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INTRODUCTION

� Self-organized multi-hop networks depends on 

the cooperation among nodes for transmission.

� Two Type of uncooperative nodes:

� Malicious Nodes

� Selfish Nodes

� Stimulation approaches:

� Reputation-based mechanism

� Credit-based mechanism
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INTRODUCTION
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Reputation-based Credit-based

o Rely on neighbor monitoring to evaluate the 
reputation of neighbor nodes and excluding  
nodes with low reputation
o Watchdog: Keeps track of the reputation of 
neighbor nodes
o Path rater: Avoids routing through nodes 
with low reputation
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o Virtual currency, nuglet, is used to 
encourage cooperation
o Each packet is loaded with nuglets by the 
source node 
o Each relay node charges a nuglet from the 
packet before forwarding it



INTRODUCTION

� Cooperation stimulation problem can be 

interpreted as a resource allocation problem if  

nodes are assumed to be selfish and rational.

� Selfish node tends to utilize all of its resource (BW, 

Power etc),  to maximize its benefit

� Although each node is only interested in transmitting 

its own data, part of its resource, bandwidth, has to 

traded in order to establish a routing path

� An incentive scheme is proposed to encourage 

cooperation based on credit-based queuing 

analysis approach
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CREDIT-BASED QUEUING ANALYSIS 

APPROACH

� Queuing model considers bandwidth constraint

� Bandwidth is shared between self generated 

traffic and relay traffic

� Based on queuing model, selfish node identifies 

best strategy  to allocate bandwidth resource and 

minimize own packets’ drop rate
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NODAL MODEL
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� Each node has initial number of nuggets: C.

� When node wants to send its own packet, it loses N 
nuggets by loading the packet with nuggets.  

� Each intermediate node earns one nugget when it 
helps the source node forward a packet.

� Each node maintains two queues:

• Queue 1 for data packets from neighbors

• Queue 2 for self generated packets



NODAL MODEL

� λ1 , λ2  denote the average arrival rates for queue 1 and 

queue 2

� µ1 , µ2 denote the service rates for queue 1 and queue 2

� µ1 + µ2 = µ , u depends on the available bandwidth.

� µ1 indicates the degree of cooperativity.

� Objective: optimize bandwidth allocation to minimize 

drop rate of own packets.
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STUDY OF A SIMPLE CASE

� C=M1=M2=N=1 ( M1, M2 are maximum queue 

lengths)

� State x(i,j,k) indicates there is i packets in queue

1, j packets in queue 2, k nuggets available

� According to state transition diagram, we can 

derive following state equations:

� Pd : drop rate of own packets
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� If λ1 = λ2 =

� The optimal µ1 = µ2 = µ/2 



GENERAL QUEUING MODEL

� Markovian model can be extended to general case with 
arbitray M1,M2,C,N.

� Markovian model has 3 dimensions, the max value for 
each dimension is  M1 , M2, C respectively.

� Each state (i,j,k) has several transitions to other states. 
The state transition follow several simple patterns as 
shown below:
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NUMERIC RESULTS
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� The drop rate does not change much when C is greater 

than certain value.

� When C is sufficient large, the dropping rate at                

is close to the minimal drop rate               



NUMERICAL RESULTS
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� The drop rate does not change much when M is greater 

than certain value.

� When M is sufficient large, the dropping rate at                

is close to the minimal drop rate               



NUMERICAL RESULTS

� Under small C and/or M, the optimal µ2/µ

deviates from 1/(N+1). The larger the N, the 

bigger the deviation.

� When C is small, a node can accumulate C nuggets 

quickly and refuses relaying data packets

� When M is mall, the queue is more likely to overflow

� When C and M are large enough, the optimal µ2/µ

converges to 1/(N+1). 

� It is reasonable since it consumes N nuggets to 

transmit one self-generated packet. Thus the optimal 

ratio should be around 1/(N+1). 
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DISCUSSION

� In order to using the queuing analysis model, 

parameters ( λ1 , λ2 ,µ, M1, M2, C, N) should be known 

beforehand

� M1, M2, C are pre-determined by the incentive mechanism

� λ2  is the arrival rate of self-generated traffic, which is 

known

� λ1 ,µ, N are dynamic and need more work

� Sliding window-based linear autoregressive model is 

employed to estimate λ1

� µ = W/(K+1), W: total bandwidth, K: neighbors 

number

� N depends on the routing path selection
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NETWORK SIMULATION
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Number of 

Mobile Nodes

30

Area 100m*100m

Radio Range 30m

W 180 pkts/sec

λ2 5 pkts/sec

C 80

M1/M2 25

Mobile Pattern Random way 

point

Default Simulation Setup

Linear autoregressive 

Estimation of forwarding traffic



NETWORK SIMULATION

� The figure shows the network-wide average drop rate under 
different traffic load (λ2) and different bandwidth allocation 
schemes.

� The drop rate increases with the increase of λ2.

� Lowest drop rate achieved when µ2 equals to optimal value 
derived by the Markov model.

� The observation testifies the correctness of the model and 
effectiveness of the credit-based incentive scheme.
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NETWORK SIMULATION
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� The left figure shows the impact of M.

� With the increase of M, the probability 
of dropout due to buffer overflow 
decreases.

� When M is sufficient large, the further 
increasing queue size doesn’t help 
much.

� The right figure shows the impact of C.

� With the increase of C, the drop rate 
decreases.

� When C is sufficient large, data delivery 
is no longer improved by increasing C, 
since the consumption and earning of 
nuggets at a node have reached a 
dynamic balance.



CONCLUSION

� An credit-based incentive mechanism is proposed to 

stimulate the cooperation among selfish nodes.

� Markov chain model is established to analyze the packet 

dropping probability, with given total bandwidth, buffer 

space, and the maximum credit.

� Bandwidth allocation has been optimized so that the 

dropping probability of a nodes’ own packets is minimized.

� Considering the bandwidth constraint is a main 

contribution of the work.

� Simulation results show that the approach can effectively 

enable cooperation among selfish nodes and minimize 

overall packet dropping probability.
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QUESTION AND ANSWER
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