
Bargain-based Stimulation Mechanism for Selfish Mobile Nodes in Participatory Sensing Network

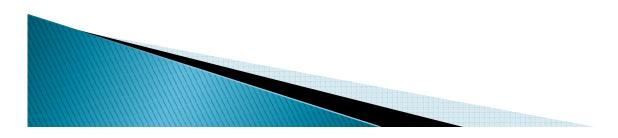
Xiaojuan Xie, Haining Chen and Hongyi Wu

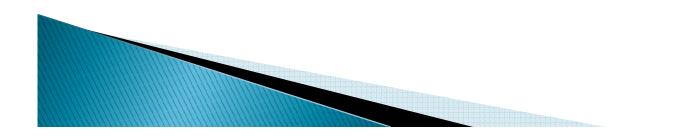
INTRODUCTION

- > This work centers on the Participatory Sensing Network (PSN)
 - PSN consists of mobile devices to enable public and professional users to gather, analyze and share local knowledge
- Several well-known sensing tasks of PSN

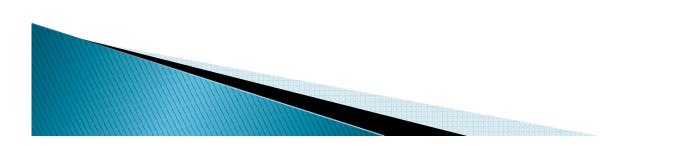
Neighborhood Walkability task Personal Environmental Impact Report (PEIR)

Diet Sense task

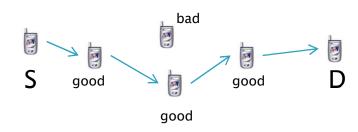



INTRODUCTION

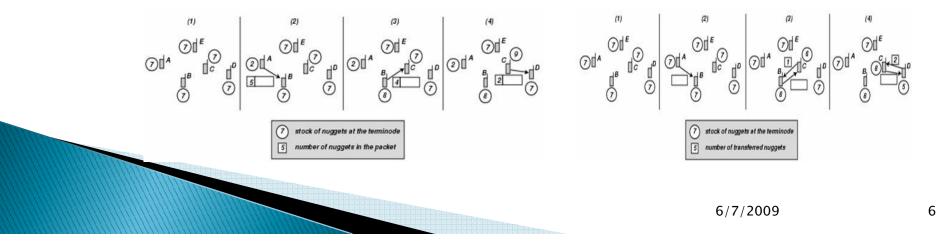
- The participants in PSN can be either voluntary or stimulated by certain reward programs.
 - We focus on the latter in this research
- The objective of this work is to design an efficient scheme for selfish nodes to maximize their reward.
- Assumption: node is rational and doesn't cheat


Network Architecture

- > A PSN consists of mobile sensors and sinks
 - Low power radio is employed.
 - The connectivity of PSN is low and intermittent, like the delay tolerant network (DTN).
 - Sinks deliver data to end users.
- A PSN can support various sensing tasks
 - Each sensing task consists of a sink node and multiple mobile nodes
- Each task has a unique message type, and its sink node is identified by this message type
 - One mobile node can participate in multiple sensing tasks simultaneously
- Each data message has two information fields:
 - Message type
 - Message sequence number


Network Architecture

- > Sink accepts data messages from mobile nodes, if:
 - The message matches sink's type
 - The message sequence number indicated that this message has not been received before
- sink node rewards the mobile node with one credit unit if it receive one message from mobile node
 - The mobile node that delivers the message to the sink is the only beneficiary of the reward, even it is not the message generator
- The mobile node has limited buffer size
 - We assume all messages have approximately the same size.
- Transmission of a message costs one unit of energy.


Related Work and Challenges

- Two types of stimulation schemes for selfish ad hoc networks
 - Reputation-based scheme

Credit-based scheme

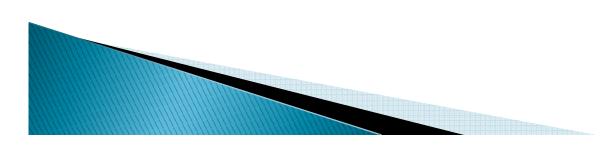
Packet purse scheme

Packet trade scheme

Related Work and Challenges

Challenges

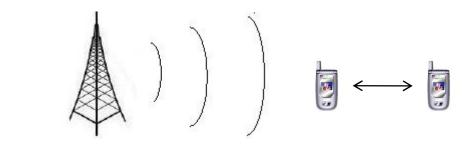
reputation-based scheme


 Unrealistic for a node to monitor reputations of its neighbor nodes due to the intermittent connection

packet purse approach

Difficult for the source node to estimate the number of intermediate nodes

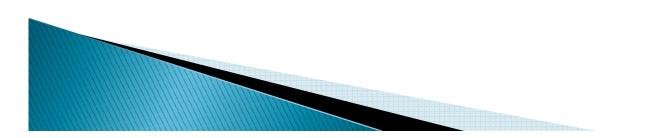
Packet trade approach


 Intermediate nodes cannot accurately determine the value of the data packets since sender usually still keeps a copy of the data in PSN, a DTN-like network

Related Work and Challenges

Barter-based stimulation scheme for selfish DTN

- A stationary source node broadcasts messages without repetition
- Message types: primary message, secondary message
- If a node misses any primary message from the source node, it can barter its secondary messages for primary messages with an encountered node
- Considers downlink broadcasting scenario in DTN, instead of the more common scenario of transmissions from various mobile nodes to one or multiple sink nodes


Contributions

- A bargain-based stimulation mechanism is proposed for PSN
 - Credit is adopted for stimulating cooperation

 Intermediate nodes exchange messages based on the estimated values of data messages

A game theory model is developed to address the bargain process

PRELIMINARIES

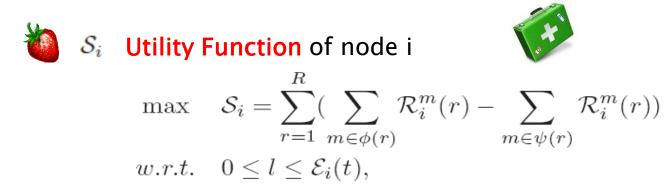
 $\mathcal{P}_i(r)$ Node i's contact probability with the sink node of type r

$$\mathcal{P}_{i}(r) = \begin{cases} \alpha[\mathcal{P}_{i}(r)] + (1 - \alpha), & \text{at contact time} \\ \alpha[\mathcal{P}_{i}(r)], & \text{no contact in } \Delta \end{cases}$$

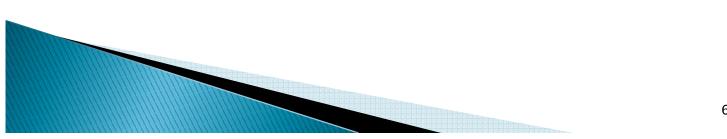
🍓 $\mathcal{A}^m_i(r)$ - Message appraisal of message m (type r) at node i • Ranges from 0 to 1 Indicates the probability that nodes except node i have not delivered

any copy of this message m to the sink node r.

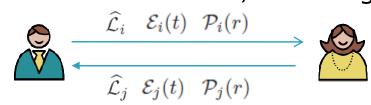
 $\begin{cases} \mathcal{A}_i^m(r) = [\mathcal{A}_i^m(r)](1 - \mathcal{P}_j(r)) & sender \\ \mathcal{A}_j^m(r) = [\mathcal{A}_i^m(r)](1 - \mathcal{P}_i(r)) & receiver \end{cases}$



 $\mathcal{B}_{i}^{m}(r)$ Expected credit reward of delivering message m to type r sink by node i


$$\mathcal{R}_i^m(r) = \mathcal{A}_i^m(r) \times \mathcal{P}_i(r)$$

PRELIMINARIES



- Node i wants to maximize its utility function should message exchange happen
- R is the total number of message types
- $\circ \phi(r)$ and $\psi(r)$ are sets of type r messages after and before exchange, respectively
- *l* is the number of messages sent by node i
- $_{\circ} \ \mathcal{E}_{i}(t)$ is the total energy of node i at time t before exchange

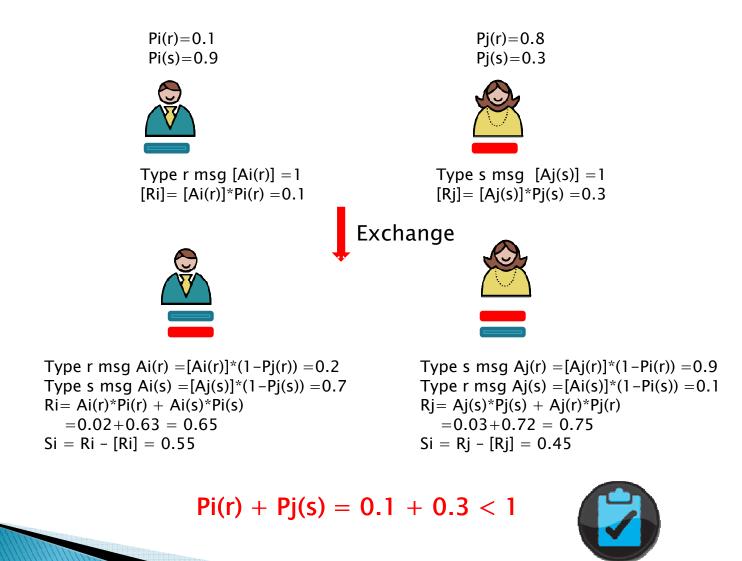


BARGAIN-BASED STIMULATION MECHANISM

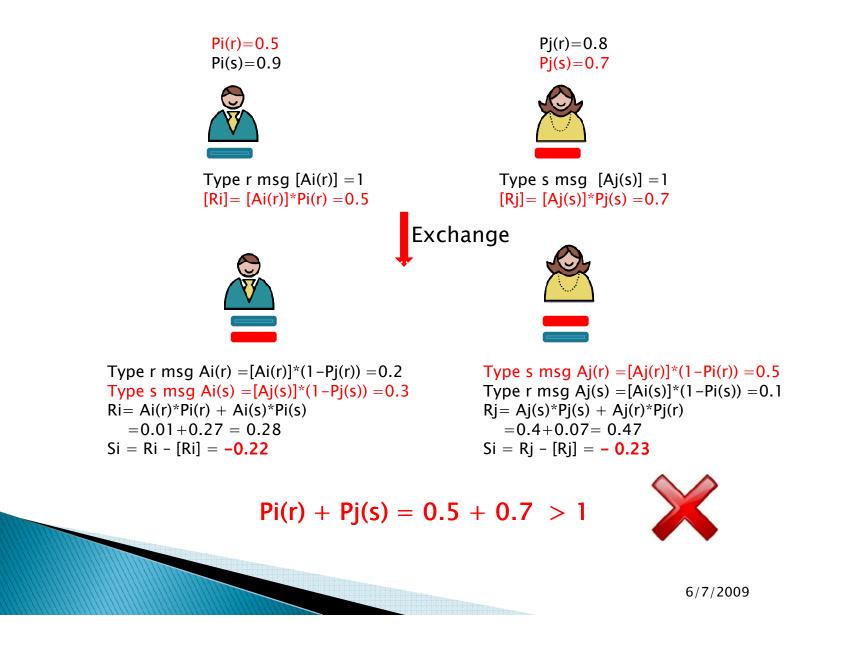
• Exchange control information, including complete list $\hat{\mathcal{L}}_i$, $\hat{\mathcal{L}}_j$

Generate candidate list

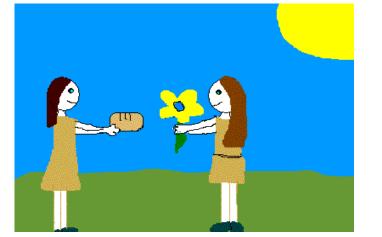
- Optional action: node i removes messages of type r from $\tilde{\mathcal{L}}_i$ if Pi(r) < Pj(r); similarly node j removes messages of type r from $\tilde{\mathcal{L}}_j$ if Pj(r) < Pi(r).
- With optional action: conservative scheme, O/W: aggressive scheme
- Bargain process is formulated as two-person cooperative game, the bargain solution (final list L_i, L_j) is determined by Nash Theorem



Necessary Condition for Feasible Transaction


- Theorem 1. Necessary Condition for Feasible Transaction. Node i has a type r message, and node j has a type s message. If both nodes i and j find it beneficial to exchange this message pair, then $P_i(r) + P_j(s) < 1$ must be true.
- Intuitive explanation: two hedgehogs who try to warm each other may hurt each other if they stay too close.

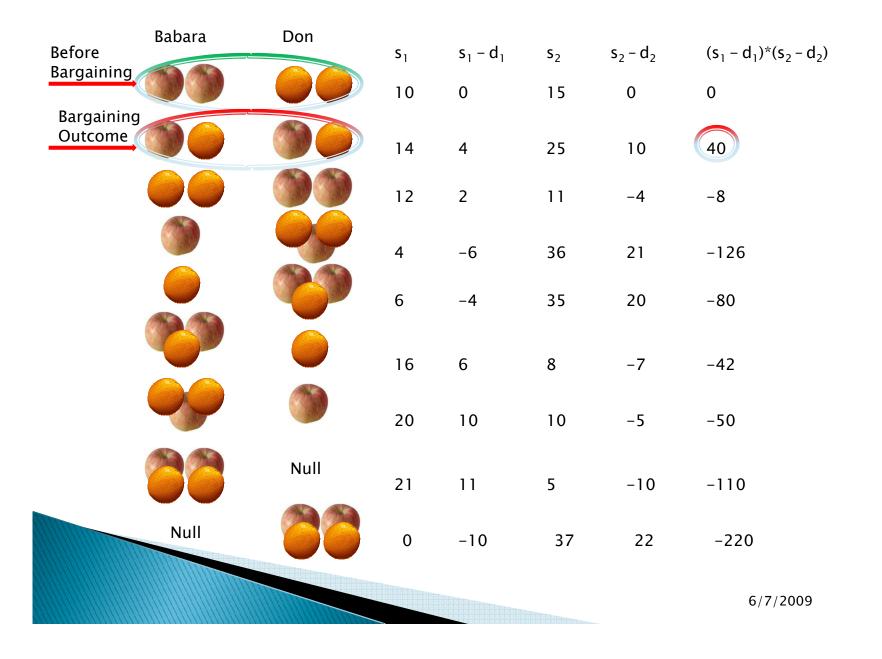
Scenario 1: Feasible


Scenario 2: Not Feasible

GAME THEORY MODEL FOR BARGAIN PROCESS

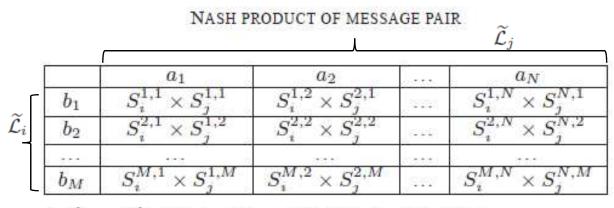
Two-Person Cooperative Games

- Consists of two rational and selfish players that cooperate with each other but have conflict interests
- Two players reach binding agreement which benefits both persons


Nash Theorem

 The solution for two-person cooperative game, which satisfies four axioms: invariance, symmetry, independence and Pareto optimality, is given by

$$(\hat{s}_1, \hat{s}_2) = \arg \max_{(s_1, s_2) \in S} (s_1 - d_1) \times (s_2 - d_2)$$


 (s_1, s_2) forms utility gain space S; (d_1, d_2) is the status quo point in space S, usually defined as the utility gain of no cooperation

Nash Theorem: A Simple Example

Greedy Algorithm for Game Solution

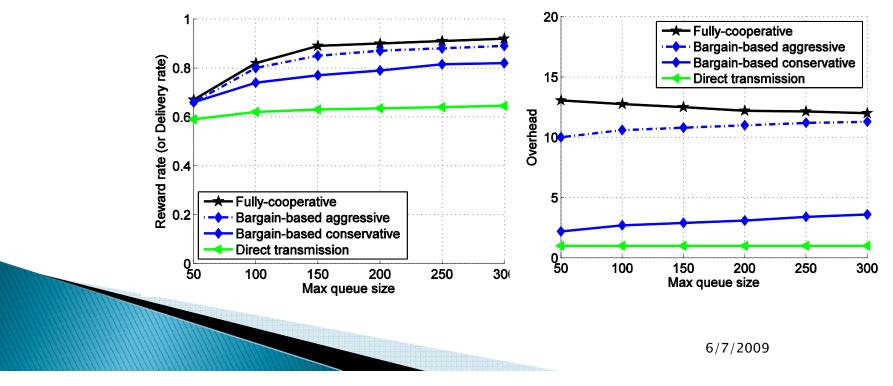
- Nash Theorem points out what the optimal solution is, but does not show how to reach the optimal solution.
- A greedy algorithm is proposed to divide bargain process into a finite sequence of steps, and each step corresponds to the exchange of a message pair between nodes i and j.
 - Unrealistic to adopt the brute forth manner to deplete all the possible patterns looking for Nash Solution due to the exponential complexity
- Nash product table

$$\begin{pmatrix} \mathcal{C}_{i}^{b_{m}} = \mathcal{R}_{i}^{b_{m}}(T^{b_{m}}), & \mathcal{D}_{i}^{a_{n}} = [\mathcal{R}_{i}^{a_{n}}(T^{a_{n}})] - \mathcal{R}_{i}^{a_{n}}(T^{a_{n}}) \\ \mathcal{S}_{i}^{m,n} = \mathcal{C}_{i}^{b_{m}} - \mathcal{D}_{i}^{a_{n}} \\ \mathcal{C}_{j}^{a_{n}} = \mathcal{R}_{j}^{a_{n}}(T^{a_{n}}), & \mathcal{D}_{j}^{b_{m}} = [\mathcal{R}_{j}^{b_{m}}(T^{b_{m}})] - \mathcal{R}_{j}^{b_{m}}(T^{b_{m}}) \\ \mathcal{S}_{j}^{n,m} = \mathcal{C}_{j}^{a_{n}} - \mathcal{D}_{j}^{b_{m}}, \\ where C, D, S stand for credit, debit, utility gain \\ \end{pmatrix}$$

Greedy Algorithm for Game Solution

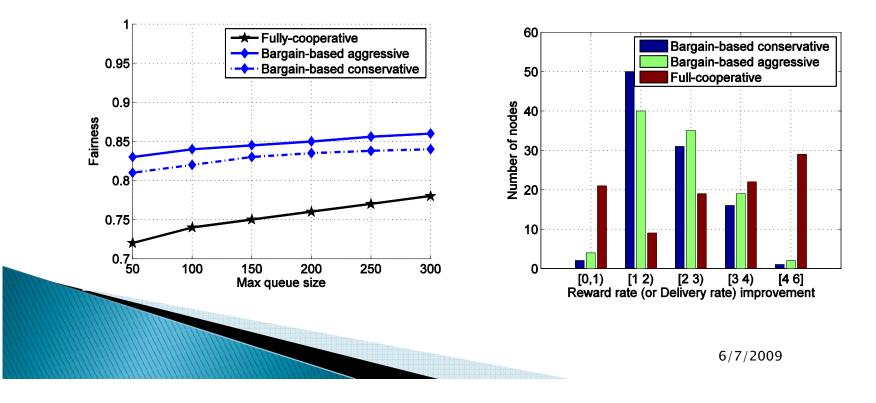
Algorithm 1 Greedy Algorithm for Game Solution.
1: Set final list L_i = L_j = Ø and l = 0;
2: In Nash product table, a_n and b_m are chosen with max positive Nash product. If fail, go to step 11;
3: if (E_i, E_j ≥ l + 1) and (B_i(S_i^{m,n}), B_j(S_j^{n,m}) ≥ 1) then
4: L_i = L_i ∪ b_m;
5: L_j = L_j ∪ a_n;
6: l + +; E_i - -, and E_j - -;
7: else
8: Go to step 11;
9: end if
10: Remove column of a_n and row of b_m, go to step 2;
11: Terminate.

 $B_i(x)$ denotes the number of messages in node *i* with credit value less than *x*. Message a_n and b_m can be exchanged only when $B_i(S^{m,n}_i) \ge 1$ and $B_i(S^{n,m}_i) \ge 1$

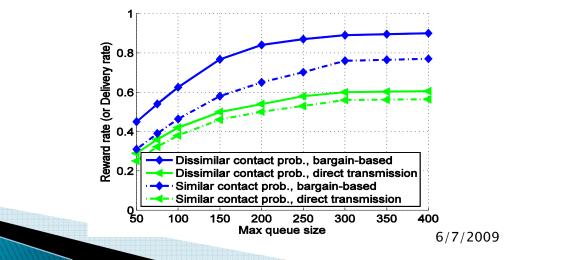

Simulation

- Our simulations are based on real mobility traces available at CRAWDAD
- Two type of trace data
 - Position-based trace
 - Record GPS positions of nodes at fixed time intervals
 - Contact-based trace
 - No position info, only contact information
- Performance Metrics
 - Reward rate (delivery rate)
 - Network overhead
 - Fairness $f(x_1, x_2, ..., x_n) = \frac{(\sum_{i=1}^n x_i)^2}{n \sum_{i=1}^n x_i^2}$, x_i : node i's overhead
- We compare our work with direct transmission and fullycooperative scheme in DTN^{[1].}

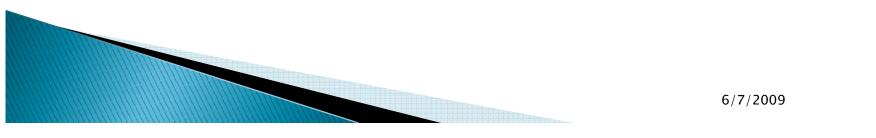
[1]Y. Wang and H. Wu, "DFT-MSN: The Delay Fault Tolerant Mobile Sensor Network for Pervasive Information Gathering," in Proc. of IEEE Conference on Computer Communications (INFOCOM), 2006, pp. 1-12


Position-based trace

- Trace data of ZebraNet project is used in our simulations.
- Bargain-based scheme is effective in promoting nodal cooperation and improving network throughput.
 - The aggressive scheme is only 3% less than fully cooperative scheme in reward rate, while the conservative scheme is 10% less.
 - The overhead of bargain-based scheme is less than fully-cooperative scheme


Position-based trace

- Bargain-based schemes have much better fairness than fullycooperative scheme
 - Bargain process allows each node to balance its individual interest with its contribution to network.
 - Compared to direct transmission, fully-cooperative scheme has more than 20% nodes experience worse performance, while 95% nodes enjoy more rewards under both aggressive and conservative scheme.


Contact-based trace

- Trace data of Cambridge Haggle project is used
 - In Haggle project, mobile nodes called iMotes were distributed to 50 people attending IEEE InfoCom workshop during three days.
 - 2 sinks and 2 message types
- Similar contact probability vs dissimilar contact probability
 - Similar contact probability: all nodes have Pi[1], Pi[2] uniformly distributed in [0, 1]
 - Dissimilar contact probability: half of nodes have Pi[1], Pi[2] uniformly distributed in [0, 0.4], [0.6,1], the other half of nodes have Pi[1], Pi[2] uniformly distributed in [0.6, 1], [0,0.4]
- Bargain-based mechanism achieves more gain when nodes have complementary sets of contact probabilities
 - Reward rate enhancement is 50% in scenario of dissimilar contact probability, compared to 35% enhancement in scenario of similar contact probability

Conclusion

- A novel bargain-based stimulation mechanism is proposed to encourage cooperation in selfish participatory sensing networks.
- The paper reveals necessary condition for feasible transaction of message exchange.
- The final message exchange list is determined in a bargain process, which is formulated as a two-person cooperative game.
- A greedy algorithm is proposed to resolve the game and find out optimal solution.
- The results show that our bargain-based stimulation schemes are fair and have comparable performance with fullycooperative scheme with less overhead.

