (PDT) also increase when we adopt a
small group size, due to the increased number of false-alarmed
benign models. We discuss additional results and analysis as
below.

3) Time Complexity: The pooling strategy is essentially
a binary search in the optimal setting where the adversaries
are sparse. Thus it reduces the time complexity from O(n)
(vanilla ScanFed) to O(log n). In a possible worst scenario
with all members being compromised, the time complexity
increases to O(n).

TABLE III: PERFORMANCE OF POOLING-ENHANCED
SCANFED UNDER MRA WITH NON-IID DATA

λ Metric (α) 0.05 0.5 2.0 5 10

0.9
TPR 98.2% 98.2% 98.2% 98.2% 98.2%
FPR 0.97% 0.98% 1.02% 1.02% 1.10%

PDT(s) 0.0004 0.0004 0.0004 0.0004 0.0004

0.5
TPR 98.1% 98.1% 98.0% 98.1% 98.1%
FPR 0.96% 1.01% 1.05% 1.11% 1.24%

PDT(s) 0.0002 0.0002 0.0002 0.0002 0.0002

0.1
TPR 98.0% 98.0% 98.8% 99.4% 99.3%
FPR 0.92% 1.01% 23.49% 45.67% 62.12%

PDT(s) 0.0002 0.0002 0.0004 0.0006 0.0006

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the experimental setting,
and then evaluate the proposed ScanFed defense on three FL
backdoor attacks, four backdoor defenses, two neural network
architectures, and four benchmark datasets with five non-
IID settings. We also evaluate the efficiency of ScanFed in
FL systems with differential privacy protection. Finally, we
conduct ablation studies to validate the effectiveness of the
ScanFed defense under adaptive attacks.

A. Experimental Setting

1) Dataset & Architecture: We conduct the experi-
ments based on well-known benchmark datasets including IS-
CXVPN2016 for network traffic classification [46] and Cifar10
for image recognition [47]. For the CIFAR10 dataset, we select
2 popular deep learning architectures, Mobilenet-V2 [44] and
ResNet18 [48], to conduct the experiments. For network traffic
classification, we adopt the same architecture from FS-net [1]
and DeepPackets [2] to perform flow-based (for predicting
traffic type using a time-series of packet length) and payload-
based (for predicting traffic type using byte values of the
encrypted packet payload) network traffic classification using
a GRU [1] and 1D-CNN [2] model, respectively.

2) Attack & Defense Configuration: We compare the
performance of the Pooling-enhanced ScanFed (P-SF) to
four existing backdoor detection methods: Neural Cleanse
(NC) [25], Gangsweap (GC) [26], Artificial Brain Stimulation

(ABS) [28], and TABOR [27], and three generic FL data-
poisoning defenses: Gradient Clip [33], Robust Federated
Aggregation (RFA) [32], and FoolsGold [31], under two FL
backdoor attacks: MRA [23] and DBA [24]. For CIFAR10,
We adopt the trigger used in [18], which is a small white
block at the bottom right corner (see Fig. 3 (a)) with a size
of 4 × 4 pixels. For flow-based network traffic classification,
we inject the trigger by modifying a sequence of 16 network
packets to be 1, 514 bytes (a typical packet length of the
maximum transfer unit) in the poisoned traffic flow. For
payload-based traffic classification, we add 16 bytes of dummy
payload with a maximum value of 127 (0xFF) at the end of
the original payload as the trigger. We do not exhaustively
explore different trigger patterns as previous studies [49], [50]
have demonstrated they usually share similar attributes on the
infected models.

3) FL Training: Following the standard setup, we perform
200 rounds of FL training. We perform local training for 5
epochs in each round. We train local models using Stochastic
gradient descent (SGD) with a learning rate of 0.01, a weight
decay factor of 1e-4, and a batch size of 128. We train the
global model with a total of 200 participants where 30 of
them are malicious. We randomly select 30 local models at
the end of each round for aggregation. We perform the FL
training in three Non-IID levels (with α = 0.5, 2.0, and
5.0). The backdoor attacks (by all adversaries) and defenses
are performed in each round of training for Gradient Clip,
RFA, FoolsGold, ScanFed (τ = 2, ρ = 0.15), and Pooling-
enhanced ScanFed (λ = 0.5), and every 10 round of training
for computation extensive schemes, such as NC, GS, ABS,
and TABOR.

4) Metrics: We use the following metrics for our ex-
periments: detection true positive rate (TPR), false positive
rate (FPR), and per-model detection time (PDT) in seconds.
A direct comparison of the detection accuracy between our
method and generic data-poisoning defenses is infeasible since
they are not specifically designed for backdoor detection.
Thus, we compare our approach to generic data-poisoning
defenses in terms of the final global model’s attack success
rate (ASR), which is the ratio of malicious inputs that are
misclassified to the target class, and the final global model’s
accuracy on clean data (ACC).

B. Performance Comparison

1) Comparison of Detection Performance: Table IV
shows the detection performance in TPR, FPR, and PDT)
of five detection schemes under two attacks in three non-IID
levels. The infected models in the FL system are trained using
Mobilenet V2 on CIFAR10 dataset. As shown in Table IV,
the Pooling-enhanced ScanFed (P-SF) scheme achieves a
significantly lower FPR and PDT and a competitive TPR
compared to all other detection schemes in all non-IID set-
tings. The reason is that P-SF can efficiently identify the
malicious neurons by comparing the uploaded model to the
global model before the current round of training, and then
effectively validate them with a one-time forward propagation,



thus significantly reducing PDT. Moreover, the well-designed
pooling strategy effectively alleviates the bias of the MUT,
rendering the enhanced ScanFed highly robust to non-IID data.

On the other hand, although other backdoor detection
schemes show high TPRs on identifying infected models, they
also result in notably high FPR, especially under the non-
IID settings where data are heavily imbalanced. The reason
is that the imbalanced dataset leads to a few dominative
categories with similar properties as targeted classes of an
infected model, rendering them indistinguishable.In addition,
their PDTs are also significantly higher than our approach
because they all need to enumerate each class/neuron to
iteratively reverse-engineer backdoor triggers using forward-
pass and back-propagation.

TABLE IV: PERFORMANCE COMPARISON OF BACKDOOR
DETECTION IN NON-IID SETTING WITH MOBILENET-V2

ARCHITECTURE USING CIFAR10 DATASET.

Attack Detection Non-IID (α) TPR FPR PDT (s)

MRA

NC
0.5 96.5% 23.97% 558.5
2.0 98.3% 61.61% 565.9
5.0 99.5% 83.23% 582.1

GS
0.5 95.3% 32.0% 521.3
2.0 97.7% 65.98% 515.9
5.0 99.1% 92.14% 512.6

ABS
0.5 97.6% 71.57% 625.5
2.0 99.3% 79.43% 625.7
5.0 99.5% 90.08% 630.1

TABOR
0.5 96.39% 34.28% 492.2
2.0 96.8% 57.17% 492.6
5.0 99.8% 97.03% 501.2

P-SF
0.5 98.2% 1.34% 0.0003
2.0 98.0% 1.81% 0.0003
5.0 98.1% 2.52% 0.0003

DBA

NC
0.5 95.39% 23.27% 558.6
2.0 97.7% 53.22% 559.7
5.0 98.8% 85.83% 565.6

GS
0.5 97.6% 46.95% 526.0
2.0 98.3% 61.05 525.4
5.0 99.7% 93.64% 524.4

ABS
0.5 97.39% 39.32% 624.4
2.0 97.89% 60.91% 620.1
5.0 98.8% 81.87% 619.5

TABOR
0.5 95.7% 37.8% 495.2
2.0 98.6% 71.27% 494.9
5.0 99.5% 94.94% 499.1

P-SF
0.5 98.09% 1.22% 0.0003
2.0 97.9% 2.19% 0.0003
5.0 98.3% 2.36% 0.0003

2) Overall Defense Performance on the Final Global
Model: In addition to the detection performance in a given
round of FL training, we evaluate the overall performance of
the backdoor defense by examining the final global model (i.e.,
the final aggregated model after the FL training). More specifi-
cally, we evaluate the ACC and ASR on the final model which
has been protected using three defenses (RFA, FG, and P-SF)
under the same attack (DBA) in the context of network traffic
classification. We do not compare with traditional backdoor

detection schemes since they are computation-extensive thus
cannot be performed on all the uploaded models to complete
all rounds of the FL training.

We notice that P-SF delivers the highest ACC and low-
est ASR in all experimental settings (including two non-
IID levels on two types of network traffic classifiers). The
reason is that DBA attacks the FL system by distributing its
poisonous power using multiple collaborative adversaries. It
exploits the heterogeneity of the FL system to make infected
models indistinguishable from the benign and biased models
in individual outlier detection, and thus is more effective to
attack FL with higher non-IID levels. Gradient Clip, RFA and
FG cannot defend the DBA attack because they essentially try
to remove outlier models/weights, leading to high ASR and
low ACC on the final model. In contrast, P-SF is extremely
effective in defending the DBA attack, yielding an ASR of
around 2%. This is because although the poisonous power has
been distributed by the DBA attack, its infected models still
comprises malicious neurons to hijack the model’s behavior,
rendering them detectable by P-SF.

3) Performance of P-SF on Differential Privacy (DP)-
protected Models: While we have demonstrated the P-SF’s
superior performance in vanilla FL, we further test its effi-
ciency in more advanced FL systems protected by differential
privacy (DP). DP is a widely used technique to protect the
user’s privacy by injecting random noise to prevent a malicious
server or adversarial insiders from inferring the user’s private
data. It has been embraced for modern FL systems. We
conduct an experiment to validate P-SF on an FL system
protected by a widely adopted DP algorithm [51], where each
client injects a certain amount of noise to its model weights
before uploading the weights to the server. We perform the
DP-protected FL training for payload-based network traffic
classification on the ISCXVPN2016 dataset in five different
non-IID levels under the DBA attack. For infected models, we
perform an additional round of backdoor injection to maintain
their poisonous power, aiming to infect the global model. As
shown in Table VII, P-SF demonstrates robust effectiveness
in backdoor detection in DP-protected models over a range of
non-IID levels.

4) Performance of Defending Adaptive Attacks: It is
critical to evaluate P-SF under adaptive attacks because an
adversary may be aware the defense and thus construct
more advanced attacks to evade detection. To mimic this
scenario, we assume an adversary has the full knowledge of
the deployed P-SF scheme including the overall algorithm
and critical hyper-parameters, such as the stimulation layer
index and thresholds. Recall that P-SF examines a model by
stimulating a portion of the entire model, from the stimulation
layer l to the output layer. Therefore, the attacker can hide
the backdoor by keeping the layers after l benign by fixing
their weights, and only injects the backdoor to the upstream
layers. Of course, this leads to lower ASR since the backdoor
is injected to fewer layers with limited capacity. To this end,
an alerted server may actively reduce the number of injectable
layers (thus further reduce its capacity) by selecting an l that



TABLE V: PERFORMANCE COMPARISON OF BACKDOOR DEFENSES IN NON-IID SETTING UNDER DBA

Model Non-IID (α) Metric Gradient Clip [33] Robust FA [32] FoolsGold [31] P-SF

Flow-based

0.5 ACC 98.11% 97.69% 97.44% 98.66%
ASR 78.21% 64.51% 71.2% 1.22%

2.0 ACC 95.90% 95.62% 94.93% 96.47%
ASR 82.77% 83.9% 80.78% 2.15%

Payload-based

0.5 ACC 98.22% 98.13% 97.9% 99.1%
ASR 81.12% 81.06% 76.55% 2.08%

2.0 ACC 97.96% 97.42% 97.2% 98.77%
ASR 87.8% 85.9% 89.48% 1.93%

TABLE VI: PERFORMANCE UNDER ADAPTIVE ATTACKS

Attack Metric Stimulation Layer Index
1 5 9 13 17

MRA-adaptive PDT (s) 0.12 0.06 0.02 0.046 0.0003
ASR 0.13% 1.1% 2.72% 32.6% 86.23%

DBA-adaptive PDT (s) 0.32 0.21 0.13 0.045 0.0003
ASR 0.11% 1.35% 2.52% 39.32% 89.74%

TABLE VII: PERFORMANCE COMPARISON OF
POOLING-ENHANCED SCANFED ON DP-PROTECTED
MODELS FOR PAYLOAD-BASED NETWORK TRAFFIC

CLASSIFICATION UNDER THE DBA

Metric Non-IID level (α)
0.1 0.5 2.0 5.0 10

TPR 97.9% 98.0% 98.0% 97.8% 97.8%
FPR 1.2% 1.26% 1.14% 1.34% 1.40%

is closer to the input layer to mitigate the adaptive attack. To
understand how P-SF performs in this cat-and-mouse game,
we conduct an experiment to compare ASR of the final global
model under the adaptive attack with five different stimulation
layers. More specifically, we perform the FL training on the
CIFAR10 dataset using a ResNet18 model that has 18 layer,
which are indexed from 1 to 18 where a smaller index indicates
a layer that is closer to the input layer. We do not compare
TPR and FPR in each training round because the adaptive
attack does not guarantee to produce an infected local model
caused by the additional regulation.

As shown in Table VI, ASR drastically decreases when a
shallower stimulation layer is selected. On the other hand, PDT
increases as it introduces higher computation cost to examine
more layers. Therefore, a properly selected stimulation layer
is required to effectively defend adaptive attacks. For example,
the 9th layer is a good option as it reduces ASR to 2.7% while
maintaining a small PDT.

V. CONCLUSION

We have proposed a new defense scheme, namely ScanFed,
to protect Federated Learning (FL) from neural backdoor
attacks. It leverages the synchronic nature of FL to effectively
filter out malicious neuron candidates and further identify
the backdoor models. ScanFed is a plug-n-play scheme that
can be seamlessly integrated into existing FL systems. It

is extremely computation-friendly, achieving a six-orders-of-
magnitude speedup compared with the state-of-the-art back-
door defenses, rendering it most suitable for large-scale FL
systems. It is robust to biased models uploaded by clients
with non-IID (Independent and Identically Distributed) data,
which is very common in practical FL systems. To the best
of our knowledge, this is the first work that mitigates neural
backdoor attack in non-IID settings. We have implemented a
well engineered prototype in PyTorch and fully tested it on
three datasets and four neural network architectures. It has
been compared against seven existing backdoor defenses and
evaluated under two FL backdoor attacks. The experiments
have demonstrated the effectiveness of ScanFed under various
settings, achieving competitive accuracy with high true posi-
tive and low false positive rates and minimal detection time.
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