A Robust Boundary Detection Algorithm Based on Connectivity Only for 3D Wireless Sensor Networks

University of Louisiana at Lafayette

Hongyu Zhou, Hongyi Wu and Miao Jin

OUTLINE

- Introduction
 - Background
 - Related work
 - Motivation
- Coconut algorithm
- Simulation
- Conclusion

INTRODUCTION

- Background
 - Boundary is a key attribute that characterizes a sensor network for geographic exploration and monitoring tasks
 - 3D sensor network has attracted increasing interests recently, e.g. underwater exploration and atmospheric monitoring

INTRODUCTION

- Related work
 - 2D boundary detection algorithms can't be applied in 3D wireless sensor networks
 - In 3D WSN:
 - Geometry-based approaches (Fit-ball, UNFOLD)
 - Topology-based schemes (CABET)

INTRODUCTION

- Motivation:
 - Require connection only and robust with node density

Topology (non-uniform)

Boundary nodes by CABET

OUTLINE

- Introduction
- Coconut algorithm
 - Coarse Boundary Surface Construction
 - Surface Sealing and Internal Hollowing
 - Boundary Refinement
- Simulation
- Conclusion

COCONUT ALGORITHM

• Coarse Boundary Surface Construction

COCONUT ALGORITHM

• Surface Sealing and Internal Hollowing

COCONUT ALGORITHM

• Boundary Refinement

- Coarse Boundary Surface Construction
 - Voronoi cell construction
 - Tetrahedron construction
 - Triangular surface construction
- Surface Sealing and Internal Hollowing
- Boundary Refinement

- Coarse Boundary Surface Construction
 - Voronoi cell construction
 - Random select landmarks, but every two of them are at least K hops away ($k = 6 \sim 8$)
 - Every other nodes will be associated with the closest landmark to it
 - Every landmark and its associated nodes form a voronoi cell

- Coarse Boundary Surface Construction
 - Voronoi cell construction
 - Tetrahedron construction
 - If there is a shortest path between two landmarks and all the nodes on the path are belong to these two landmarks, these two landmarks are connected

- Coarse Boundary Surface Construction
 - Voronoi cell construction
 - Tetrahedron construction
 - Triangular surface construction
 - Surface triangle is shared by one tetrahedron
 - Inner triangle is shared by two tetrahedra
 - Landmarks are divided into two kinds: inner and surface landmarks

- Coarse Boundary Surface Construction
- Surface Sealing and Internal Hollowing
 - Surface Sealing
 - Internal Hollowing
- Boundary Refinement

- Surface Sealing and Internal Hollowing
 - Surface sealing: differentiate the inner nodes and outer nodes by surface
 - How can we build a skeleton of surface?

- Surface Sealing and Internal Hollowing
 - Build shortest paths between two nodes on edges of surface triangle, $\Gamma(p, q)$
 - There are multiple shortest paths between given two nodes

COCONUT ALGORITHM

- Surface Sealing and Internal Hollowing
 - How to choose the right shortest path?
 - Start from $\Gamma(B,C)$, make sure nodes in $\Gamma(p_0, q_0)$ are the *1-hop* neighbor of $\Gamma(B,C)$

Random selection

1-hop neighbor selection

- Surface Sealing and Internal Hollowing
 - All the shortest paths (*\Gamma-nodes*) are not enough
 - The *Γ*-*nodes* and their one-hop neighbors form the sealed boundary face (*S*-*nodes*).

- Surface Sealing and Internal Hollowing
 - After Surface Sealing, sensor nodes will be grouped into three types: *internal nodes* (or *I-nodes*), *surface nodes* (or *S-nodes*), and *outside nodes*(or *O-nodes*)
 - *I-nodes* are not boundary nodes that can be removed

- Coarse Boundary Surface Construction
- Surface Sealing and Internal Hollowing
- Boundary Refinement
 - Boundary Landmark Expansion
 - Boundary Face Splitting
 - **Boundary Surface Thinning**
- Algorithm Complexity

- Boundary Refinement
 - **Boundary Landmark Expansion:** push boundary landmark to the surface of network
 - *A'* and *A* are in the same cell and *A'* is a *O-nodes*

- Boundary Refinement
 - **Boundary Face Splitting**: push boundary faces to the surface of the network
 - If there exists an *O-node D* that has equal hop distance (or differed by one) to three landmarks *A*, *B*, *C* of a triangular boundary face, $\triangle ABC$ is thus replaced by $\triangle ACD$, $\triangle ABD$ and $\triangle BCD$

- Boundary Refinement
 - After Landmark Expansion and Boundary Face Splitting, there are only few or no *O-nodes* left
 - **Boundary Surface Thinning**: remove the extra nodes in the boundary surface nodes (*S-nodes+O-nodes*) with at most two-hop thickness

COCONUT ALGORITHM

• Computational and Communication Complexity

	Computational	Communication	
Surface Construction	O(n)	O(n)	
Surface Sealing & Internal Hollowing	$O(m^2)$	$O(m^2)$	
Boundary Surface Thinning	$O(k^2)$	$O(k^2)$	
$k \ll m \ll n$			

k:# of landmark nodes; m: # of Γ - nodes of one face; n: # of nodes in the network

The over all computational complexity and communication cost is dominant by O(n)

SIMULATION

• Lake Model:

• Cloud Model with a hole:

SIMULATION

TABLE II BOUNDARY DETECTION RESULTS.

Model	Correct	Missing	Mistaken
Model 1	99.9%	0.1%	47.9%
Model 2	99.9%	0.1%	147.1%
Model 3	98.1%	1.9%	174.9%
Model 4	97.0%	3.0%	54.1%

(b) Mistaken node distribution

CONCLUSION

- We have proposed a distributed boundary detection algorithm, dubbed Coconut, for 3D wireless sensor networks
- The proposed Coconut algorithm is a connectivitybased approach
- It has no constraint on communication models, and it's robust about the node density

