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1. Introduction
Motivation

Boundary nodes serve as a key attribute that characterizes the 
network, especially in geographic exploration tasks such as terrain 
and underwater reconnaissance.

Many wireless networks exhibit randomness

Related works

All in 2D wireless networks



University of Louisiana at Lafayette

integrated Wireless Information Network (iWIN) Lab@CACS

Paper Contributions

Find a localized method that can precisely detect boundary nodes in 
3D wireless networks;

Develop an algorithm to construct a 2-manifold planarized  
triangular mesh surface for 3D boundary

 A 3D network  Boundary nodes  Triangular Mesh
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2.1 Unit Ball Fitting (UBF)

Definition 1: arbitrary radio transmission model with a maximum 
radio transmission range of 1;

Definition 2: the nodal density, denoted by ρ, is the average number 
of nodes in a unit volume;

Definition 3: networks are well connected, (1) no nodes are isolated;
(2) no degenerated line segment;

2. Boundary Node Identification 
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Definition 4: A unit ball is a ball with a radius of r =1+δ, δ is an 
arbitrarily small constant;

Definition 5: An empty unit ball is a unit ball with no nodes inside;

Definition 6: A unit ball touches a node if the node is on the surface 
of the ball; 

Definition 7: A hole is an empty space that is greater than a unit ball. 
The space outside the network is treated as a special hole.
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Lemma 1: Node A can construct an empty unit ball that touches 
itself if and only if there exists an empty unit ball touching Node A and 
its two neighbors.

Sufficient condition: If a unit ball touched by Node A and its two neighbors 
is empty, this empty unit ball always touched by Node A. 

Necessary condition: If there exits an empty unit ball with Node A on its 
surface

Fix node A and rotate the ball until it touches another node within 2r, denoted 
by B. If node B does not exist, node A must be an isolated node. 

Then rotating the ball with Line AB as an axis, until it touches another node, 
denoted by node C. And node C must exist, otherwise Line AB is degenerated.

A

r

AB

C



University of Louisiana at Lafayette

integrated Wireless Information Network (iWIN) Lab@CACS

Theorem 1: Node A can determine if it can construct an empty 
unit ball that touches itself by testing Θ(ρ2) unit balls and Θ(ρ) 
nodes for each ball.

Proof: According to Lemma1, Node A can exhaustively test all unit 
balls determined by Node A and its two distinct neighbors. 

Node A has               , or Θ(ρ) neighbor nodes within 2r, it needs 
to test up to                             unit balls;

For each unit ball, about          , or Θ(ρ) nodes must be tested 
to judge if it is empty.

 Therefore, the overall computing complexity is Θ(ρ3).

A

r

(a) An empty unit ball touching Node A.

AB

C

(b) Ball rotation.

Fig. 2. Principles for Unit Ball Fitting (UBF).

computing complexity can be employed to test if such an
empty unit ball exists.

Lemma 1: Node A can construct an empty unit ball that
touches itself if and only if there exists an empty unit ball
touching Node A and two neighbors of Node A (within 2r).

Proof: We first show the sufficient condition, which is
straightforward. If a unit ball touched by Node A and two
neighbors of Node A is empty, i.e., there is an empty unit
ball with Node A and two neighbors of Node A on its surface,
Node A has constructed such an empty unit ball touching itself.
Consequently, a hole is identified and Node A is a boundary
node.

Now, we prove the necessary condition. If there exists an
empty unit ball with Node A on its surface, we can always
fix Node A and rotate the ball until it touches another node
within 2r, denoted by Node B (see Fig. 2(b)). Note that
if Node B does not exist, Node A must be isolated, which
conflicts with our assumption of well connected networks (see
Definition 3). Then we can further rotate the ball with Line
AB as an axis, until it touches another node, denoted by Node
C. Similarly, Node C must exist, because otherwise Line AB is
degenerated and thus against Definition 3. Therefore, if Node
A can construct an empty unit ball that touches itself, we can
always find an empty unit ball with Node A and two neighbors
of Node A on its surface.

Based on the sufficient condition and the necessary condi-
tion discussed above, the lemma is thus proven.

According to Lemma 1, we can show that a node can
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Fig. 3. Up to two unit balls determined by Node A and two of its neighbors.

determine if it can construct an empty unit ball that touches
itself by a localized algorithm with a computing complexity of
Θ(ρ3). If such an empty unit ball can be constructed, the node
must be a boundary node. Formally, we have the following
theorem.

Theorem 1: Node A can determine if it can construct an
empty unit ball that touches itself by testing Θ(ρ2) unit balls
and Θ(ρ) nodes for each ball.

Proof: According to Lemma 1, Node A can exhaustively
test all unit balls determined by Node A and its neighbors.
Given Node A and any two neighbors (whose distances to
Node A are less than 2r), zero or one or two unit balls can be
formed such that the three nodes are on the surface(s). Fig. 3
illustrates an example where two unit balls are determined
by three nodes. Since Node A has about 4

3 π(2r)3ρ, or Θ(ρ),
neighboring nodes within the distance of 2r, it needs to test
up to Θ(2×

(ρ
2

)

) = Θ(ρ2) unit balls. For each unit ball, about
4
3 πr3ρ, or Θ(ρ), nodes must be tested to judge if it is empty.

Therefore, the overall computing complexity is Θ(ρ3). Note
that ρ is usually small and bounded.

3) Algorithm Description: Theorem 1 provides a clear
guidance for our algorithm development. It suggests a dis-
tributed and localized algorithm where each node tests Θ(ρ2)
unit balls to judge if any one of them is empty. To this end,
we propose the Unit Ball Fitting (UBF) algorithm as outlined
in Algorithm 1 and elaborated below.

Algorithm 1: Unit Ball Fitting (UBF) Algorithm

Input: N(i); //Neighbors of Node i
Output: Boundary(i);
Boundary(i) = FALSE;1

Establish a local coordinates system;2

Ωi = {[ j,(x j,y j,z j)] | j ∈ N(i)};3

for j,k ∈ Ωi and j #= k do4

Find the unit ball(s) determined by Nodes i, j,k;5

if a unit ball is empty then6

Boundary(i) = T RUE;7

Break;8

end9

end10

The proposed UBF algorithm largely follows the discussions
in Sec. II-A2. The sole difference is that each node considers
its one-hop neighbors only to realize a truly localized algo-
rithm. It consists of the following three steps, and outputs
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(a) An empty unit ball touching Node A.
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(b) Ball rotation.

Fig. 2. Principles for Unit Ball Fitting (UBF).

computing complexity can be employed to test if such an
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Unit Ball Fitting (UBF) Algorithm Description

Step1: Local coordinates establishment; If all nodes already know 
their coordinates, this step can be skipped;

Step2: Unit Ball Identification; Calculate the center of the unit ball(s);

Step3: Empty unit ball checking.
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Observation:

A small number of interior nodes may be interpreted by UBF as 
boundary nodes due to inaccurate nodal coordinates;

Property of IFF:

The nodes on a boundary should form a well connected closed 
surface;

Set a threshold γ. Any fragment that consists of less than γ nodes is 
not considered as a boundary;

IFF can also be used to group boundary nodes, e.g, inner 
boundaries, outer boundary.

2.2 Isolated Fragment Filtering (IFF)
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3. Triangular Boundary Surface 
Construction

Step1: Landmark Selection
Select a subset of boundary nodes as “landmark”;

Any two landmarks must be k-hops apart; 

Every other nodes will associate with the nearest landmark.

A
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Step2: Construction of Combinatorial Delaunay Graph (CDG) 

Landmarks serve as CDG vertices; 

If node A and node B are connected in CDG, there must exist a 
path between landmark A and landmark B and all the nodes on the 
path are associated with either A or B;

CDG is not a planar graph;
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Step3: Construction of Combinatorial Delaunay Map (CDM)

CDM is a subgraph of CDG and it is a planar graph;

If landmarks A and B  are connected in CDM, besides all the nodes 
on the path between them are associated with either landmark A or 
B, all nodes in the1-hop neighborhood of the path also need to be 
associated with landmark A or B.
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Step 4: Construction of Triangular Mesh

CDM is a planar graph, but not always a triangular mesh;

Adding virtual edges in polygons by sending connection packet 
between landmarks(shortest path based on the identified boundary 
nodes).
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Step 5: Edge Flip

To ensure the triangular mesh is 2-manifold, each virtual edge must 
be associated with two triangles. After above 4 steps, there still 
possibly exist edges with three triangular faces.
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4. Simulation

Six 3D wireless networks, over 10,000 nodes, node degree from 5 
to 45, average degree 18.5. Random errors from 0 to 100% are 
introduced in the distance measurement. 



University of Louisiana at Lafayette

integrated Wireless Information Network (iWIN) Lab@CACS

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bo
un

da
ry

 N
od

es

Distances Measurement Error

Found
Correct

Mistaken
Missing

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
is

tri
bu

tio
n 

of
 M

is
ta

ke
n 

Bo
un

da
ry

 N
od

es

Distances Measurement Error

1 hop
2 hop
3 hop

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
is

tri
bu

tio
n 

of
 M

is
si

ng
 B

ou
nd

ar
y 

N
od

es

Distances Measurement Error

1 hop
2 hop
3 hop



University of Louisiana at Lafayette

integrated Wireless Information Network (iWIN) Lab@CACS

We have proposed distributed and localized algorithms for 
precise boundary detection in 3D wireless network:
1) Identify the the boundaries nodes of a 3D network;
2) Construct planarized 2-manifold surfaces for inner and outer 
boundaries.

As far as we know, this is the first work for discovering boundary 
nodes and constructing boundary surface in 3D wireless 
networks.

5. Conclusion
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