2012

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 10, OCTOBER 2013

Efficient Rostering of Mobile
Nodes in Intermittently Connected
Passive RFID Networks

Zhipeng Yang, Student Member, IEEE,
Ting Ning, Student Member, IEEE, and Hongyi Wu, Member, IEEE

Abstract—This paper focuses on the problem of rostering in intermittently connected passive RFID networks. It aims to report a list of
tagged mobile nodes that appear in given interested area(s) and time interval(s). Such rostering faces several unique challenges. First,
the network consists of two dramatically different types of nodes: powerful static readers and extremely resource-constrained mobile
tags. Communication can be established from a reader to a tag only, but not tags to tags or readers to readers. Therefore, the
connectivity is very low and intermittent. Besides connectivity, the tag’s computation power is also intermittent. It is available only for a
short interval when the tag is powered up by a nearby reader, rendering any continuous functions impossible. Moreover, the capacity of
tags is so limited that it becomes the critical network resource and communication bottleneck. To address the above challenges, we
propose a rostering algorithm that employs a dynamic space-efficient coding scheme to construct hypothetic packet candidates,
appraises their values according to information redundancy and tag mobility, and establishes a 0-1 Knapsack model to choose the best
set of packets, which together maximize their total (redundancy-excluded) value, but do not exceed the capacity of a tag. We carry out
experiments that involve 38 volunteers for nine days and perform large-scale simulations to evaluate the proposed rostering scheme.

Index Terms—Passive RFID, delay-tolerant network, node rostering, intermittently connected network

1 INTRODUCTION

HILE wireless sensors have been broadly used for

tracking large animals including zebras [1], whales
[2], deers [3], and European badgers [4], earlier investiga-
tion has revealed that about 81 percent of bird species and
67 percent of mammal fauna cannot carry any active
devices (such as GPS receivers or crossbow sensors), since
the weight of the sensors must be under 5 percent of the
weight of the animal otherwise such overweight additions
often lead to high mortality rates of the animals being
studied [5]. Although various efforts have been made to
develop miniature sensors, the lowest weight of any active
sensor is bounded inevitably by its battery and casing. The
former must be sufficient for achieving the desired
communication range and lifetime, while the latter must
be heavy duty to protect power source and electronic
circuits under harsh environments. The strict weight
constraint becomes a key hurdle that limits the applicability
of active sensors in various applications, not to mention
extra hassle for ensuring adequate battery power.

1.1 An Overview of Featherlight Information
Network with Delay-Endurable RFID Support
(FINDERS)

Built upon Radio Frequency IDentification (RFID) technol-

ogies, the FINDERS has been introduced in [6], [7] to

o The authors are with the Center for Advanced Computer Studies, University
of Louisiana at Lafayette, Lafayette, LA 70504. E-mail: {zxy1767, txn6704,
wu}@cacs.louisiana.edu, txn6704@louisiana.edu.

Manuscript received 2 Dec. 2011; revised 25 June 2012; accepted 21 July 2012;
published online 1 Aug. 2012.

For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2011-12-0650.
Digital Object Identifier no. 10.1109/TMC.2012.170.

1536-1233/13/$31.00 © 2013 IEEE

address the weight constraints discussed above. It exploits
passive RFID tags that are ultralight, durable, and flexible,
without power supply for long-lasting pervasive commu-
nication and computing applications. A FINDERS system is
illustrated in Fig. 1, consisting of two types of nodes,
readers and tags. The deployment of readers is carefully
planned according to specific applications. For instance, in
wildlife and biological studies, readers can be installed at
“hot spots” where the animals visit frequently or “choke
points” that they have to move through because of
significant movement barriers otherwise. The readers are
powerful nodes in FINDERS, with large storage space and
high computing capacity. While all readers are fixed, the
tags are attached to moving targets and thus become mobile
(see Tags 1-8 in Fig. 1).

The communication in FINDERS is extremely challen-
ging. Since FINDERS aims to support applications in
remote fields, infrastructure-based communication net-
works (such as cellular, WiMAX, and telemetry systems)
are unavailable. Moreover, due to harsh and complex
wildlife environments with obstacles, it is not practically
viable for most readers to access satellites; neither can
they establish reliable connections (e.g., via Wifi, Zigbee,
or VHF/UHF radio) to communicate with each other. As
a result, they become isolated readers, or IRs (see IRs 1-4
in Fig. 1).

Only a few readers at convenient locations can access
reliable network connections. They are dubbed gateway
readers (or GRs), serving as gateways between FINDERS
and conventional network infrastructure (see GRs 1 and 2
in Fig. 1).

Published by the IEEE CS, CASS, ComSoc, IES, & SPS

YANG ET AL.: EFFICIENT ROSTERING OF MOBILE NODES IN INTERMITTENTLY CONNECTED PASSIVE RFID NETWORKS

D |MeetingTime
5 1212
2
8

12010

MeetingTime|
1845

12011

INGIS]

Tag 5
IR1 ° IR3 2341

/A\O Tag 7 A\Ta%zt q

Tagé\\
R v R2S

‘ \
A GR2

Tag 1 T
[}

Fig. 1. An overview of FINDERS.

Since GRs are well connected, they can share data with a
negligible delay compared with the average time to deliver
data from one IR to another and thus can be viewed as a
single virtual node. On the other hand, as IRs are isolated,
their communication is enabled by the mobile tags that
establish time-varying opportunistic links with nearby
readers and thus form an intermittently connected delay-
tolerant network (DTN [8]) for data delivery. An example of
such distinctive communication paradigm is illustrated in
Fig. 1. Since Tags 2 and 8 are located in IR 1’s read/write
range, IR 1 may read the data from Tag 2 and then write
them into Tag 8. When Tag 8 passes by IR 2, the former
unloads its data to the latter. IR 2 subsequently writes the
data into Tag 7. With its trajectory through GR 2, Tag 7 can
thus deliver the data to its destination via this gateway.

1.2 System Configuration

Many off-the-shelf passive tags that are light and durable
and have sufficient reading/writing ranges can be
employed in FINDERS. For example, we have adopted
the Alien passive RFID system for this research (see
Fig. 6). The readers are powerful devices, with sufficient
storage and battery capacity. An Alien ALR-9900 reader
possesses of 64-MB RAM and 64-MB flash memory. The
trial data show that a typical car battery of 12 V x 60 Ah
can supply the reader for 20 to 35 hours with its scanning
frequency ranging from 1 to 1/60 Hz. With a suitable solar
charger, the battery is sufficient to sustain the continuous
function of the reader in a wide range of wildlife
applications. The reader is also equipped with an interface
for extended computing power and storage capacity. On
the other hand, being very thin and light, passive RFID
tags are attached to mobile objects (such as the wildlife
being studied). For example, an Alien ALN-9540 tag
adopted in our experiments measures 8.15 x 94.8 x
0.05mm and weights less than 1 gram. A tag has
extremely limited storage space. The Alien tag can hold
up to 20 bytes only. A block-based scheme will be
introduced in Section 3 to expand tag capacity by
leveraging the aggregated storage space of multiple
passive tags, achieving a total capacity of tens to hundreds
of bytes. Without loss of generality, we simply refer to a
tag that can be a single tag or a block of tags, and let W
denote its storage capacity in the following discussions.
Our field experiments have revealed that the Alien system
can achieve a reading/writing distance of some 6 meters.
Each reader or tag is associated with a unique ID. A
reader periodically scans nearby tags. When a reader

2013

detects a tag, it records a meeting event in its local meeting
table. A collection of meeting events intrinsically provide a
discrete sampling of the movement of mobile nodes. A local
meeting table of a reader includes the IDs of the mobile
nodes and their meeting time. Fig. 1 illustrates examples of
the local meeting tables of IRs 1 and 4. As can be seen, a
mobile node may be involved in multiple meeting events
with different IRs at different time. Each entry of the table
takes about 6 bytes. Since the meeting frequency is low in
our target applications (generally lower than once per
minute), the flash memory of the reader can hold such data
for years without overflow.

1.3 Rostering of Mobile Nodes in FINDERS

This paper focuses on the rostering problem based on the
FINDERS architecture. Rostering is fundamental to wildlife
research. It aims to aggregate local information by indivi-
dual RFID readers to collectively report a roster of tagged
mobile nodes that appear in given interested area(s) and
time interval(s). Rostering is different from the counting [9],
[10], [11], [12] or count estimation [13], [14], [15], [16]
problems, where only a headcount is desired by requiring a
report of spatial and temporal view of the monitoring field.
In addition, recent works on efficient RFID tag identification
[17], [18], [19], [20], [21], missing tag detection [18], [22],
[23], localization [24], [25], [26], [27], [28], and tag
authentication and privacy [29], [30], [31], [32] are not
applicable to the rostering problem either.

Rostering involves both communication and computing
perspectives. When a mobile tag moves into the commu-
nication range of a reader, the latter detects the former and
records a meeting event in its local meeting table. A
collection of meeting events intrinsically provide a discrete
sampling of the movement activity of the mobile nodes. A
straightforward scheme is to transmit all meeting events to
the GRs, which are accessible by end users anytime.
However, this naive approach is impractical, due to
continuous updates on meeting events and extremely tight
constraints on communication capacity in FINDERS. In
particular, while the GRs have reliable network connections
and thus are ready for access at any time, it is nontrivial to
retrieve all meeting events from the intermittently con-
nected IRs. As a result, the local meeting events must be
kept at individual readers in a distributed manner.
Consequently, the rostering problem can be viewed from
a distributed database perspective. A user’s query request is
sent to a GR, which subsequently instructs selected IRs to
report a set of selected meeting events. Such meeting events
must be efficiently aggregated at the source and inter-
mediate nodes for economical communication.

To this end, the rostering problem can be viewed from
a distributed database perspective, where collections of
data are stored at networked servers distributed across
multiple physical locations, which are similar to the local
meeting tables maintained by scattered readers. A GR
serves as a portal for external applications to query the
database. For example, a rostering request can be mapped
to a typical SELECT statement in database systems, aiming
to create a roster of mobile nodes that visit a set of readers
in a time interval:

2014

SELECT tagID

FROM MeetingTable

WHERE timestamp > begin time
AND timestamp < end time

AND readerID > ‘idl”’

AND readerID < "id2”’

Clearly, one may extend the above statement by
specifying multiple time intervals and multiple sets of
readers. A set of readers represent a sampled area that the
mobile nodes visit. A time interval can be past, current, or
future. If the current clock is greater than the end time, the
rostering process is based on previously recorded meeting
events. When the clock is less than the start time, the
request alerts readers to initiate rostering during a future
interval. Otherwise, with the current clock between the start
time and the end time, it is an ongoing rostering. Part of the
meeting events are already available, while new events will
be added until the end time.

In addition to query, a GR may send other commands
too, for example, to request IRs to delete some obsolete
events, or to reconfigure IR’s scanning frequency, or to
modify algorithmic parameters in rostering and commu-
nication. All of them can be viewed as typical statements in
data manipulation language, data definition language, or
data control language in database systems.

1.4 Challenges

The detection of meeting events largely follows standard
RFID operations. The reader periodically scans nearby tags.
Its scanning frequency (i.e., number of scans per second)
may be tuned according to the requirement of applications.
The higher the scanning frequency, the more meeting
events are detected, providing a higher resolution of mobile
node’s movement.

On the other hand, the transmission of meeting events
and other control messages is nontrivial, becoming the key
challenge for achieving efficient rostering. The problem
stems from the intermittent connectivity in FINDERS. As
discussed earlier, the tags serve as transportation vehicles,
carrying data packets from one reader to another. Since the
mobility of tags is uncontrolled and the storage space of a
tag is small (ranging from tens to hundreds of bytes), the
communication capacity is extremely limited and the
communication links are opportunistic. Therefore, a reader
must fully exploit the capacity of tags whenever they are
available. Since the capacity of a tag is fixed, the challenge is
to fit as much useful information as possible onto the tag.
The reader has many possible options to pack its informa-
tion of meeting events, creating various hypotheses of data
packets, with different amount of valuable information and
packet lengths. A distributed algorithm is needed to
determine the set of packets to be written into the tag, to
maximize its effective information per bit (IPB) transmitted
(i.e., the entropy). Moreover, in addition to delivering data
from IRs to GRs, commands and feedbacks must be
transmitted from GRs to IRs, which have not been studied
before in the context of a passive RFID network like
FINDERS [6]. To this end, several critical issues must be
carefully addressed:

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 10, OCTOBER 2013

e Data packets must bear a compact format, which is
tailored for adaptive data aggregation in rostering.

e DPart of the data maintained by different readers can
be redundant for a given rostering request. More
redundancy is usually generated during data trans-
missions. Therefore, individual readers must prior-
itize their data for efficient utilization of the precious
communication capacity.

e Mobile nodes with different mobility patterns are
suitable for carrying different packets. For example,
a mobile node likely moving toward a GR is more
efficient for delivering meeting events, while the
mobile nodes traveling away from GRs are more
effective to serve rostering commands and feed-
backs. An online learning mechanism is desired to
estimate the mobility patterns of mobile nodes.

e A distributed algorithm should be devised to choose
the best set of packets according to information
redundancy and tag mobility, aiming to maximize
their total value and at the same time do not exceed
the capacity of a tag.

The above challenges are addressed in this work to
develop an effective algorithm for mobile node rostering,
based on several communication and computing techniques
specifically tailored for FINDERS. When a communication
opportunity becomes available between a reader and a tag,
a dynamic space-efficient coding scheme is employed to
construct hypothetic packet candidates, which are ap-
praised according to information redundancy and tag
mobility. A distributed algorithm based on 0-1 Knapsack
model is devised to choose a set of packets, which together
maximize their total (redundancy-excluded) value but do
not exceed the capacity of the tag. We have carried out
experiments that involve 38 volunteers for nine days and
performed large-scale simulations to evaluate the proposed
rostering scheme.

The rest of the paper is organized as follows: Section 2
introduces our proposed rostering algorithm. Section 3
describes implementation and testbed experiments. Sec-
tion 4 presents simulation results. Finally, Section 5
concludes the paper.

2 PROPOSED ROSTERING ALGORITHM

In this section, we first present an overview of our
proposed scheme and then elaborate algorithmic details
for creating, appraising, and choosing data packets for
effective rostering.

2.1 Overview of the Rostering Algorithm

Since the data transmission opportunities are available only
when tags meet readers, the performance of the system
largely depends on the decision made by the reader on its
reading and writing operations. Fig. 5 illustrates the basic
procedure for a reader to communicate with a tag. The
reader periodically scans the channel. If it finds a tag (or a
block of tags attached to an object), the information kept on
the tag is read out and a meeting event is logged by the
reader. After the tag is identified, the reader generates a
candidate packet list and calculates the weight and value
for each candidate packet based on the best known

YANG ET AL.: EFFICIENT ROSTERING OF MOBILE NODES IN INTERMITTENTLY CONNECTED PASSIVE RFID NETWORKS

CMD |Gen | CMD I Rostering
ID_|Time |Counter Priority Command
T=[1024,5523]

1 11823 1 10 A=[IR1,IR3]
2 T=[5224,9800]

3 |2 3 A=[IR2,IR5]

(a) Command Table

D ?’?rﬁlg Acked T'i:r’rB1e C%iglt{zr CO'L:JEIEF
tJR tJE ij ij

112102 | Y |4233 5 3

3 (3222| N — 2 0

10 | 4258 N — 1 0

(b) Roster1 (for Command1)

Fig. 2. Tables maintained at a reader.

information of data priority and redundancy. Finally, the
optimal set of packets are chosen and written onto the tag.
We introduce three types of packets for rostering:

o Command packet: A rostering command is issued by a
GR. Similar to the SELECT statement discussed in
Section 1.3, a Command packet includes the inter-
ested time intervals (denoted by 7) and areas
(denoted by A). The latter is represented by readers’s
IDs. A command without A is meant for the entire
area. A globally unique sequence number (called
Command ID) is associated with each command.

e Reply packet: Zero to multiple Reply packets may be
created by an IR, in response to a rostering
command. A Reply packet contains the IDs of the
mobile nodes with meeting events that satisfy 7" and
A. The details of creating Reply packets will be
elaborated in Section 2.2.

e Feedback packet: One or multiple Feedback packets are
generated by a GR, corresponding to a command. A
Feedback packet contains the mobile node IDs that
have been received by GRs, facilitating IRs to
eliminate unnecessary redundant data for efficient
channel utilization.

In a nutshell, Command packets are dispersed from GRs
to IRs. Consequently, Reply packets are created by IRs and
delivered to GRs for rostering. Meanwhile, Feedback packets
are distributed from GRs to IRs to filter out node IDs that
have been received. More specifically, each reader (either a
GR or IR) maintains a local meeting table as discussed in
Section 1.2. In addition, it keeps a command table that
includes all active rostering commands it has received (see
Fig. 2a) and the rosters it has learned so far for each
command (as illustrated in Fig. 2b). A roster entry includes
the ID of a mobile node, the time when the corresponding
meeting event was extracted for the command (i.e,
“ReplyTime,” denoted by tfz for ID j), the number of times
that ID j has been transmitted by the reader in Reply packets
(i.e., “ReplyCounter,” mf), a feedback flag (i.e., “Acked”) to
indicate if ID j has been received by GRs, the time that the
feedback is generated (i.e., “FBTime,” tf), and the number
of times that ID j has been transmitted by the reader in
Feedback packets (i.e., “FBCounter,” mf)- Note that while
mf and m!" are local knowledge and thus known by the
reader accurately, tf, tf , and “Acked” are based on best
known information, which is not always precise. Similarly,

2015

an entry in a command table includes a command ID, the
time issuing the command, the number of times it is
transmitted by the reader, its priority, and a description of
the command. Algorithm 1 outlines the procedure for the IR
to update its local meeting table, and related table at the
time a tag is identified and the packet is received. The local
meeting table keeps all meeting events of the IR, while the
Id2Rostering table contains the rostering tables for all
rostering commands. Each rostering table is indexed with
the command ID. Once a packet is received, the local
meeting table is updated, followed by possible updating of
Id2Rostering table and command table.

Algorithm 1: Tag Identification
Input:
p: the packet received
p.tagld: tag id, p.queryld: rostering command id
p.type: packet type, p.ids: rostering ids
t: current timestamp
localMTable: the local meeting table of the IR
cmdTable: the table to store rostering command
id2RTable: the table of rostering table for each
command

1 put < p.tagld,t > to localMTable

2 if p.type == Query then

3 if p.queryld not exist in Id2RTable then

4 table<—search the localMTable according to
condition defined in p;

5 id2RTable<«(p.queryld, table);

6 put < p.queryld,time > to the cmdTable if

no identical query exists;

7 else if p.type == Reply or p.type == Feedback then
8 table<— search id2RTable with p.queryld;
9 if table is null then

10 table<— create an empty rostering table with
p-queryld;

11 Id2RTable<< p.queryld,table >;

12 foreach id in p.ids do

13 if p.type == Feedback then

14 table(id).Acked< Yes;

15 if table(i).FBTime is not set then

16 | table(id).FBTime+time;

17 else

18 if table(i).ReplyTime is not set then

19 | table(id).ReplyTime«time;

A user may send a Command packet to any GR, which
serves as the head GR for the command. We assume the
GRs are connected to a reliable network infrastructure (e.g.,
the Internet), and thus can always synchronize their
rostering commands and rosters. A tag may carry a mixed
set of Command, Reply, and Feedback packets. When a tag
meets a GR, the GR first reads the information on the tag. If
the tag contains Reply packets, the GR obtains the mobile
node IDs therein and aggregates them into the correspond-
ing rosters. Then, it writes Command and/or Feedback
packets into the tag. When a tag meets an IR, the IR again

2016

Prefix K
2

| Bitmaps

0 Bitmaps

1 Bitmaps

Fig. 3. Hypothetic packet candidates.

first reads the information on the tag. If there is a Command
packet and the command is new to the IR, it inserts the
command into its command table and creates an empty
roster for the command. It then immediately looks up its
local meeting table to extract meeting events that satisfy the
command and inserts corresponding mobile node IDs into
the created roster. If the tag contains Reply and/or Feedback
packets, the IR updates its rosters by inserting new entries
(according to the new mobile node IDs in Reply packets) or
updating feedback flags of existing entries (according to
Feedback packets). Then, it creates a set of hypothetic packet
candidates, appraises their values, and decides a set of most
valuable packets to be written into the tag for delivering
mobile node IDs to GRs, and/or disseminating commands
or feedbacks. The details will be discussed in the next
sections. Finally, the head GR replies to the user with the
roster it learns after a given time period.

As can be seen, a reader not only maintains local meeting
events but also receives information from remote readers.
The commands, replies, and feedbacks are duplicated
during their transmissions. It is common to have multiple
copies of the same information at different readers.
Therefore, different data may have different values. For
example, if a mobile node ID already has many copies
across the network, it will be less valuable to include it in a
Reply packet, because such information might have been
received by a GR or will be soon delivered to a GR by other
tags in the network. As discussed in Section 1.4, the key
challenge in rostering is to efficiently utilize the extremely
limited communication capacity for transmitting Command,
Reply, and Feedback packets. A reader must determine the
best set of packets to be written into a tag whenever such
communication opportunity becomes available, arriving at
a resource optimization problem to be addressed next.

Note that multiple rostering commands can be executed
simultaneously. Moreover, they may be prioritized such
that more communication bandwidth (i.e., the capacity of
tags) is allocated to important or urgent command.

2.2 Packet Format and Hypothetic Candidates

A tag may carry one or multiple packets. A packet must be
appropriately formatted to effectively utilize the extremely
limited tag capacity for transportation of valuable informa-
tion. Each packet includes four fields, a Type field of 2 bits, a
Command ID field with a fixed length, a Data field with a
variable length, and a Timestamp field. The Type indicates
whether it is a Command or Reply or Feedback packet. The

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 10, OCTOBER 2013

|
0.9
0.8
0.7

0.6

IPB

0.50— - =~ <

0.4 =

03 >
~
02 <
~
0.1 T |

0

0 2 4 K1 6 8 10

Fig. 4. IPB under different K; (K =9).

Command ID contains the sequence number of the com-
mand for which a Command packet requests or to which a
Reply or Feedback packet responds. The Data field of
the Command packet simply includes the interested time
intervals and areas as introduced in Section 2.1. On the
other hand, the Data fields of Reply and Feedback packets
are worth further elaboration, because they are specially
designed to suit rostering.

First, we give a simple example to show the impact of
format in Reply and Feedback packets. Assume that an IR has
detected two mobile nodes with IDs of 11010 and 11011 that
satisfy a rostering command. In a straightforward approach,
the IR may create two Reply packets. Each of them contains
an ID, consuming a total of 10 bits (if other fields are
ignored here). Alternately, we note that the higher 4 bits of
the two IDs are identical. Therefore, the IR may create a
Reply packet with a prefix of 1101 plus two bitmap bits, i.e.,
1101ab. The bitmap bits (i.e., a and b) correspond to the last
bits of the mobile node ID. If a is set to 1, it indicates that
there is an ID with a prefix of 1101 and the last bit of 1 (i.e.,
11011); or there is not such an ID if a = 0. Similarly, b is set
to indicate the existence of 11010. Based on this approach,
the IR can create a Reply packet with only 6 bits, i.e., 110111,
for the above example. However, it does not always save
space by employing bitmaps. For instance, if the two IDs are
11010 and 10100, then they only share a prefix of 1 bit, and it
will take 16 bits to construct a bitmap for the remaining
4 bits in the IDs, summing up to 17 bits in total.

Generally, to support N mobile nodes, each ID needs
K = [log, N bits. We adopt a hybrid bitmap code to format
Reply and Feedback packets, where the higher K, bits
(0 < K; < K) of IDs are chosen as prefix, and 2551 bits
are appended as bitmaps. When K; = K, it is a complete
bitmap as shown at the top of Fig. 3. On the other hand, it
yields simple mobile node IDs when K; =0 (see the last
group of codes in Fig. 3). There are up to 25! — 1 hybrid
bitmap codes.

Here, we introduce the IPB for a Reply or Feedback packet,
defined as the number of IDs it carries divided by the length
of its Data field. The IPB under K; =0 is a constant of %
with no regard to the number of mobile IDs, because each
packet always contains one ID and consumes K bits. When
K, = K, the bitmap consumes 2% bits, and its IPB varies
from 1 to 1/2%, depending on the presences of mobile node
IDs. If there are 2X IDs, every bit of the bitmap is set,
achieving an IPB of 1; however, if there is only one ID, it
becomes very inefficient with an IPB of as low as 1/2%.
Fig. 4 illustrates the variation of IPB under different K. In

YANG ET AL.: EFFICIENT ROSTERING OF MOBILE NODES IN INTERMITTENTLY CONNECTED PASSIVE RFID NETWORKS

RFID Reader RFID Tag
Scan |
[/
I he Bl
|

Block Return

1. Tag Identification

2. Extract and Parse Packets
3. Generate Candidate Packets
4. Caculate Packets’ W and V
5. Find the Optimal Packets

|
| Write Packets to Block

Fig. 5. Sequence diagram for communication between a reader and
a tag.

addition, the possible packet format is also limited by the
maximum length of a packet (which is usually constrained
by the storage capacity of tags).

The Reply and Feedback packets differ in their Type
fields only. They share the same hybrid bitmap format
discussed above in their Data fields. The length of the
prefix is included at the beginning of the Data field. Since
the maximum prefix length is K, the first [logp K| =
[log, log, N'| bits of the Data field are reserved to indicate
the length of the prefix.

Based on the packet format introduced above, a reader
creates hypothetic packet candidates, i.e., the possible
packets to be transmitted. It creates a hypothetic Command
packet candidate for each command in its command table,
and hypothetic candidates for Reply and Feedback packets
according to the rosters it has learned for each rostering
command. For a given roster, the entries with “Acked=N"
are used to build Reply packets, while others are for Feedback
packets. There are K + 1 different ways to create Reply (or
Feedback) packets, with different lengths of prefix in the
hybrid bitmap code (as shown in Fig. 3 with K; varying
from 0 to K). As a variation of the standard hybrid bitmap
code, the zeros at the end of a code can be discarded to
further reduce packet length.

The compression scheme proposed above is based on the
ID compressibility and will naturally favor the continuous
IDs. To prevent starving of some less-compressible IDs, the
redundancy level of each ID will be considered. The value
of an ID depreciates when more redundancy is spread
across the network. The more times an ID is transmitted, the
less value the ID will have, aiming to achieve the desired
fairness for data transmission. The next section discusses
how to determine the values of the IDs and data packets.

2.3 Appraisal and Selection of Hypothetic Packet
Candidates

Till now, we have obtained a set of hypothetic packet

candidates. It is generally infeasible to write all of them into

a tag due to limited tag capacity. As a result, the reader

2017

must choose a subset of them with the highest value for
transmission. To this end, we formulate such optimization
as a 0-1 Knapsack problem. More specifically, the available
storage capacity of a tag is W. Each hypothetic packet
candidate is associated with a weight and a value, denoted
by w; and v;, respectively, for Packet i. Therefore, we have

Mazximize : Z VT
" (M
Subject to : Zwixi <W, z; € {0,1},
=1
where n is the total number of hypothetic packet candidates
and {x; | 1 <i < n} are 0-1 variables to be determined.

In the above formulation, W is known. It is the capacity
of a tag in bits, excluding the space reserved for control
information (e.g., the mobile node ID). w; can be readily
obtained for each hypothetic packet candidate by counting
its length in bits. The value, i.e., v;, is appraised according to
information redundancy and tag mobility. We first discuss
the appraisal for Reply and Feedback packets and then
Command packets, followed by the adjustment according to
tag mobility.

2.3.1 Appraisal of Reply and Feedback Packets

The valuable information contained in the Reply and
Feedback packets is the mobile node IDs. So, the value of a
Reply or Feedback packet is defined as the sum of the values
of individual IDs it contains, i.e., v; = 2?:1 u;, where ¢; is
the number of IDs contained in Packet ¢ and v, is the value
of the jth ID.

As discussed in Section 2.1, data are duplicated during
their transmissions in FINDERS, creating redundancy. The
information depreciates when more redundancy is spread
across the network. Therefore, u; should be determined
according to the amount of redundant copies of its
information. However, it is extremely costly to keep track
of such redundancy. In this work, we estimate the
redundancy by two factors. First, from the global perspec-
tive, the longer the information has been propagated, the
more redundancy is usually generated in the entire net-
work. Second, each reader records how many times it has
transmitted the same information (i.e.,
FBCounter shown in Fig. 2b), which serves as a local
estimation of redundancy. We define u; = P(1 — 771)L) /
mj, where P, is a priority parameter (to differentiate
different rostering tasks), n; is a depreciation factor, ¢ is

ReplyCounter or

the current time, ¢; is the time that the information was
generated, A is a constant, and m; is the number of times the
reader has transmitted the mobile node ID (i.e., j) for this
rostering command. ¢; =t/ and m; = m for Reply packets
(or t; t and m; = mF for Feedback packets) are available
in the roster (see Fig. 2b) Note that since there is no separate
time stamp for each ID, ¢/ and ¢! are estimated by the
packet-level time stamp and thus usually larger than the
true value. The calculation of appraisal for Reply and
Feedback packets is summarized in Algorithm 2.

2018

Algorithm 2: Appraisal Calculation for Reply and
Feedback Packets

Input:

I: list of candidate packets

t: current timestamp

querytable: the rostering table for the specific id at an

IR

Output:

I: list of candidate packets

foreach packet in | do
foreach record in querytable do
if record.id can be represented by packet then
Set packet’s corresponding bitmap to 1;
if packet.type == Reply then

valueofbit < calculate the value of the
L Reply information;

A U AW N -

else
L valueofbit < calculate the value of the
Feedback information;

. 2

9 | packet.appraisal<—packet.appraisal+valueofbit;

2.3.2 Appraisal of Command Packets
A Command packet is different from Reply and Feedback
packets, because it does not contain individual mobile node
IDs. Therefore, the reader directly determines the value of
the whole pacl/«;t Similar to above discussions, we have
=Py(1-—) / m;, where P, is the priority parameter,
772 is the deprec1at10n factor, ¢; is the time that the command
was issued, and m; is the number of times the reader has
transmitted this rostering command.

2.3.3 Appraisal Adjustment

So far, we have discussed how to calculate the value for a
packet according to redundancy. But note that the appraisal
aims to facilitate the selection of a set of packets to be
written onto a tag. As a result, the value depends not only
on the information itself, but also on the tag’s mobility.

In general, the precise mobility patterns of the tags are
unknown to our algorithm. However, it is very beneficial to
learn at least a roughly estimated moving pattern of a tag. In
particularly, if a tag has a high probability to move toward
GRs, it may serve as an excellent vehicle to carry Reply
packets (whose destination is GRs). Otherwise, if it moves
away from the GRs, it will be more efficient to transport
Command or Feedback packets for disseminating such
information to IRs. To this end, we employ the effective
delivery capability (EDC) to reflect the node’s cascaded
probability to “reach” GRs. Let &; denote the EDC of Node .
The EDC of a GR is always 1, and the initial EDC of anIR or a
tag is zero. For any two Nodes i and j (in which one must be
a reader and the other must be tag), if Node i is not a GR and
meets Node Jj with & > ¢& at time ¢, & is updated to
(1- 775)L a J@ + n3&;;if Node ¢ does not meet any Node j with
& > & attime t, & is updated to (1 — 773)[a J&, where 73 is a
constant to keep partial memory, A is a shaping constant,
and ¢, is the time when & was updated last time.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 10, OCTOBER 2013

For example, if Node ¢ that is a tag with & = 0 meets
Node j that is a GR with & =1, such an update will
increase the EDC of Node i to reflect its chance to meet the
GR. When the tag subsequently meets an IR with an EDC of
zero, the latter will make an update according to the
former. As a result, the IR gains a cascaded probability to
“contact” the GR. The process repeats. It has been proven in
[7] that if the nodal mobility is statistically stable, the
EWMA exhibits long-term stability, and thus, the mean of
an EDC will converge.

When a tag meets an IR, their EDCs are compared. If the
IR has a higher EDC than the tag has, it implies a low
opportunity for the tag to deliver data to GRs either directly
or indirectly. Thus, it will be inefficient to let the tag carry
Reply packets. Similarly, if the tag has a higher EDC, it is
unsuitable for Feedback or Command packets. In addition,
since only relative value matters, we need to make
adjustment on the value of either Reply or Feedback/Command
packets, but not both. Based on the above observations,
we define the following function to adjust the value of
Reply packet i:

&
maX(ﬂl By |vis & < Etag
R

(2)
>Ui7 £1R > gt(lga

v, =

&’ Bo

where ; and (3, are constants to shape the adjustment.

Note that EDC reflects the long-term probability. It does
not ensure that a tag with higher EDC always moves
toward the GRs or vice versa. However, it offers a
probabilistic prediction about the moving direction of the
tag. Given such an intermittently and opportunistically
connected network as FINDERS, a node cannot precisely
predict the availability of a communication link. As a result,
data transmission must be based on a probabilistic
approach. In other words, the decision to transmit (or not
to transmit) a data packet is made to maximize the
likelihood of successful data delivery. It does not guarantee
that every decision on data transmission is correct. Our
results show that the probabilistic prediction based on EDC
effectively increases the efficiency to utilize the scarce
communication opportunities and thus improve the overall
network performance.

2.3.4 Optimization by a 0-1 Knapsack Model

Till now, the reader has known W, w;, and v;, and thus is
ready to solve the 0-1 Knapsack problem given in (1). The 0-
1 knapsack problem is NP-complete. A dynamic program-
ming solution that runs in pseudopolynomial time is
adopted here [33]. Algorithm 3 outlines the method for
solving the 0-1 Knapsack problem. Note that the total value
of a set of Reply or Feedback packets is not the simple sum of
individuals’ values. It is calculated according to the union
of the mobile node IDs of those packets. The algorithm
determines 0-1 variables, {z; |1 <i <n}, ie., the set of
packets to be written into the tag, which together do not
exceed the capacity of the tag and at the same time
maximize the total value of the information being carried.

YANG ET AL.: EFFICIENT ROSTERING OF MOBILE NODES IN INTERMITTENTLY CONNECTED PASSIVE RFID NETWORKS

Fig. 6. Our Alien passive RFID gear.

Algorithm 3: Dynamic Programming to get optimal
packaging solution

Input:

p: list of candidate packets

n: number of candidate packets

W: available space in the tag

Output: S[n,W]: Solution contains the optimal packets

1 for i < 0 to W do
2 L S[0,i].value = 0;

3 for j < 1 tondo
L S[j,0].value = 0;

IS

5 for i < 1 to n do

6 for w <+ 0 to W do

7 if p[i].weight < w then

8 packets<—S[i-1,w-p[i].wieght].packets;

9 addsolution<—packetsp[il;

10 if addsolution.value>S[i-1,w].packets.value
then

11 S[i,w].packets.add(p[i]);

12 S[i,w].value<—addsolution.value;

13 else S[i,w].value = S[i-1,w].value;

—

4 return S/n,WJ],

3 EXPERIMENTS AND RESULTS

To demonstrate the feasibility and empirically evaluate the
efficiency of the proposed rostering algorithm, we have
carried out experiments based on the off-the-shelf RFID
equipment supplied by Alien Technologies. We have
acquired five sets of Alien passive Class1Gen2 RFID
systems with five ALR-9900 readers and 1,000 ALN-9540-
WR Squiggle tags (see Fig. 6 for a photograph of the reader
and tags). The readers are programmed by using
the vendor’s applications development kit. In this section,
we first discuss the implementation issues and then
introduce our experiments and results.

3.1 Implementation Issues

The implementation of our proposed rostering algorithm is
largely straightforward by following the description in
Section 2. It does not require any modification on the off-
the-shelf tags or standard reader commands. Only a small

2019

amount of codes for hypothetic packet candidate creation,
appraisal, and selection need to be added to reader’s
program.

However, it is worth a discussion on an implementation
issue mentioned in previous sections but not yet addressed.
The capacity of a low-cost passive RFID tag is extremely
limited. For example, an Alien ALN-9540-WR “Squiggle”
tag adopted in our experiments has a memory space of
160 bits, in which only 128 bits are usable for data storage.
Such limited capacity leads to the communication bottle-
neck in FINDERS. Therefore, it is highly desirable to
support expansion of tag memory, according to the
communication needs in specific applications. To this end,
we devise an adaptive expansion scheme-based off-the-
shelf Alien ALN-9540-WR tags. Since the Alien tag is
Class1Gen2 (C1G2) standard compliant, our scheme can be
applied to other standard passive tags as well.

We introduce “blocks” to expand tag capacity. A block is
an integral unit attached to a mobile node, consisting of a
head tag and zero or multiple storage tags. The tags in a
block share the same Node ID. The length of Node ID is
chosen according to the estimated number of nodes in an
application. For example, we allocate 10 bits for Node ID in
our implementation. The tags within a block are uniquely
identified by their Tag IDs, whose length depends on the
maximum storage space needed for a block. For example,
one may choose 4 bits for Tag ID to support up to 16 tags in
a block. The Tag ID of the head tag is predefined to 1111.
This design effectively shortens communication delay. To
scan nearby tags, the reader first sets its mask to 1111 for
head tags only, thus reducing undesired collisions between
head and storage tags. Once a head tag is identified, the
reader uses the Node ID and individual Tag ID to generate
a unique mask for the next tag in the block, so on and so
forth, achieving collision-free communications.

Since each tag weights less than 1 gram, the total weight
of multiple tags is up to a few grams, which does not
exceed the weight constraint. Note that the idea of
constructing blocks is not imperative to the proposed
rostering algorithm. A more capable tag with large capacity
can be certainly employed, instead of using a block of small
tags, if it is available.

3.2 Testbed Setting

An experimental testbed has been set up to gain useful
empiric insights of mobile node rostering in FINDERS. For
fair comparison, trace data are collected to run comparable
schemes. Our testbed consists of five readers deployed in
the building of Computer Science Department. Reader 1 is
located at the entrance of a major classroom (Room 117) on
the first floor. Reader 2 is installed at a large research lab
(Room 228) on the second floor. Three readers (i.e., Readers
3, 4, and 5) are on the third floor, close to the doors of a
small lab and two faculty offices. Each reader is equipped
with two side-by-side 6dBi circular polarized antennae.
Readers 1-4 serve as IRs, while Reader 5 is the GR. All
readers scan nearby tags at a frequency of once per second.
The parameters used in the testbed is: P, =1, P, =8,
m="m="nN3 = 0001, ﬂl = 2, ﬂz = 10, and A = 600.
Thirty-eight volunteers had participated in our experi-
ments, including faculty members, senior PhD students

2020

—A- - Oracle Scheme

- w - RandomID

—@— EnhancedID

—@— Enhanced|DFeedback

—4— ProposedScheme

@
&

@
]

<>>
5]
B
>

N
&

Number of Unique ID Received
5 8

3

o

2000 4000 6000 8000 10000 12000
Running Time (Minutes)

Fig. 7. Roster grows over time.

(who do not have classes), graduate students at MS level
(who go to classrooms regularly), and undergraduate
students. Our experiment lasted nine days. Each participant
carries a badge (a typical plastic badge used in conferences),
with an Alien ALN-9540-WR tags enclosed. A tag contains
four tag-level fields plus a number of packets. The tag-level
fields are Node ID, Tag ID, EDC, and Timestamp, which
consumes 10, 4, 14, and 20 bits, respectively. Thus, a tag has
80 bits left for packets. As discussed earlier, a packet
includes four fields, a Type field of two bits, a Command ID
field of 8 bits, a Data field with a variable length, and a
packet-level Timestamp of 20 bits. The number of packets
that can be carried by a tag depends on the Data field. For
example, if the Data field contains a mobile node ID only,
up to two packets can be written into a tag.

3.3 Experimental Results

To evaluate the performance of the proposed rostering
algorithm, we have considered several other schemes for
comparison. “RandomID” is a naive approach where an
IR randomly chooses a set of mobile node IDs that
satisfy a rostering command for transmission. It often
results in unnecessary high redundancy and long delay.
“IDEnhancedID” is similar to the RandomID scheme but
with redundancy and EDC taken into account. The IR
calculates the EDC for each ID and transmits the IDs with
lowest EDCs. “IDEnhancedFeedback” further improves
with a simple feedback mechanism. When a tag meets a
GR, the GR writes the recently received IDs to the tag to
inform IRs that they need no longer transmit such IDs.
“ProposedScheme” is the proposed scheme. “Oracle
Scheme” assumes that a mobile node ID is received as
soon as it is detected by any reader, providing an
unachievable performance upper bound. A command is
issued to create a roster of mobile nodes in the entire area
and experimental period.

Fig. 7 shows the number of unique mobile node IDs (i.e.,
the length of the roster) received by the GR over time.
Generally, the roster grows with time. However, a flat
interval is observed between 2,500 to 5,500 minutes, because
that was Saturday and Sunday when few participants
visited the Computer Science Building, resulting in nearly
zero meeting events or communication opportunities. The
proposed algorithm achieves a performance close to
the oracle results, significantly outperforming other
schemes. The difference between EnhancedIDFeedback
and EnhancedID is subtle. The former employs feedback
to remove some redundant information and thus is more
efficient in channel utilization, in comparison with the latter.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 10, OCTOBER 2013

14000

[RandomID
[__]EnhancediD

12000

[EnhancediDFeedback

[ProposedScheme

10000 | [OracleScheme

8000

6000

Delay (Minute)

4000

2000

30% 40% 50% 60% 70% 80% 90%
Percentage of IDs Successfully Rostered

Fig. 8. Delay versus rostering rate.

But it is effective for the IRs close to the GR only. RandomID
leads to the worst performance. It yields a roster with less
than half of the mobile node IDs, because it completely
ignores the priority of IDs, and thus, the redundancy and
overhead become overwhelming in the system.

Fig. 8 illustrates the delay for rostering z percent of
unique mobile node IDs. Since no scheme (except the Oracle
scheme) can achieve 100 percent ID rostering efficiency and
most schemes perform similarly at the initial stage, we only
consider z ranging from 30 to 90. As can be seen, the
RandomID scheme can barely get 30 percent of IDs during
the entire simulation. The EnhancedID and EnhancedID-
Feedback schemes can roster 60 and 80 percent of the IDs,
respectively, but with a longer delay compared with the
proposed scheme.

Fig. 10 presents a closer look of the experimental results
by illustrating the delays of individual nodes. The proposed
scheme achieves the lowest delay for nearly all mobile
nodes except Node 24. After analyzing the trace, we found
that two IDs besides ID 24 were available at the IR for
transmission. However, the packet candidates that contains
ID 24 all have less value at that time, and thus, its
transmission was delayed. There are also several IDs (e.g.,
14, 20, 23, 29, and 38) that experience the same delay under
all rostering schemes. The top of the figure shows the
missed IDs. As can be seen, none of the schemes yield a
complete roster. In particular, Node 8 is missed under all
approaches. It was a very inactive node. It was detected
only once by IR 2 at a late stage of the experiment.
Therefore, there was not enough time to deliver it to the GR.
We expect that it would be added to the roster if the
experiment was extended for a few more hours.

Fig. 9 shows the impact of IR failures on the performance
of our proposed rostering algorithm. As can be seen, when
IR1 fails, the number of successfully rostered IDs drops

40

35

30

25

20

No failure IR1 IR2 IR3 IR4
Impact of failure node

Fig. 9. Impact of IR failures.

YANG ET AL.: EFFICIENT ROSTERING OF MOBILE NODES IN INTERMITTENTLY CONNECTED PASSIVE RFID NETWORKS

T T
838998888 §878838
] a8 8

10000 h4 n 4
Il ProposedScheme M
[EnhancedIDFeedback
[EnhancedID

[_JRandomID b
v MissedIDs(ProposedScheme) n

BOO|

8000

= MissedIDs(EnhancelDFeedback)
© MissedIDs(EnhancediD)
O MissedIDs(RandomD)

6000

Delay (Minute)

4000~ 4

2000(ﬂl ‘H
0 llﬂ Lu \.\-\I\ \..I ﬂ-‘\‘ mI AL_LI_‘I_‘
1234
Node ID

; L
567 8 9101112131415161718192021 22232425262728293031 323334 3536373839
Fig. 10. Delay distribution.

dramatically (by about 1/3). This is because IR1 was
installed at the front door of a large class room. The
absence of IR1 results in much inefficient ID detection. On
the other hand, the loss of IR2, IR3, or IR4 has only marginal
impact because IR3 and IR4 acts as backup for each other in
the network, and the unique visits to IR2 are rare.

To further study the impact of nodal mobility on
rostering, we have designed an experiment by limiting the
command to only roster IDs for the past two days. In other
words, a roster command only intends to collect IDs
detected during the previous 48 hours. Fig. 11 shows the
average rostering delay varies on each day of a week. The
results closely match the activity pattern of students and
faculty. From Monday through Thursday, more nodes are
present in our experimental field, and thus, the rostering
delay is low. The rostering commands initiated at Friday
afternoon experience a longer delay as the tag activity
begins to decrease. The rostering commands generated on
Saturday and Sundays exhibit very long delay since no
much data can be delivered during the weekends, and the
longest delay is found for such commands issued on
Saturday because they have to wait for about two full days
before being served. Fig. 12 further zooms in to show the
delay of rostering during a 24 hour period. The first
Wednesday of our experiment is chosen as an example,
while similar results are observed on other weekdays as
well. The rostering delay is low during daytime and high at
night, which again shows the performance of rostering
depends on the activity of mobile nodes that carry tags.

The data rostering delay is also location dependent.
Fig. 13 shows the average delay of the rostering served by
different readers. Since IR3 and IR4 are installed on the
third floor with high connectivity to the GR (i.e., Reader 5),
it replies to rostering commands quickly, resulting in the
lowest delay. Deployed on the first floor and second floor,

3500

3000

2500

2000

1500

Delay (Minutes)

1000

500

Mon Tue Wed Thr Fri Sat Sun
Day of a week

Fig. 11. Delay variation during a week.

2021

1000

9007
—. 800
?
2
2 700 "
<
% 600
a
2 500
c
£ 400 "
7
4

300 -

200

"
100
0 4 8 12 16 20

Time (Hour)

Fig. 12. Hourly delay on Wednesday.

IR1 and IR2 are farther away from the GR and naturally
experience longer rostering delay.

4 SIMULATION RESULTS

Besides the experiments discussed above, extensive simula-
tions are indispensable for a comprehensive evaluation of
rostering in FINDERS with a large number of readers and
tags, which are not practical to build in labs.

We simulate a network of 5 x 5 cells. The mobile nodes
move according to power-law distribution, which is
deemed as one of the most realistic mobility models for
delay-tolerant mobile networks [34]. More specifically, each
mobile node has a home cell, which is randomly assigned
in our simulations. Node i makes its decision to stay in the
current cell or move to one of the neighboring cells in every
time slot. For example, if it is currently in Cell 0, it may
move into one of four adjacent cells (i.e., Cells 1-4) or stay
in Cell 0 in the next time slot. Its probability to be in Cell
is Py(z|0) = P(x)/Y.t_, Pi(2), where = =0,1,2,3,4 and

Pi(x)=k () k; is a constant, and (3 is the exponent of
the power- law distribution, respectively. We set § =1.2 in
our simulations. d;(z) denotes the distance from Cell z to
the home cell of Node .

By default, 125 nodes are randomly distributed in the
field, each with a capacity of 128 bits. There are one GR and
five IRs in the system, with a scanning frequency of 1 Hz.
Other parameters are similar to our experiment configura-
tion. We focus on the delay for rostering 90 percent mobile
nodes, i.e., the interval from the time when the GRs issue a
rostering command to the time when they receive the IDs of
90 percent of mobile nodes. We vary several key parameters
to observe their impact. All results show the average of
10 simulation runs and corresponding confidence intervals.

1600

1400

@ 1200

1000

Rostering Delay (Minutes)
o o
s o
s &

IS
=)
S

N
=
S

Average IR1 IR2 IR3 IR4

Fig. 13. Average rostering delay at IRs.

2022

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 10, OCTOBER 2013

)
ol
=3

1200

600

T T T
—&— Proposed Scheme

—&— Proposed Scheme
- = - EnhancedIDFeedback
EnhancedID

)

@
8
8

1000

—&— Proposed Scheme
- - - EnhancedIDFeedback

- = — EnhancedIDFeedback
[EnhancedID

o
=3
S

EnhancedID

=) @
=3 S
S S

Delay for 90% Rostering (Minutes;
IS
S
S}

Delay for 90% Rostering (Minutes;

N
=3
=3

400F

Delay for 90% Rostering (Minutes)
N @
S S
S} S}

=)
S

0
100 120 140 160 0 3264

Number of Tags

180 200 220 128

(a) Number of Tags.

Tag Capacity

(b) Tag capacity.

512 2
Tag Mobility (3)

(c) Tag mobility.

=)
S

600

—&— Proposed Scheme
- = — EnhancedIDFeedback
EnhancedID

©
=]

—&— Proposed Scheme
= = - EnhancedIDFeedback

—&— Proposed Scheme
= = — EnhancedIDFeedback
EnhancedID

500

EnhancedID

@
S

70F =
< 60 Sag

50 ~

Delay for 90% Rostering (Minutes)
!
1
Delay for 90% Rostering (Minutes)

Delay for 90% Rostering (Minutes)

30 0
4

7
Number of IRs

(d) Number of IRs.

Fig. 14. Simulation results.

Since the delay under “RandomID” is much higher than
other schemes, its results are omitted here.

As illustrated in Fig. 14a, the delay decreases with the
increase of the number of tags, because more tags result in
more communication opportunities and accordingly faster
delivery of data packets. However, the gain becomes smaller
when the tag density is already high, since additional tags
will carry unnecessarily duplicated data and thus do not
further improve rostering performance. Our proposed
scheme performs the best, followed by the IDEnhancedFeed-
back and IDEnhanced. The IDEnhancedFeedback benefits
by the feedback packets that reduce last-hop redundancy
and thus achieves better performance than IDEnhanced.

Fig. 14b shows that the performance of rostering
generally improves by increasing the tag capacity, because
more data can be written into and read from a tag. But note
that when the tag capacity increases beyond 256 bits, the
improvement becomes negligible, due to the saturation of
the network. On the other hand, if the tag capacity is
reduced to lower than 64 bits, the performance drops
dramatically, especially for the IDEnhancedFeedback and
IDEnhanced schemes. This is understandable because they
are less efficient in term of IPB and thus consumes more
capacity to deliver rostering data.

The power-law factor 3 determines tags” mobility. With a
larger (3, a tag stays closer to its home cell, i.e., with a lower
probability to move to other (especially remote) cells. Since
the communication in FINDERS largely depends on the
mobility of tags, lower mobility leads to lower network
capacity and accordingly longer rostering delay (see Fig. 14c).
The tag mobility has similar impact on all schemes.

Figs. 14d and 14e illustrate the results by increasing IRs
and GRs, respectively. Clearly, more IRs can capture more
meeting events and accordingly improve the performance
rostering. With more GRs, they together promote the chance

Number of GRs

(e) Number of GRs.

4 5 6 1 2 4 8
Scanning Interval (Seconds)

(f) Scanning Interval.

to directly detect the tags and make it easier to collect data
from IRs, thus achieving a lower rostering delay. We have
also studied the impact of readers’ scanning frequency (see
Fig. 14f). The lower the scanning frequency (i.e., the larger the
scanning interval), the less the meeting events, which leads to
fewer tags to be detected and lower communication capacity.
As a result, a longer average rostering delay is observed.

Besides above results for rostering 90 percent nodes, we
have also done simulations to roster other desired percent
of nodes and observed similar performance trend. With a
lower target percentage, the rostering delay is shorter as one
may expect. The proposed scheme shows consistent
performance gains over other schemes.

5 CONCLUSION

We have studied the problem of rostering in intermittently
connected passive RFID networks, aiming to report a list
of tagged mobile nodes that appear in given interested
area(s) and time interval(s). We have proposed a rostering
algorithm based on several communication and computing
techniques tailored specifically to address the challenges
due to sporadic wireless links, asymmetric communication,
intermittent computation, and extremely small memory of
tags in such unique networks. The proposed algorithm
employs a dynamic space-efficient coding scheme to
construct hypothetic packet candidates, appraises their
values according to information redundancy and tag
mobility, and establishes a 0-1 Knapsack model to choose
the best set of packets, which together maximize their total
(redundancy-excluded) value but do not exceed the capacity
of a tag. We have carried out experiments that involve
38 volunteers for nine days and performed large-scale
simulations to evaluate the proposed rostering scheme.

YANG ET AL.: EFFICIENT ROSTERING OF MOBILE NODES IN INTERMITTENTLY CONNECTED PASSIVE RFID NETWORKS

ACKNOWLEDGMENTS

This work was supported in part by the US National
Science Foundation under grant CNS-0831823. Part of this
work was presented at the Ninth Annual IEEE Interna-
tional Conference on Pervasive Computing and Commu-
nication (PerCom), Seattle, 21-25 March 2011.

REFERENCES

(1]
(2]

B3]
(4

(5]

o]

(7]

(8]

%]

(10]

(1]

[12]

[13]

[14]

(15]

[16]

(171
(18]
[19]

(20]

(21]

(22]

(23]

http:/ /www.princeton.edu/mrm/zebranet.html, 2013.

T. Small and Z.J. Haas, “The Shared Wireless Infostation
Model—A New Ad Hoc Networking Paradigm (or Where There
Is a Whale, There Is a Way),” Proc. ACM MobiHoc, pp. 233-244,
2003.

http:/ /www.wu.ece.ufl.edu/projects/DeerNet/DeerNet.html,
2013.

V. Dyo, S.A. Ellwood, D.W. Macdonald, A. Markham, C. Mascolo,
B. Pasztor, S. Scellato, N. Trigoni, R. Wohlers, and K. Yousef,
“Evolution and Sustainability of a Wildlife Monitoring Sensor
Network,” Proc. ACM Conf. Embedded Networked Sensor Systems,
2010.

M. Wikelski, RW. Kays, N.J. Kasdin, K. Thorup, J.A. Smith, and
G.W. Swenson, “Going Wild: What a Global Small-Animal
Tracking System Could Do for Experimental Biologists,” J.
Experimental Biology, vol. 210, pp. 181-186, 2007.

Z. Yang and H. Wu, “Featherlight Information Network with
Delay-Endurable RFID Support (FINDERS),” Proc. Sixth Ann.
IEEE Comm. Soc. Conf. Sensor, Mesh and Ad Hoc Comm. and
Networks (SECON ’09), pp. 55-63, 2009.

Z. Yang and H. Wu, “FINDERS: A Featherlight Information
Network with Delay-Endurable RFID Support,” IEEE/ACM Trans.
Networking, vol. 19, no. 4, pp. 961-974, Aug. 2011.

V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K.
Fall, and H. Weiss, “Delay Tolerant Network Architecture,” IETF
RFC 4838, 2004.

M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-Based
Aggregation in Large Dynamic Networks,” ACM Trans. Computer
Systems, vol. 23, pp. 219-252, 2005.

D. Angluin, J. Aspnes, and D. Eisenstat, “Fast Computation by
Population Protocols with a Leader,” Proc. 20th Int’l Symp.
Distributed Computing, pp. 61-75, 2006.

J. Aspnes and E. Ruppert, “An Introduction to Population
Protocols,” Bull. of the European Assoc. for Theoretical Computer
Science, vol. 93, pp. 98-117, 2007.

B.D. Walker, J.K. Glenn, and T.C. Clancy, “Analysis of Simple
Counting Protocols for Delay-Tolerant Networks,” Proc. ACM
Workshop Challenged Networks (CHANTS), pp. 19-26, 2007.

M. Kodialam and T. Nandagopal, “Fast and Reliable Estimation
Schemes in RFID Systems,” Proc. ACM MobiHoc, pp. 322-333, 2006.
C. Qian, H.-L. Ngan, and Y. Liu, “Cardinality Estimation for
Large-Scale RFID Systems,” Proc. IEEE Int’l Conf. Pervasive
Computing and Comm. (PERCOM ’08), 2008.

T. Li, S. Wu, S. Chen, and M. Yang, “Energy Efficient Algorithms
for the RFID Estimation Problem,” Proc. IEEE INFOCOM,
pp. 1019-1027, 2010.

M.S. Kodialam, T. Nandagopal, and W.C. Lau, “Anonymous
Tracking Using RFID Tags,” Proc. IEEE INFOCOM, pp. 1217-1225,
2007.

J. Myung and W. Lee, “Adaptive Splitting Protocols for RFID Tag
Collision Arbitration,” Proc. ACM MobiHoc, pp. 202-213, 2006.

T. Li, S. Chen, and Y. Ling, “Identifying the Missing Tags in a
Large RFID System,” Proc. ACM MobiHoc, pp. 1-10, 2010.

H. Vogt, “Efficient Object Identification with Passive RFID Tags,”
Proc. Int’l Conf. Pervasive Computing, 2002.

V. Namboodiri and L. Gao, “Energy-Aware Tag Anti-Collision
Protocols for RFID Systems,” Proc. IEEE Int’l Conf. Pervasive
Computing and Comm. (PERCOM '07), pp. 23-36, 2007.

L. Xie, B. Sheng, C.C. Tan, H. Han, Q. Li, and D. Chen, “Efficient
Tag Identification in Mobile RFID Systems,” Proc. IEEE
INFOCOM, pp. 1001-1009, 2010.

W. Luo, S. Chen, T. Li, and S. Chen, “Efficient Missing Tag
Detection in RFID Systems,” Proc. IEEE INFOCOM, pp. 356-360,
2011.

C.C. Tan, B. Sheng, and Q. Li, “How to Monitor for Missing RFID
Tags,” Proc. Int’l Conf. Distributed Computing Systems (ICDCS), 2008.

(24]

[25]

[20]

(27]

(28]

[29]

(30]

(31]

(32]

(33]
(34]

2023

L.M. Ni, Y. Liu, Y.C. Lau, and A.P. Patil, “LANDMARC: Indoor
Location Sensing Using Active RFID,” Proc. IEEE Conf. Pervasive
Computing and Comm. (PERCOM '03), pp. 407-415, 2003.

D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose,
“Mapping and Localization with RFID Technology,” Proc. IEEE
Int’l Conf. Robotics and Automation, pp. 1015-1020, 2004.

K. Yamano, K. Tanaka, M. Hirayama, E. Kondo, Y. Kimuro, and
M. Matsumoto, “Self-Localization of Mobile Robots with RFID
System by Using Support Vector Machine,” Proc. IEEE/RS] Int’l
Conf. Intelligent Robots and Systems, pp. 3756-3761, 2004.

Y. Zhao, Y. Liu, and L.M. Ni, “VIRE: Active RFID-Based
Localization Using Virtual Reference Elimination,” Proc. Int’l
Conf. Parallel Processing (ICPP '07), p. 56, 2007.

C. Wang, H. Wu, and N.-F. Tzeng, “RFID-Based 3-D Positioning
Schemes,” Proc. IEEE INFOCOM, pp. 1235-1243, 2007.

D. Henrici and P. Miiller, “Providing Security and Privacy in RFID
Systems Using Triggered Hash Chains,” Proc. IEEE Int’l Conf.
Pervasive Computing and Comm. (PERCOM '08), pp. 50-59, 2008.
T. Dimitriou, “A Secure and Efficient RFID Protocol That Could
Make Big Brother (Partially) Obsolete,” Proc. IEEE Int'l Conf.
Pervasive Computing and Comm. (PERCOM '06), pp. 269-275, 2006.
L. Yang, J. Han, Y. Qi, C. Wang, T. Gu, and Y. Liu, “Season:
Shelving Interference and Joint Identification in Large-Scale RFID
Systems,” Proc. IEEE INFOCOM, pp. 3092-3100, 2011.

L. Yang, J. Han, Y. Qi, and Y. Liu, “Identification-Free Batch
Authentication for RFID Tags,” Proc. IEEE Int’l Conf. Network
Protocols (ICNP '10), pp. 154-163, 2010.

Introduction to Algorithms, pp. 382-283. MIT, 2001.

J. Leguay, T. Friedman, and V. Conan, “DTN Routing in a
Mobility Pattern Space,” Proc. ACM Special Interest Group on Data
Comm. (SIGCOMM °05), pp. 276-283, 2005.

Zhipeng Yang received the BS and MS degrees
in computer science from Tianjin University,
China, in 2001 and 2004, respectively. He has
been working toward the PhD degree in com-
puter science at the Center for Advanced
Computer Studies, University of Louisiana,
Lafayette, since 2007. From 2004 to 2006, he
was a software engineer in Nortel and Lucent
China. His current research interests include
delay-tolerant networks, radio frequency identi-

fication systems and wireless sensor networks. He is a student
member of the IEEE.

Ting Ning received the BS and MS degrees in
computer science from Lanzhou University,
China, in 2005 and 2008, respectively. She has
been working toward the PhD degree in compu-
ter science at the Center for Advanced Computer
Studies, University of Louisiana, Lafayette, since
2008. Her current research interests include
delay-tolerant networks, the application of game
theory, and radio frequency identification sys-
tems. She is a student member of the IEEE.

Hongyi Wu received the BS degree in scientific
instruments from Zhejiang University, Hang-
zhou, China, in 1996, and the MS degree in
electrical engineering and the PhD degree in
computer science from the State University
of New York at Buffalo in 2000 and 2002,
respectively. Since then, he has been with
the Center for Advanced Computer Studies,
University of Louisiana at Lafayette (UL Lafay-
ette), where he is currently a professor and holds

the AIfred and Helen Lamson Endowed Professorship in computer
science. His research spans delay-tolerant networks, radio frequency
identification systems, wireless sensor networks, and integrated
heterogeneous wireless systems. He received the US National Science
Foundation CAREER Award in 2004 and the UL Lafayette Distinguished
Professor Award in 2011. He is a member of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

