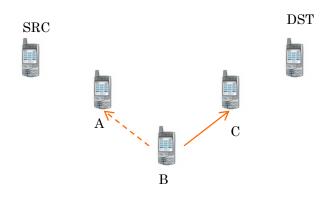
A QUEUING MODEL-BASED INCENTIVE SCHEME FOR OPTIMAL DATA TRANSMISSION IN WIRELESS NETWORKS WITH SELFISH NODES

<u>Xiaojuan Xie</u>, Honyi Wu University of Louisiana at Lafayette

Haining Chen Bethel College, Indiana

OUTLINE

• Introduction


- Credit-based Queuing Analysis Approach
- Network Simulation
- Conclusion

INTRODUCTION


- Self-organized multi-hop networks depends on the cooperation among nodes for transmission.
- Two Type of uncooperative nodes:
 - Malicious Nodes
 - Selfish Nodes
- Stimulation approaches:
 - Reputation-based mechanism
 - Credit-based mechanism

INTRODUCTION

Reputation-based

Credit-based

 Rely on neighbor monitoring to evaluate the reputation of neighbor nodes and excluding nodes with low reputation

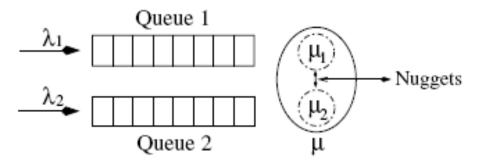
 \circ Watchdog: Keeps track of the reputation of neighbor nodes

 \circ Path rater: Avoids routing through nodes with low reputation

 \circ Virtual currency, nuglet, is used to encourage cooperation

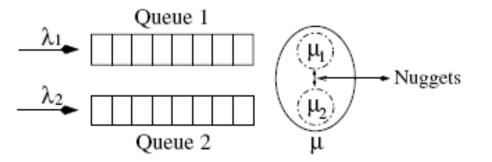
 \circ Each packet is loaded with nuglets by the source node

 \circ Each relay node charges a nuglet from the packet before forwarding it


INTRODUCTION

- Cooperation stimulation problem can be interpreted as a resource allocation problem if nodes are assumed to be selfish and rational.
 - Selfish node tends to utilize all of its resource (BW, Power etc), to maximize its benefit
 - Although each node is only interested in transmitting its own data, part of its resource, bandwidth, has to traded in order to establish a routing path
- An incentive scheme is proposed to encourage cooperation based on credit-based queuing analysis approach

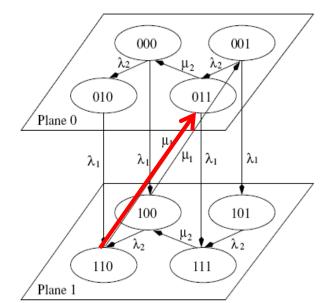
CREDIT-BASED QUEUING ANALYSIS APPROACH


- Queuing model considers bandwidth constraint
- Bandwidth is shared between self generated traffic and relay traffic
- Based on queuing model, selfish node identifies best strategy to allocate bandwidth resource and minimize own packets' drop rate

NODAL MODEL

- Each node has initial number of nuggets: C.
- When node wants to send its own packet, it loses N nuggets by loading the packet with nuggets.
- Each intermediate node earns one nugget when it helps the source node forward a packet.
- Each node maintains two queues:
 - Queue 1 for data packets from neighbors
 - Queue 2 for self generated packets

NODAL MODEL

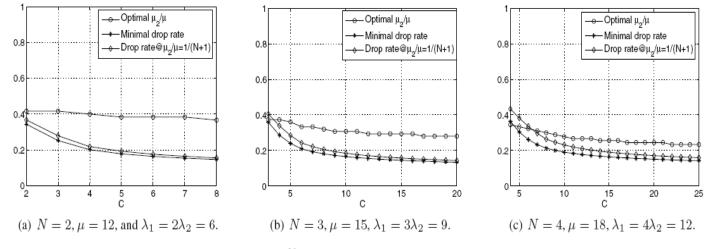

- o λ_1 , λ_2 denote the average arrival rates for queue 1 and queue 2
- $\circ~\mu_1$, μ_2 denote the service rates for queue 1 and queue 2
- $\mu_1 + \mu_2 = \mu$, u depends on the available bandwidth.
- μ_1 indicates the degree of cooperativity.
- Objective: optimize bandwidth allocation to minimize drop rate of own packets.

STUDY OF A SIMPLE CASE

- C=M₁=M₂=N=1 (M_1 , M_2 are maximum queue lengths)
- State x(i,j,k) indicates there is i packets in queue 1, j packets in queue 2, k nuggets available
- According to state transition diagram, we can derive following state equations:

$(\lambda_1 + \lambda_2)x(0, 0, 0)$ $(\lambda_1 + \lambda_2)x(0, 0, 1)$ $(\lambda_1 - \lambda_2)x(0, 0, 1)$	=	$\mu_2 x(0, 1, 1) \tag{1}$ $\mu_1 x(1, 0, 0) \tag{2}$ $\lambda_1 x(0, 0, 0) \tag{2}$	
$\lambda_1 x(0, 1, 0) (\lambda_1 + \mu_2) x(0, 1, 1) (\lambda_2 + \mu_1) x(1, 0, 0)$	=	$\lambda_2 x(0,0,0) \tag{3}$ $\lambda_2 x(0,0,1) + \mu_1 x(1,1,0) (4)$ $\lambda_1 x(0,0,0) + \mu_2 x(1,1,1) (5)$	
$\lambda_2 x(1,0,1) = \frac{\lambda_2 x(1,0,1)}{\mu_1 x(1,1,0)}$	=	$\lambda_1 x(0,0,0) + \mu_2 x(1,1,1,0) \lambda_1 x(0,0,1) $ (6) $\lambda_1 x(0,1,0) + \lambda_2 x(1,0,0) $ (7)	
$\mu_{1}x(1,1,0) \\ \mu_{2}x(1,1,1) \\ 1 1 1$		$\lambda_1 x(0, 1, 1) + \lambda_2 x(1, 0, 1)(8)$	
$\sum_{i=0}\sum_{j=0}\sum_{k=0}x(i,j,k)$	=	1. (9)	

• P_d : drop rate of own packets $P_d = x(0,1,0) + x(0,1,1) + x(1,1,0) + x(1,1,1)$

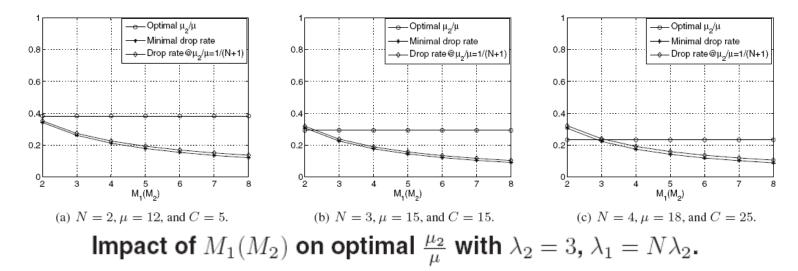


- If $\lambda_1 = \lambda_2 = \hat{\lambda}_1$ $P_d = \frac{\hat{\lambda}^3}{\Delta} (4\hat{\lambda}^3 \mu + 4\hat{\lambda}^2 (\mu^2 - \mu_1 \mu_2) + 3\hat{\lambda} (\mu_1^2 \mu_2 + \mu_1 \mu_2^2) + \mu_1^2 \mu_2^2).$
- The optimal $\mu_1 = \mu_2 = \mu/2$

GENERAL QUEUING MODEL

- Markovian model can be extended to general case with arbitray M_1, M_2, C, N .
- Markovian model has 3 dimensions, the max value for each dimension is M_1 , M_2 , C respectively.
- Each state (i,j,k) has several transitions to other states. The state transition follow several simple patterns as shown below:
 - 1. For $0 \le i \le M_1 1, 0 \le j \le M_2, 0 \le k \le C$, a transition from (i, j, k) to (i + 1, j, k) with a rate of λ_1 , which represents the reception of a packet in Queue 1;
 - 2. For $0 \le i \le M_1, 0 \le j \le M_2 1, 0 \le k \le C$, a transition from (i, j, k) to (i, j + 1, k) with a rate of λ_2 , which represents the arrival of a self generated packet;
 - 3. For $1 \le i \le M_1, 0 \le j \le M_2, 0 \le k \le C 1$, a transition from (i, j, k) to (i 1, j, k + 1) with a rate of μ_1 , which represents the transmission of a packet in Queue 1 and the gain of one nugget;
 - 4. For $0 \le i \le M_1, 1 \le j \le M_2, N \le k \le C$, a transition from (i, j, k) to (i, j 1, k N) with a rate of μ_2 , which represents the departure of a self generated packet and the deduction of N nuggets.

NUMERIC RESULTS



Impact of C on optimal $\frac{\mu_2}{\mu}$, with $M_1 = M_2 = 5$, $\lambda_2 = 3$, $\lambda_1 = N\lambda_2$.

- The drop rate does not change much when C is greater than certain value.
- When C is sufficient large, the dropping rate at $\frac{\mu_2}{\mu} = \frac{1}{N+1}$ is close to the minimal drop rate

11

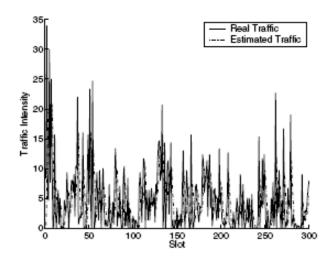
NUMERICAL RESULTS

- The drop rate does not change much when M is greater than certain value.
- When M is sufficient large, the dropping rate at $\frac{\mu_2}{\mu} = \frac{1}{N+1}$ is close to the minimal drop rate

NUMERICAL RESULTS

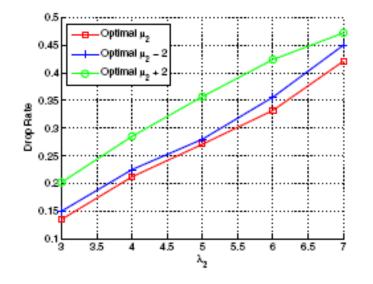
- Under small C and/or M, the optimal μ₂/μ deviates from 1/(N+1). The larger the N, the bigger the deviation.
 - When C is small, a node can accumulate C nuggets quickly and refuses relaying data packets
 - When M is mall, the queue is more likely to overflow
- When C and M are large enough, the optimal μ_2/μ converges to 1/(N+1).
 - It is reasonable since it consumes N nuggets to transmit one self-generated packet. Thus the optimal ratio should be around 1/(N+1).

DISCUSSION

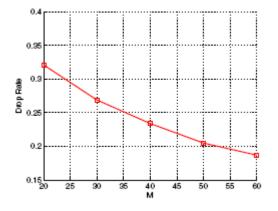

- In order to using the queuing analysis model, parameters (λ_1 , λ_2 ,µ, $M_1, M_2, \, C, \, N)$ should be known beforehand
 - M_1, M_2, C are pre-determined by the incentive mechanism
 - λ_2 is the arrival rate of self-generated traffic, which is known
 - λ_1, μ , N are dynamic and need more work
- $\circ\,$ Sliding window-based linear autoregressive model is employed to estimate λ_1
- μ = W/(K+1), W: total bandwidth, K: neighbors number
- N depends on the routing path selection

NETWORK SIMULATION

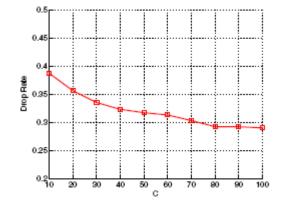
Default Simulation Setup


Number of Mobile Nodes	30
Area	100m*100m
Radio Range	30m
W	180 pkts/sec
λ_2	5 pkts/sec
С	80
M_1/M_2	25
Mobile Pattern	Random way point

 $\lambda_1'(n) = 0.5\lambda_1(n-1) + 0.3\lambda_1(n-2) + 0.2\lambda_1(n-3)$


Linear autoregressive Estimation of forwarding traffic

NETWORK SIMULATION



- The figure shows the network-wide average drop rate under different traffic load (λ_2) and different bandwidth allocation schemes.
- The drop rate increases with the increase of λ_2 .
- Lowest drop rate achieved when μ_2 equals to optimal value derived by the Markov model.
- The observation testifies the correctness of the model and effectiveness of the credit-based incentive scheme.

NETWORK SIMULATION

- The left figure shows the impact of M.
- With the increase of M, the probability of dropout due to buffer overflow decreases.
- When M is sufficient large, the further increasing queue size doesn't help much.

- The right figure shows the impact of C.
- With the increase of C, the drop rate decreases.
- When C is sufficient large, data delivery is no longer improved by increasing C, since the consumption and earning of nuggets at a node have reached a dynamic balance.

CONCLUSION

- An credit-based incentive mechanism is proposed to stimulate the cooperation among selfish nodes.
- Markov chain model is established to analyze the packet dropping probability, with given total bandwidth, buffer space, and the maximum credit.
- Bandwidth allocation has been optimized so that the dropping probability of a nodes' own packets is minimized.
- Considering the bandwidth constraint is a main contribution of the work.
- Simulation results show that the approach can effectively enable cooperation among selfish nodes and minimize overall packet dropping probability.

REFERENCE

- L. Buttyan and J. Hubaux. Stimulating Cooperation in Self-Organizing Mobile Ad Hoc Networks. *ACM/Kluwer Mobile Networks and Applications (MONET)*, 8:579–592, 2003.
- S. Buchegger and J. Boudec. Performance Analysis of the CONFIDANT Protocol: Cooperation Of Nodes-Fairness In Dynamic Ad-hoc NeTworks. In Proc. of IEEE/ACM Symposium on Mobile Ad Hoc Networking and Computing (Mobi-HOC), pages 226–236, Lausanne, Switzerland, 2002.
- S. Marti, T. Giuli, K. Lai and M. Baker,"Mitigating Routing Misbehavior in Mobile Ad Hoc Networks" *Proceedings of Mobicom* 2000, Boston, August 2000.
- S. Zhong, L. Li, Y. Liu, and Y. Yang. On Designing Incentive-Compatible Routing and Forwarding Protocols in Wireless Ad-Hoc Networks. In Proc. of ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), pages 117–131, 2005.

QUESTION AND ANSWER

