
Hunter: HE-Friendly Structured Pruning for Efficient
Privacy-Preserving Deep Learning

Yifei Cai, Qiao Zhang, Rui Ning, Chunsheng Xin, Hongyi Wu
ycai001@odu.edu,qzhan002@odu.edu,rning@odu.edu,cxin@odu.edu,h1wu@odu.edu

Old Dominion University
Norfolk, VA, USA

ABSTRACT
In order to protect user privacy in Machine Learning as a Service
(MLaaS), a series of ingeniously designed privacy-preserving frame-
works have been proposed. The state-of-the-art approaches adopt
Homomorphic Encryption (HE) for linear function and Garbled
Circuits (GC)/Oblivious Transfer (OT) for nonlinear operation to
improve computation efficiency. Despite the encouraging progress,
the computation cost is still too high for practical applications.
This work represents the first step to effectively prune privacy-
preserving deep learning models to reduce computation complex-
ity. Although model pruning has been discussed extensively in
the machine learning community, directly applying the plaintext
model pruning schemes offers little help to reduce the computation
in privacy-preserving models. In this paper we propose Hunter, a
structured pruning method that identifies three novel HE-friendly
structures, i.e., internal structure, external structure, and weight diag-
onal to guide the pruning process. Hunter outputs a pruned model
that, without any loss in model accuracy, achieves a significant
reduction in HE operations (and thus the overall computation cost)
in the privacy-preserving MLaaS. We apply Hunter in various deep
learningmodels, e.g., AlexNet, VGG and ResNet over classic datasets
including MNIST, CIFAR-10 and ImageNet. The experimental re-
sults demonstrate that, without accuracy loss, Hunter efficiently
prunes the original networks to reduce the HE Perm, Mult, and
Add operations. For example, in the state-of-the-art VGG-16 on Im-
ageNet with 10 chosen classes, the total number of Perm is reduced
to as low as 2% of the original network, and at the same time, Mult
and Add are reduced to only 14%, enabling a significantly more
computation-efficient privacy-preserving MLaaS.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols.

KEYWORDS
Model Pruning, Machine Learning as a Service, Privacy-preserving
Computation, Homomorphic Encryption

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00
https://doi.org/10.1145/3488932.3517401

ACM Reference Format:
Yifei Cai, Qiao Zhang, Rui Ning, Chunsheng Xin, Hongyi Wu. 2022. Hunter:
HE-Friendly Structured Pruning for Efficient Privacy-PreservingDeep Learn-
ing. In Proceedings of the 2022 ACM Asia Conference on Computer and Com-
munications Security (ASIA CCS ’22), May 30–June 3, 2022, Nagasaki, Japan.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3488932.3517401

1 INTRODUCTION
From Amazon’s Alexa to Tesla’s Model 3 and from Google’s Al-
phaGo to Boston Dynamics’s Atlas, Deep Learning (DL) is playing
a game-changing role in our daily lives and work. The prevalent
and pervasive adoption of DL technology lies in its superior perfor-
mance to mine the hidden pattern from enormous data [38]. At the
same time, the needs to obtain and process such a massive amount
of data pose a challenge tomany resource-limited individual entities
such as a local health provider which intends to build a comprehen-
sive DL model to facilitate diagnoses and healthcare planing, but
has limited medical data, computation resources, and DL talents.
On the other hand, the technology giants such as Google has abun-
dant cloud data, computation power, and top DL engineers, making
them an ideal party to produce well-trained DL models to serve the
aforementioned resourced-limited individuals. To bridge this gap,
the Machine Learning as a Service (MLaaS) has been proposed [44],
where the client, e.g., a doctor in a local clinic, sends the private
data, e.g., medical records of her patients, to the server that owns
a well-trained DL model; then the server outputs and sends back
the prediction to the client. MLaaS provides an efficient solution
for the client to obtain cost-effective, high-quality predictions and
for the server to make revenue by offering such service.
Challenges in Privacy-Preserving MLaaS: The privacy has be-
come as a critical concern in MLaaS. On the one hand, the client
does not want any party including the server to know its private
input, e.g., the patient’s medical records, and the server does not
want to share its proprietary model parameters since training a
well-performed DL model involves a significant effort including
hardware investment and algorithm design. On the other hand,
there is already legislation to protect the data from disclosing to the
public such as the Health Insurance Portability and Accountability
Act (HIPAA) in the US, the General Data Protection Regulation
(GDPR) in EU, and the Personal Data Protection Act (PDPA) in Sin-
gapore. There is an urgent need to ensure that the client’s data is
blind to the server while the server’s model parameters are hidden
from the client during the interaction in MLaaS.

In order to address the critical privacy issue discussed above,
the privacy-preserving MLaaS strategically introduces and embeds
crypto primitives into the computation process of the DL model.
To this end, a series of ingeniously designed privacy-preserving

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

931

https://doi.org/10.1145/3488932.3517401
https://doi.org/10.1145/3488932.3517401

frameworks have made inspiring efforts to bring MLaaS into prac-
tice [3, 8, 11, 17, 18, 21, 23, 26–29, 31–36, 41–43, 46, 47] where the
most commonly adopted crypto primitives are Homomorphic En-
cryption (HE) [9], Garbled Circuits (GC) [2], Oblivious Transfer
(OT) [6], and Secret Sharing (SS) [39]. Among these crypto primi-
tives, the HE is more efficient for linear computation as it intrinsi-
cally supports linear functions [4, 9] (see details in Sec. 2.4), while
the GC and OT are more computationally-efficient for nonlinear
functions [8]. Since the combination of linear and nonlinear func-
tions repeats in the DL model (see details in Sec. 2.1), the privacy-
preserving DL frameworks usually adopt HE for linear and GC/OT
for nonlinear operations to streamline the privacy-preserving com-
putation [8, 18, 26, 33]. For example, the HE-GC-based frameworks,
GAZELLE [18] and DELPHI [26], and the HE-OT-based framework,
CrypTFlow2 [33], have achieved a computation speedup of several
orders of magnitude over the classic CryptoNets system [11].

Despite the encouraging progress to boost the computation effi-
ciency of privacy-preserving MLaaS, the overhead is still too high
for practical applications. For instance, inferring one single CIFAR-
10 image [19] over ResNet [15] by the state-of-the-art privacy-
preserving frameworks (such as GAZELLE, DELPHI and CrypT-
Flow2) costs about 100 seconds [25, 47], while many real-time ap-
plications require a response within a few seconds [1]. For deeper
models with larger inputs, the performance gap would be grow even
wider. Meanwhile, the HE-based linear computation takes over 90%
of the total time in the above three leading frameworks [47], moti-
vating a deep optimization of the HE-based linear computation to
reduce the overall running time in the privacy-preserving MLaaS.
Preliminary Observations: Our quest begins with three insights
into the current privacy-preservingMLaaS frameworks. First, nearly
all frameworks including GAZELLE, DELPHI and CrypTFlow2 tar-
get at the computation optimization over the given DL models
such as VGG and ResNet. However, the underlying model redun-
dancy may become the bottleneck to minimize the computation
overhead. When a classical model is applied to a given application,
many model parameters can be removed for better computation
efficiency without any loss in model accuracy [14, 24]. Therefore,
our first insight is to prune the DL model to reduce the computation
cost in the privacy-preserving MLaaS.

Second, the computation overhead of HE-based calculations
stems from high computation complexity of three basic HE op-
erations, i.e., Add, Mult and Perm (see details in Section 2.4). For
example, in GAZELLE, the VGG-16 with CIFAR-10 dataset involves
about 423K Perm, 7M Mult and 7M Add operations (see detailed
performance in Section 4). Therefore, reducing the computation
overhead for the HE-based linear calculation is intrinsically to re-
duce the corresponding number of HE operations. Meanwhile, the
Perm operation is the most computation-expensive one among the
three HE operations. Experiments show that one Perm is 34 times
slower than one Mult and 56 times slower than one Add1. As such
our second insight is to minimize the number of Perm (as well as
Mult and Add) operations while performing model pruning.

Third, the model pruning has been discussed extensively in the
machine learning community [14, 24, 45]. The basic idea of model
pruning is to first set selected model parameters, e.g., parameters

1https://github.com/chiraag/gazelle_mpc

below a threshold [14], to zero, and then retrain or finetune the
prunedmodel to recover accuracy. The above two steps are repeated
until the model is maximally pruned with no or negligible accuracy
loss. Unfortunately, directly applying the plaintext model pruning
offers little to no help to reduce the corresponding HE-based com-
putation over the pruned model (see Table 1). This is because the
three basic HE operations (over the ciphertext) work in a packed
manner for the linear computation between the input data and the
model parameters (see details in Section 2.4). For example, for the
element-wise multiplication between one ciphertext encrypted by
the client and one plaintext with vectorized weight values from the
server, the subsequent Perm operation over the multiplied cipher-
text is eliminated if and only if all the elements in that plaintext
are pruned. However, the plaintext model pruning schemes do not
consider such packed structures and rarely guarantee the above
desired pruning property, thus leading to marginal or no reduc-
tion in the corresponding HE-based computation even though the
model is significantly pruned. For example, experiments show that
even 65% of parameters in a convolution layer from AlexNet are
pruned via the well-known pruning algorithm [14], it only results
in about 3.6% of reduction in the Perm operations in the correspond-
ing HE-based computation. Worse yet, pruning 90.8% weights in
a fully-connected layer would not even reduce a single Perm out
of the total 4096 Perm operations. It is fundamentally a new and
nontrivial problem to redesign the model pruning strategies for
privacy-preserving MLaaS.
Our Contributions: In this paper, we take the first step to effec-
tively prune privacy-preserving DL models, aiming to significantly
reduce the computation cost for the privacy-preserving MLaaS. The
proposed framework, Hunter, features an HE-friendly, structured
pruning method that first identifies the packed structures associ-
ated with the Perm operations in the HE-based linear computation
and then defines three novel HE-friendly structures, i.e., internal
structure, external structure, and weight diagonal that are embed-
ded into a customized pruning process. Hunter outputs a pruned
model that, without any loss in model accuracy, achieves to a sig-
nificant reduction in HE operations (and thus the overall computa-
tion cost) in the privacy-preserving MLaaS. For example, we apply
Hunter in various DL models including AlexNet [20], VGG [40]
and ResNet [15] over classic datasets such as MNIST, CIFAR-10 and
ImageNet [19, 22, 37]. The experimental results demonstrate that
Hunter effectively reduces the Perm as well as Mult and Add oper-
ations in the HE-based linear computation, which contributes to a
more computation-efficient privacy-preserving MLaaS. Specifically,
Hunter reduces 86% Perm, 84% Mult, and 84% Add operations in
average compared to the state-of-the-art frameworks (see detailed
performance in Section 4).

Note that there is another research thrust called privacy-preserving
Neural Architecture Search (NAS)which, similar toHunter’s privacy-
preserving model pruning, aims to find a network structure that is
more efficient for privacy-preserving MLaaS using NAS technol-
ogy [10, 16, 25]. The current methods aim to either replace some
nonlinear functions with more computation-efficient ones [10, 16]
or search for the optimal crypto parameters, e.g., number of slots
and ciphertext/plaintext modulus of packed HE [25]. It is worth
pointing out that these approaches are orthogonal to Hunter’s

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

932

https://github.com/chiraag/gazelle_mpc

pruning method. Hunter can be implemented on top of the NAS-
based approaches to further improve its computation efficiency of
privacy-preserving MLaaS.

The rest of the paper is organized as follows. Section 2 introduces
the system model, threat model, and cryptographic tools adopted
in Hunter. The details of Hunter’s pruning schemes are elaborated
in Section 3. The experimental results are illustrated in Section 4.
Finally, Section 5 concludes the paper.

2 PRELIMINARIES
2.1 System Model
In this paper, we consider the MLaaS as shown in Figure 1. There
are two parties, i.e., the client C and server S. The former owns
sensitive data, e.g., medical records from the healthcare provider,
while the latter has a well-performed and usually proprietary DL
model to provide the prediction output to the C after receiving
C’s input. The server S prunes the DL model before making it
available to the clients. This phase is totally client-independent and
does not require the sensitive input from C. On the other hand,
privacy issues are raised in the interaction between the two parties.
Specifically, C does not want any other party including S to know
its private data while S is unwilling to make its model parameters,
e.g., weight and kernel values, public since training that model
involves noticeable human and hardware resources. As such, the
MLaaS aims to guarantee that C’s input is fully protected against
the server while S’s model parameters are totally blind to the client.

We focus on deep Convolutional Neural Networks (CNN), which
are prevalent and pervasive in many applications such as image
classification [20, 40] and face recognition [38]. The convolution
and dot product are two main linear functions in CNN. The con-
volution computation is visualized as placing the kernel at each
location of the input and then summing up the element-wise prod-
uct between the kernel values and the ones of input data within
the kernel window, while the dot product is calculated between a
weight matrix and a vector such that each output value is the sum
of the element-wise product between one row of the weight matrix
and that vector. In MLaaS, the kernels and weight matrices are at S
while the input (in the convolution computation) and the vector (in
the dot product computation) are from C. As for the nonlinear func-
tion, we mainly adopt ReLU, 𝑓 (𝑥) = max{0, 𝑥}, which is widely
applied in the state-of-the-art DL models such as AlexNet [20],
VGG [40] and ResNet [15]. A layer that includes the convolution
function is named as a convolution layer while the one with dot
product is called a fully-connected (dense) layer. Furthermore, there
is another type of layer named pooling, which usually follows after
the convolution layer and adopts either meanpooing or maxpooling
function. Given the output of the convolution layer, meanpooling

䴀攀搀椀挀愀氀
爀攀挀漀爀搀猀

倀爀甀渀攀搀 䐀䰀 䴀漀搀攀氀䐀䰀 䴀漀搀攀氀

䐀椀愀最渀漀猀椀猀

Figure 1: MLaaS with a Model Pruning Phase.

puts a (stridden) pooling window through locations of that output
and calculates the mean of the values within the pooling window
for each location, while the maxpooling picks the maximum within
that pooling window. Note that this paper mainly addresses the
optimization for (privacy-preserving) computation efficiency of lin-
ear computation , while following the efficient (privacy-preserving)
nonlinear calculation including maxpooling in the state-of-the-art
frameworks such as GAZELLE [18] and CrypTFlow2 [33].

2.2 Model Pruning
As mentioned earlier, the server trains and prunes a DL model be-
fore it provides the MLaaS service and the model largely determines
the computation complexity of MLaaS. There are generally two
types of pruning namely non-structured pruning [12, 13] and struc-
tured pruning [24, 45]. The former prunes the model parameters in
kernels and weight matrices that are smaller than a threshold, while
the latter removes certain kernels, filters, and even layers [24, 45]
as a whole. The existing pruning approaches aim to improve the
efficiency of planintext models, i.e, without privacy-preserving con-
sideration. As analyzed in Sections 1 and 3, they offer little help
for reducing the computation cost in privacy-preserving MLaaS
since they do not consider the computation properties involved in
privacy-preserving MLaaS, such as the data encrypted with packed
HE and the corresponding element-wise addition, multiplication
and permutation operations.

The proposed Hunter is a first-of-its-kind pruning framework,
which fully considers the computation in privacy-preservingMLaaS.
It analyzes the intrinsic performance bottleneck and identifies three
privacy-preserving friendly structures, i.e., internal structure, exter-
nal structure andweight diagonal (see details in Section 3), for model
pruning, which significantly boosts the computation efficiency of
MLaaS (see concrete performance results in Section 4).

2.3 Thread Model
In linewithmany state-of-the-art frameworks such asMiniONN [23],
GAZELLE [18], DELPHI [26] and CrypTFlow2 [33], Hunter adopts
the semi-honest adversary model where all parties, i.e., C and S,
follow the protocol while each party tries to infer extra information
from the received messages. Specifically, C tries to infer the model
parameters beyond the prediction result, i.e., values of kernels and
weight matrices, during the MLaaS interaction, while S tries to
figure out C’s private input. We analyze in Section 3.3 that Hunter
is secure under the semi-honest assumption.

2.4 Packed Homomorphic Encryption
Homomorphic Encryption (HE) is a kind of encryption that allows
linear computation over ciphertext without decryption, yielding
a result in the encrypted form of the corresponding plaintext re-
sult. Given this critical feature, HE is a widely adopted approach in
privacy-preserving MLaaS since the client C is able to encrypt its
private data and send it to the S, which conducts the computation
over C’s ciphertext based on its DL model, without knowing the C’s
secrets. Meanwhile, compared with the traditional HE algorithm
that individually encrypts each value [30], the packed HE directly
encrypts a vector of plaintext values into one ciphertext and per-
forms the computation over that ciphertext in a Single Instruction

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

933

Multiple Data (SIMD) manner [5]. Therefore, it is highly efficient
and widely adopted in the state-of-the-art MLaaS frameworks [44].
In this paper, we rely on the BFV algorithm [9], which is one of the
mainstream packed HE approaches. On the one hand, the packed
HE supports three basic linear operations as Homomorphic Addi-
tion (Add), Homomorphic Multiplication (Mult), and Homomorphic
Permutation (Perm). Specifically, given two plaintext𝑚-value vec-
tors 𝒗1 and 𝒗2, they are respectively encrypted by packed HE as
[𝒗1]C and [𝒗2]C . Thereafter, we denote [·]C and [·]S as the cipher-
text encrypted by the C and the S, respectively. The Add operation
produces another ciphertext [𝒗1 + 𝒗2]C that adds the [𝒗1]C and
[𝒗2]C in an element-wise manner. The Mult operation outputs the
ciphertext [𝒗1 ⊙ 𝒗2]C that performs element-wise multiplication
between the [𝒗1]C and [𝒗2]C . The Perm operation is a cyclic rota-
tion of the values in one ciphertext. For example, rotating [𝒗1]C
results in another ciphertext where the value at the 𝑖-th position
moves to the first position. Meanwhile, performing 𝑗 Perm opera-
tions over one ciphertext can be decomposed into one PerDecomp
operation and 𝑗 HstPerm operations [18], which contributes to a
lower amortized operation time for that ciphertext.

The proposed Hunter framework features with a significant
reduction for HE operations including Perm and thus also con-
tributes to the reduction for PerDecomp and HstPerm operations.
On the other hand, the Perm operation has the highest running-
time complexity among the three basic HE operations. Concretely,
our experiment shows that the running time of one Perm operation
is 56 times slower than one Add and 34 times slower than one
Mult. As the Perm operation is indispensable and imperative for
the HE-based linear computation, i.e., convolution and dot product,
Hunter aims to minimize the computation complexity of Perm and
thus correspondingly reduces the HE-based computation in privacy-
preserving MLaaS. Meanwhile, the model pruning in the machine
learning community seems to be a good solution to reduce the
computation overhead, but it dose not consider the packed nature
of HE operations and thus has little contribution to reduce the com-
plexity of HE-based computation. Specifically, for the multiplied
ciphertext between the encrypted input from the client and the
weight plaintext from the server, one subsequent Perm operation
is eliminated if and only if all values in that weight plaintext are
pruned. Hunter fully considers such packed feature in HE-based
computation, and proposes, for the first time, to train and prune a
DL model with HE-friendly pruning strategy and finally outputs a
pruned model that significantly reduces computation complexity.

3 SYSTEM DESCRIPTION
Privacy-preserving DL outputs a prediction to the client with both
the client’s input data and the server’s model parameters protected
during the computation process. A critical issue in this scenario
is the computation overhead, which hinders its adoption in many
real-world applications. A series of works have been done to con-
sistently improve the system performance of privacy-preserving
DL [3, 8, 11, 17, 18, 21, 23, 26–29, 31–36, 41–43, 46, 47]. Among them,
the hybrid schemes that respectively utilize cryptographic tools
for linear and nonlinear functions achieve better performance [8].
The (packed) HE algorithms, e.g., BFV [9] and CKKS [7], are mainly
adopted in the hybrid schemes for efficient linear computation.

pruning procedure:

First Prune Fine-tune
(Retrain)

Initial
network

pruned
network

Internal Prune on
Conv Layers

External Prune on
Conv Layers

Prune the FC
Layers

pruning Conv layers, freeze FC layers pruning FC, freeze Conv

Build Prune
List Prune Adjust Prune

List

pruning procedure:

First Prune Fine-tune
(Retrain)

Initial
network

pruned
network

Internal Prune
Conv Layers

External Prune
Conv Layers

Prune FC
Layers

pruning conv layers pruning FC layers

Build the
Prune List Prune Adjust the

Prune List

pruning procedure:

First Prune Fine-tune
(Retrain)

Initial
network

pruned
network

Internal Prune
Conv Layers

External Prune
Conv Layers

Diagonal Prune
FC Layers

pruning conv layers pruning FC layers

Build the
Prune List Prune Update the

Prune List

Figure 2: Overview of Hunter’s Pruning Approach.

However, the HE-based linear computation takes a large part, e.g.,
over 90% of the total cost in the hybrid privacy-preserving DL frame-
works as discussed in Section 1. All of the current solutions [18],
[33], [26] focus on how to improve the efficiency of HE-based
linear computation given existing DL model structures such as
AlexNet [20] and VGG [40]. Considering the noticeable redundancy
in these modern DL models, a straightforward takeaway is to first
prune the target DL model via plaintext solutions [13], [24], [45],
thus reducing the size of the MLaaS model. However, as discussed
above, directly applying plaintext pruning mechanism has little
effect on computation reduction for corresponding HE-based com-
putation. Therefore, a new approach is needed to make the model
pruning truly helpful for reducingHE-based linear computation and
thus contributing to significant efficiency improvement of privacy-
preserving MLaaS.

In this work, we propose Hunter, an HE-friendly structured
pruning for efficient privacy-preserving deep learning. Without
accuracy loss, Hunter targets at pruning the model parameters, i.e.,
weights and kernels, to essentially reduce the three basic operations
over the client C’s encrypted inputs or intermediate ciphertext,
including Mult, Add and especially Perm (which is the most expen-
sive operation in HE-based linear computation). Figure 2 shows
an overall design of Hunter’s pruning mechanism. By identify-
ing and defining three HE-friendly structures in HE-based linear
computation, i.e., internal structure, external structure, and weight
diagonal, three pruning modules, i.e., internal pruning and external
pruning for convolution, and diagonal pruning for dot product, are
correspondingly and carefully embedded into the whole pruning
process, and a pruned model is finally formed which enables ag-
gressive elimination of involved Perm (as well as the associated
HE additions and multiplications) and thus significantly reduces
the overall computation cost. Experiments show that Hunter has a
promising performance that reduces 94%, 81%, 79%, 86% and 49% of
Perm operations on AlexNet, VGG-11, VGG-13, VGG-16 and ResNet-
32 with CIFAR-10 dataset, and 55% of Perm operations on LeNet
with MNIST dataset, as well as 64% and 98% of Perm operations
on AlexNet and VGG-16 with ImageNet dataset (with 10 classes).
To the best of our knowledge, Hunter is the first framework that
defines the (packed) HE-friendly structures for loss-free pruning,
and makes the model pruning truly useful to privacy-preserving
DL computation. Hunter may also shed light on efficient privacy-
preserving friendly pruning and inspire subsequent research works
that further close the gap to practical privacy-preserving DL. In the
following subsections, we describe in details Hunter’s underlying
pruning logic from dot product to convolution computation.

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

934

Perm

HE operations to obtain the Dot Product output

w11 w12 w13 w14 w15 w16 w17 w18

w21 w22 w23 w24 w25 w26 w27 w28

w31 w32 w33 w34 w35 w36 w37 w38

w41 w42 w43 w44 w45 w46 w47 w48

w
x1
x2
x3
x4
x5
x6
x7
x8

[x]C

•

w11x1+w12x2+w13x3+w14x4+w15x5+w16x6+w17x7+w18x8

w21x1+w22x2+w23x3+w24x4+w25x5+w26x6+w27x7+w28x8

w31x1+w32x2+w33x3+w34x4+w35x5+w36x6+w37x7+w38x8

w41x1+w42x2+w43x3+w44x4+w45x5+w46x6+w47x7+w48x8

Expected Dot Product Output

w11 w22 w33 w44 w15 w26 w37 w48

x1 x2 x3 x4 x5 x6 x7 x8

Mult

w12 w23 w34 w45 w16 w27 w38 w41

x2 x3 x4 x5 x6 x7 x8 x1

Mult

w13 w24 w35 w46 w17 w28 w31 w42

x3 x4 x5 x6 x7 x8 x1 x2

Mult

w14 w25 w36 w47 w18 w21 w32 w43

x4 x5 x6 x7 x8 x1 x2 x3

w11x1 w22x2 w33x3 w44x4 w15x5 w26x6 w37x7 w48x8

w11x1+w12x2+w13x3+w14x4

w22x2+w23x3+w24x4+w25x5

w33x3+w34x4+w35x5+w36x6

w44x4+w45x5+w46x6+w47x7

w15x5+w16x6+w17x7+w18x8

w26x6+w27x7+w28x8+w21x1

w37x7+w38x8+w31x1+w32x2

w48x8+w41x1+w42x2+w43x3

[x]C

w1

w2

w3

w4

x1
x2
x3
x4
x5
x6
x7
x8

[x0]C

[x1]C

[x2]C

[x3]C

Perm

Perm

w12x2 w23x3 w34x4 w45x5 w16x6 w27x7 w38x8 w41x1

w13x3 w24x4 w35x5 w46x6 w17x7 w28x8 w31x1 w42x2

w14x4 w25x5 w36x6 w47x7 w18x8 w21x1 w32x2 w43x3

Add +

Mult

Add +

Add +

[x]C =

w11x1+w12x2+w13x3+w14x4

w22x2+w23x3+w24x4+w25x5

w33x3+w34x4+w35x5+w36x6

w44x4+w45x5+w46x6+w47x7

w15x5+w16x6+w17x7+w18x8

w26x6+w27x7+w28x8+w21x1

w37x7+w38x8+w31x1+w32x2

w48x8+w41x1+w42x2+w43x3

Perm

w15x5+w16x6+w17x7+w18x8

w26x6+w27x7+w28x8+w21x1

w37x7+w38x8+w31x1+w32x2

w48x8+w41x1+w42x2+w43x3

w11x1+w12x2+w13x3+w14x4

w22x2+w23x3+w24x4+w25x5

w33x3+w34x4+w35x5+w36x6

w44x4+w45x5+w46x6+w47x7

w11x1+w12x2+w13x3+w14x4+w15x5+w16x6+w17x7+w18x8

w22x2+w23x3+w24x4+w25x5+w26x6+w27x7+w28x8+w21x1

w33x3+w34x4+w35x5+w36x6+w37x7+w38x8+w31x1+w32x2

w44x4+w45x5+w46x6+w47x7+w48x8+w41x1+w42x2+w43x3

w15x5+w16x6+w17x7+w18x8+w11x1+w12x2+w13x3+w14x4

w26x6+w27x7+w28x8+w21x1+w22x2+w23x3+w24x4+w25x5

w37x7+w38x8+w31x1+w32x2+w33x3+w34x4+w35x5+w36x6

w48x8+w41x1+w42x2+w43x3+w44x4+w45x5+w46x6+w47x7

Add
+

Intermediate ciphertext

Ex
pe

ct
ed

 O
ut

pu
t

Rotate-and-Sum

Figure 3: Dot Product Computation.

3.1 HE-Friendly Structured Pruning for Dot
Product Computation

As described in Section 2.1, the convolution (in the convolution
layer) and dot product (in the fully-connected layer) are two main
types of linear computation in the DL model. For ease of elabora-
tion, we begin with the state-of-the-art computation and Hunter’s
pruning insights for dot product, which is intrinsically a matrix-
vector multiplication between the client-encrypted vector [𝒙]C
and the plaintext weight matrix𝒘 at the server. Specifically, 𝒙 is an
𝑛𝑖 -element vector that is packed into one ciphertext as [𝒙]C and
𝒘 has a size of 𝑛𝑜 × 𝑛𝑖 . The server is supposed to compute the dot
product based on [𝒙]C and its plintext𝒘 , and output one ciphertext
containing 𝑛𝑜 elements of the plaintext dot product between𝒘 and
𝒙 .

Recall from Section 2.1 that the dot product is calculated be-
tween the weight matrix𝒘 and the input vector 𝒙 such that each
output value is the sum of the element-wise product between one
row of𝒘 and 𝒙 (see the upper part of dot product computation in
Figure 3). Under the use of packed HE in the privacy-preserving
DL frameworks [18, 26, 33], the element-wise product is computed
between [𝒙]C and each row of𝒘 by the Mult operation. However,
it is not possible for the server to directly sum up the element-wise
product in the above multiplied ciphertext since the Add operation
also works in element wise (see details in Sec. 2.4). Therefore, the
Perm operation is needed to efficiently complete the summing-up
step to finally output the dot product result [18, 33].

Specifically, 𝑛𝑜 plaintext vectors, each of which contains a diag-
onal of the weight matrix, are constructed by the server (see the
color-coded diagonals of𝒘 in Figure 3wherewe have𝑛𝑖 = 8, 𝑛𝑜 = 4).

Then, (𝑛𝑜 − 1) Perm operations are conduct over the input cipher-
text2 [𝒙]C such that the 𝑗-th (1 ⩽ 𝑗 ⩽ 𝑛𝑜) of these 𝑛𝑜 rotated
ciphertext (including the original [𝒙]C) has the same sequence of
associated weight values as that of the 𝑗-th of 𝑛𝑜 plaintext vectors.
For example, there are four plaintext vectors in Figure 3 as𝒘1,𝒘2,
𝒘3 and 𝒘4. Here 𝒘1 includes weight values from 𝑤11 to 𝑤48, 𝒘2
includes weight values from𝑤12 to𝑤41,𝒘3 includes weight values
from 𝑤13 to 𝑤42 and 𝒘4 includes weight values from 𝑤14 to 𝑤43.
Three Perm operations are performed over [𝒙]C to obtain four
rotated ciphertext (including the original [𝒙]C) as [𝒙0]C , [𝒙1]C ,
[𝒙2]C and [𝒙3]C . Here [𝒙0]C has the same sequence of associ-
ated weight values as that of𝒘1, [𝒙1]C has the same sequence of
associated weight values as that of𝒘2, and so on and so forth.

The reason for conducting (𝑛𝑜 − 1) Perm operations over [𝒙]C
is that the 𝑛𝑜 rotated ciphertext are directly multiplied with the
𝑛𝑜 plaintext vectors (by Mult) to get 𝑛𝑜 multiplied ciphertext that
have the same sequence of associated element-wise product of the
output, and they are further added (by Add) to form the intermedi-
ate ciphertext (see the intermediate ciphertext in Figure 3), which
can efficiently derive the final dot product result by a series of
“Rotate-and-Sum” (RaS) operations [18]: first rotate the interme-
diate ciphertext by 𝑛𝑖

2 positions via Perm and then add the two
ciphertext before and after the rotation via Add. It results in a new
ciphertext whose first 𝑛𝑖

2 elements are the sum of the first and
second halves of original intermediate ciphertext. By repeating
this process for log2

𝑛𝑖
𝑛𝑜

iterations, each of which rotates by half
the previous rotation positions (i.e, 𝑛𝑖4 ,

𝑛𝑖
8 , ..., 𝑛𝑜 .), we finally get

a ciphertext whose first 𝑛𝑜 elements are the expected dot product
output. For example, the four multiplied ciphertext in Figure 3 have
the same sequence of associated element-wise product of the output
(from the first to the fourth value of the dot product result), thus,
they are added to form an intermediate ciphertext, over which one
RaS operation is performed to get the final dot product result.
Observation 1: Each of the 𝑛𝑜 multiplied ciphertext is obtained by
multiplying one of the 𝑛𝑜 plaintext vectors with one of the 𝑛𝑜 ro-
tated ciphertext (obtained by Perm). These 𝑛𝑜 multiplied ciphertext
are added to get the intermediate ciphertext, over which the final
dot product result is derived by log2

𝑛𝑖
𝑛𝑜

RaS operations (including
log2

𝑛𝑖
𝑛𝑜

Perm operations). Meanwhile, the Perm operations in RaS
computation are inevitable as we cannot eliminate any intermediate
ciphertext.

It is critical to observe that due to the unique computation structure
specially designed for the 𝑛𝑜 multiplied ciphertext, unless a plain-
text vector becomes all-zero, the state-of-the-art algorithm would still
require the Perm operation over the input ciphertext to get that mul-
tiplied ciphertext. While the pruning technique is a good solution
to possibly eliminate the Perm operations, the traditional plain-
text schemes aim to prune individual weights and do not consider
the specific structure of each of the 𝑛𝑜 plaintext vectors, which
helps little for the Perm reduction (and thus the efficient HE-based
computation) as discussed in Section 1.

2As multiple Perm operations over one ciphertext can be decomposed into one PerDe-
comp operation and the equal amount of HstPerm operations for more efficient com-
putation [18], the (𝑛𝑜 − 1) Perm operations over [𝒙]C can be decomposed into one
PerDecomp operation and (𝑛𝑜 − 1) HstPerm operations.

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

935

w11 w12 w13 w14 w15 w16 w17 w18

w21 w22 w23 w24 w25 w26 w27 w28

w31 w32 w33 w34 w35 w36 w37 w38

w41 w42 w43 w44 w45 w46 w47 w48

w11 w12 w13 w14 w15 w16 w17 w18

w21 w22 w23 w24 w25 w26 w27 w28

w31 w32 w33 w34 w35 w36 w37 w38

w41 w42 w43 w44 w45 w46 w47 w48

(a)Structured Diagonal Pruning (b) Individual Weight Pruning

Figure 4: Two pruning methods for fully-connected layers.

Thus, different from the plaintext pruning schemes, we are mo-
tivated to prune the diagonal weights in the plaintext vectors such
that there is no need to form the rotated ciphertext (by Perm) to be
multiplied with the pruned plaintext vectors. Therefore, one Perm op-
eration is eliminated if one plaintext vector is pruned, which helps
for the Perm reduction and thus the efficient HE-based computation.
For example, in Figure 3, one Perm operation over [𝒙]C (to obtain
[𝒙3]C) is eliminated by pruning the plaintext vector𝒘4. Moreover,
other subsequent operations related to the pruned plaintext vectors
are also simultaneously eliminated.
Hunter’s diagonal pruning structure: Based on the above ob-
servation, we define the weight diagonal as the diagonal elements
in one plaintext vector (excluding the ones in the main-diagonal
plaintext vector) and propose Hunter’s diagonal pruning strategy
by pruning the weight diagonals, which efficiently reduces the Perm
operations in HE-based dot product computation.

Figure 4 visually compares the pruning schemes betweenHunter’s
diagonal pruning and the traditional plaintext pruning [14] for a
weight matrix with the size of 4 × 8. While Hunter’s diagonal prun-
ing (in Figure 4 (a)) removes twoweight diagonals (colored in white),
which correspondingly reduces two (out of three) Perm operations,
the traditional plaintext pruning (in Figure 4 (b)) does not eliminate
any Perm operations even with the same pruning ratio. The reason
lies in Hunter’s HE-friendly pruning structure (i.e., the weight diag-
onal) identified and defined in the dot product computation, which
is not considered in the traditional plaintext pruning. Furthermore,
our experiments also demonstrate that, without sacrificing model
accuracy, Hunter effectively reduces 65% of Perm operations for
the dot product computation with a 4096 × 4096 weight matrix in
one fully-connected layer of AlexNet with ImageNet dataset, while
the traditional threshold-based pruning algorithm cannot eliminate
any of the involved 4095 Perm operations (see details in Table 7
from Appendix A).

3.2 HE-Friendly Structured Pruning for
Convolution Computation

While the above discussions shed light on pruning the weight ma-
trices for fully-connected layers in privacy-preserving DL models,
the modern DL architectures, such as AlexNet [20] and VGG [40],
are dominated by convolution layers. It is thus critical to effec-
tively prune the kernels for convolution computation and therefore
efficiently reduce the Perm operations in convolution layers. As
such, we begin with the basic HE-based convolution computation
with Single Input and Single Output (SISO) where we identify an
HE-friendly pruning primitive. Then wemove on to the general con-
volution computation with Multiple Input Multiple Output (MIMO)

u1 u2 u3
u4 u5 u6
u7 u8 u9

k1 k2 k3
k4 k5 k6
k7 k8 k9 *k [u]c

k5u1+k6u2+
k8u4+k9u5

k4u1+k5u2+
k6u3+k7u4+
k8u5+k9u6

k2u1+k3u2+
k5u4+k6u5+
k8u7+k9u8

k1u1+k2u2+k3u3

+k4u4+k5u5+
k6u6+k7u7

+k8u8+k9u9

k4u2+k5u3+
k7u5+k8u6

k1u4+k2u5+
k3u6+k4u7+
k5u8+k6u9

k1u2+k2u3+
k4u5+k5u6+
k7u8+k8u9

k1u5+k2u6+
k4u8+k5u9

[v]c

SISO computation
k2u4+k3u5+
k5u7+k6u8

[u(+4)]c k(+4)

u5 u6 u7
u8 u9 u1
u2 u3 u4

k9 k9 0
k9 k9 0
0 0 0

[u(+3)]c k(+3)

u4 u5 u6
u7 u8 u9
u1 u2 u3

k8 k8 k8
k8 k8 k8
0 0 0

[u(+2)]c k(+2)

u3 u4 u5
u6 u7 u8
u9 u1 u2

0 k7 k7
0 k7 k7
0 0 0

[u(+1)]c k(+1)

u2 u3 u4
u5 u6 u7
u8 u9 u1

k6 k6 0
k6 k6 0
k6 k6 0

[u0]c k0

u1 u2 u3
u4 u5 u6
u7 u8 u9

k5 k5 k5
k5 k5 k5
k5 k5 k5

[u(-1)]c k(-1)

0 k4 k4
0 k4 k4
0 k4 k4

[u(-2)]c k(-2)

u8 u9 u1
u2 u3 u4

0 0 0
k3 k3 0

[u(-3)]c k(-3)

u7 u8 u9
u1 u2 u3

0 0 0
k2 k2 k2
k2 k2 k2

[u(-4)]c k(-4)

u6 u7 u8
u9 u1 u2
u3 u4 u5

0 0 0
0 k1 k1
0 k1 k1

u9 u1 u2
u3 u4 u5
u6 u7 u8

u5 u6 u7 k3 k3 0 u4 u5 u6

k2 and k6 are individually pruned
Figure 5: Basic Pruning for SISO.

(proposed in the state-of-the-art GAZELLE framework [18]) where
we define the internal structure based on the primitive from SISO,
as well as the external structure based on the rotation pattern over
intermediate ciphertext. The two defined structures result in aggres-
sively pruned model(s) for efficient HE-based computation without
accuracy loss. For example, Hunter reduces 85%, 84%, and 84% of
Perm, Mult and Add operations, respectively, for convolution lay-
ers in VGG-16 with CIFAR-10 dataset compared with GAZELLE.
We denote that the input data has 𝑐𝑖 channels, each with a size of
𝑢𝑤 × 𝑢ℎ , and there are 𝑐𝑜 kernels, each with a size of 𝑘𝑤 × 𝑘ℎ × 𝑐𝑖 .
In SISO, we have 𝑐𝑖 = 𝑐𝑜 = 1 while 𝑐𝑖 or 𝑐𝑜 is larger than one in
MIMO.
SISO: As shown in Figure 5, the client C encrypts its input 𝒖 (with
the size of 𝑢𝑤 × 𝑢ℎ) as [𝒖]C , which is then sent to the server S. S
conducts convolution computation between [𝒖]C and its plaintext
kernel 𝒌 with size of 𝑘𝑤 × 𝑘ℎ to obtain the encrypted output [𝒗]C
where 𝒗 = 𝒌 ∗𝒖 and “∗” is the convolution operator. Specifically, the
convolution is calculated by first placing the kernel at each location
of the input and then summing up the element-wise products be-
tween the kernel values and the ones of input data within the kernel
window. For example, we have 𝑢𝑤 = 𝑢ℎ = 𝑘𝑤 = 𝑘ℎ = 3 in Figure 5,
and the first value of convolution is obtained by placing the 𝑘5, i.e.,
the central value of kernel 𝒌 , at 𝑢1, i.e., the first element in 𝒖, and
summing up the element-wise product as (𝑘5𝑢1+𝑘6𝑢2+𝑘8𝑢4+𝑘9𝑢5).
The second value of convolution is obtained by placing the 𝑘5 at
𝑢2, i.e., the second element in 𝒖, and summing up the element-wise
product as (𝑘4𝑢1 +𝑘5𝑢2 +𝑘6𝑢3 +𝑘7𝑢4 +𝑘8𝑢5 +𝑘9𝑢6), and so on and
so forth. As such, nine values are obtained as the final convolution
output 𝒗 for SISO (see Figure 5).

Using packed HE in the privacy-preserving DL frameworks [18,
26, 33], the element-wise product is obtained by multiplying the
input ciphertext with the kernel. For example, as illustrated in Fig-
ure 5, multiplying [𝒖]C with 𝒌 by Mult outputs another ciphertext
containing nine elements as 𝑢1𝑘1, · · · , 𝑢9𝑘9. However, as discussed

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

936

in Sec. 3.1, it is not possible for the server S to directly sum up
the elements in the ciphertext and the Perm is thus needed to com-
plete the summing-up step to let S finally obtain the encrypted
convolution values.

Specifically, the 𝑖-th (1 ⩽ 𝑖 ⩽ 𝑢𝑤𝑢ℎ) value of the convolution
output is the sum of element-wise product between the 𝑘𝑤𝑘ℎ kernel
elements and the associated 𝑘𝑤𝑘ℎ elements around the 𝑖-th loca-
tion of the input, i.e., the 𝑘𝑤𝑘ℎ input elements within the kernel
window. The (𝑘𝑤𝑘ℎ − 1) Perm operations3, including (𝑘𝑤𝑘ℎ − 1)/2
in forward (left) direction and (𝑘𝑤𝑘ℎ − 1)/2 in backward (right)
direction, are performed over [𝒖]C such that 𝑘𝑤𝑘ℎ rotated cipher-
text (including the original [𝒖]C) are obtained, and the values from
all the 𝑖-th locations of 𝑘𝑤𝑘ℎ (rotated) ciphertext include all the
input elements needed to calculate the element-wise product of
the 𝑖-th convolution value. For example, the fifth element of the
convolution output in Figure 5, i.e., the central value, is the the sum
of element-wise product between input values from 𝑢1 to 𝑢9 and
the kernel values from 𝑘1 to 𝑘9. By conducting four Perm opera-
tions in the forward direction, we obtain four rotated ciphertext as
[𝒖 (+1)]C , [𝒖 (+2)]C , [𝒖 (+3)]C and [𝒖 (+4)]C , and we similarly get
another four rotated ciphertext as [𝒖 (−1)]C , [𝒖 (−2)]C , [𝒖 (−3)]C
and [𝒖 (−4)]C by performing four Perm operations in the backward
direction4. Together with [𝒖0]C (i.e., the original [𝒖]C), the fifth
element in each of the above nine ciphertext is associated with one
input value (among 𝑢1 to 𝑢9) to calculate the element-wise product
for fifth element of the convolution output.

Then Mult and Add operations are conducted (by the server)
between the 𝑘𝑤𝑘ℎ rotated ciphertext and the plaintext kernel to
finally get the convolution output. For example, nine (i.e., 𝑘𝑤𝑘ℎ)
transformed kernels are constructed in Figure 5 (see 𝒌 (−4) to 𝒌 (+4))
such that the 𝑖-th (1 ⩽ 𝑖 ⩽ 9) value in 𝒌 𝑗 (−4 ⩽ 𝑗 ⩽ +4) corre-
sponds to the kernel element to be multiplied with the 𝑖-th input
value in [𝒖 𝑗]C to form the element-wise product of the 𝑖-th con-
volution value. As such, the 𝑖-th value in

∑+4
𝑗=−4 ([𝒖 𝑗]C ⊙ 𝒌 𝑗), i.e.,

the summation of nine multiplied ciphertext between 𝒖 𝑗 and 𝒌 𝑗 , is
the 𝑖-th element of the convolution output. Furthermore, the cyclic
effect of Perm operation on all elements in each [𝒖 𝑗]C , i.e., the
rotated ciphertext, makes the values in the corresponding 𝒌 𝑗 , i.e.,
the transformed kernel, associate with only one element from the
original kernel 𝒌 . E.g., the values in 𝒌0 (see Figure 5) associate with
𝑘5 from 𝒌 , and the values in 𝒌 (+1) associate with 𝑘6 from 𝒌 , so on
and so forth.
Observation 2: Each rotated ciphertext (obtained by one Perm
operation) is multiplied with a transformed kernel that includes
only one kernel value, thus one Perm operation for obtaining one
rotated ciphertext is eliminated if the kernel value in that to-be-
multiplied transformed kernel is zero.

Based on this observation, one Perm operation is eliminated in
SISO computation when one kernel value (excluding the central
one) in 𝒌 is zero. Therefore, we aremotivated to prune the individual
value in 𝒌 such that there is no need to correspondingly form the
rotated ciphertext by one expensive Perm operation. For example,
3These (𝑘𝑤𝑘ℎ−1) Perm operations can be decomposed into one PerDecomp operation
and (𝑘𝑤𝑘ℎ − 1) HstPerm operations in GAZELLE framework [18].
4Here we use positive and negative symbol “+” and “−” to denote the forward and back-
ward direction, respectively. Similar logic is applied to the subscript of the transformed
kernel described later.

k19 k20 k21
k22 k23 k24
k25 k26 k27

k1 k2 k3
k4 k5 k6
k7 k8 k9

k10 k11 k12
k13 k14 k15
k16 k17 k18

*k28 k29 k30
k31 k32 k33
k34 k35 k36

F1

F2

K11 K12

K21 K22

u1 u2
u3 u4

u1

u2

[u]c

u5 u6
u7 u8

k5u1+k6u2+
k8u3+k9u4+

k14u5+k15u6+
k17u7+k18u8

k4u1+k5u2+
k7u3+k8u4+

k13u5+k14u6+
k16u7+k17u8

k2u1+k3u2+
k5u3+k6u4+

k11u5+k12u6+
k14u7+k15u8

k1u1+k2u2+
k4u3+k5u4+

k10u5+k11u6+
k13u7+k14u8

k23u1+k24u2+
k26u3+k27u4+
k32u5+k33u6+
k35u7+k36u8

k22u1+k23u2+
k25u3+k26u4+
k31u5+k32u6+
k34u7+k35u8

k20u1+k21u2+
k23u3+k24u4+
k29u5+k30u6+
k32u7+k33u8

k19u1+k20u2+
k22u3+k23u4+
k28u5+k29u6+
k31u7+k32u8

[v]c

v1 v2

u2 u3
u4 u5

[u(+1)]c

u6 u7
u8 u1

k6 0
k6 0

k(+1)

k33 0
k33 0

u1 u2
u3 u4

[u0]c

u5 u6
u7 u8

k5 k5
k5 k5

k0

k32 k32
k32 k32

u3 u4
u5 u6

[u(+2)]c

u7 u8
u1 u2

k8 k8
0 0

k(+2)

k35 k35
0 0

u8 u1
u2 u3

[u(-1)]c

u4 u5
u6 u7

0 k4
0 k4

k(-1)

 0 k31
 0 k31

u7 u8
u1 u2

[u(-2)]c

u3 u4
u5 u6

0 0
k2 k2

k(-2)

0 0
k29 k29

u4 u5
u6 u7

[u(+3)]c

u8 u1
u2 u3

k9 0
0 0

k(+3)

k36 0
0 0

u6 u7
u8 u1

[u(-3)]c

u2 u3
u4 u5

0 0
0 k1

k(-3)

0 0
 0 k28

MIMO computation

u2 u3
u4 u5

u6 u7
u8 u1

0 k7
0 0

0 k34
0 0

[u(+1)]c k(+1)'

u8 u1
u2 u3

[u(-1)]c

u4 u5
u6 u7

0 0
k3 0

 0 0
 k30 0

k(-1)'

u2 u3
u4 u5

[u(+1)]c

u6 u7
u8 u1

k24 0
k24 0

k(+1)

k15 0
k15 0

u1 u2
u3 u4

[u0]c

u5 u6
u7 u8

k23 k23
k23 k23

k0

k14 k14
k14 k14

u3 u4
u5 u6

[u(+2)]c

u7 u8
u1 u2

k26 k26
0 0

k(+2)

k17 k17
0 0

u8 u1
u2 u3

[u(-1)]c

u4 u5
u6 u7

0 k22
0 k22

k(-1)

 0 k13
 0 k13

u7 u8
u1 u2

[u(-2)]c

u3 u4
u5 u6

0 0
k20 k20

k(-2)

0 0
k11 k11

u4 u5
u6 u7

[u(+3)]c

u8 u1
u2 u3

k27 0
0 0

k(+3)

k18 0
 0 0

u6 u7
u8 u1

[u(-3)]c

u2 u3
u4 u5

0 0
 0 k19

k(-3)

0 0
 0 k10

u2 u3
u4 u5

u6 u7
u8 u1

 0 k25
0 0

0 k16
0 0

[u(+1)]c k(+1)'

u8 u1
u2 u3

[u(-1)]c

u4 u5
u6 u7

0 0
k21 0

 0 0
 k12 0

k(-1)'

Perm

{k1 , k28 , k19 , k10} internal structure
k19 k20 k21
k22 k23 k24
k25 k26 k27

external structure
k10 k11 k12
k13 k14 k15
k16 k17 k18

[u(-1)]cand[u(+1)]c are reused due to the small size of u, which does not happen in real-world cases

Figure 6: Basic Pruning for MIMO.

as shown in Figure 5, two Perm operations for getting the rotated
ciphertext, [𝒖 (−3)]C and [𝒖 (+1)]C , are omitted if the kernel values
𝑘2 and 𝑘6 are pruned. This HE-friendly pruning primitive in SISO
further motivate our definition of internal structure that contributes
to the Perm reduction in general MIMO calculation to be described
next.
MIMO: In most of the state-of-the-art DL models such as AlexNet
and VGG, the convolution computation involves multiple input
and multiple output, namely 𝑐𝑖 input channels (each with size of
𝑢𝑤 ×𝑢ℎ) are convolved with 𝑐𝑜 filters (each with size of 𝑘𝑤 ×𝑘ℎ×𝑐𝑖)
and there are 𝑐𝑜 output channels with size of 𝑢𝑤 × 𝑢ℎ

5. Under the
use of packed HE in privacy-preserving MLaaS [18, 26, 33], 𝑐𝑛
input channels are packed in one ciphertext, over which the server
homomorphicly computes with its plaintext kernels. For example,
we have in Figure 6 two input channels {𝒖1, 𝒖2} in the C-encrypted
ciphertext [𝒖]C . It is convolved with two filters, 𝑭1 = {𝑲11,𝑲12}
and 𝑭2 = {𝑲21,𝑲22}, each of which has two 3-by-3 kernels. Thus
we have 𝑐𝑖 = 𝑐𝑛 = 2, 𝑐𝑜 = 2, 𝑢𝑤 = 𝑢ℎ = 2, 𝑘𝑤 = 𝑘ℎ = 3, and the
server is supposed to homomorphicly compute over [𝒖]C with its
two plaintext filters to finally obtain the encrypted convolution
[𝒗]C with two output channels {𝒗1, 𝒗2} (see Figure 6). Here

𝒗1 = 𝑲11 ∗ 𝒖1 + 𝑲12 ∗ 𝒖2 and 𝒗2 = 𝑲21 ∗ 𝒖1 + 𝑲22 ∗ 𝒖2, (1)

where each individual convolution works in SISO manner.
5Here we consider the same-style convolution with the size of each output channel
equals to that of each input channel. Similar logic is applied to the convolution where
the size of each output channel is not equal to that of each input channel.

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

937

For a lucid description, we elaborate thereafter the state-of-the-
art MIMO computation [18] as well as Hunter’s pruning insights
according to the example in Figure 6. Nevertheless, Hunter is read-
ily applicable to other general cases. Specifically, the C-encrypted
ciphertext [𝒖]C is firstly convolved with the main-diagonal kernels
{𝑲11,𝑲22} in the SISO manner, which produces a convolved cipher-
text containing two convolution as 𝑲11 ∗ 𝒖1 and 𝑲22 ∗ 𝒖2. This is
achieved thanks to the cyclic effect of the Perm operation on all
elements in [𝒖]C and when the 𝒖1 in 𝒖 is convolved with one kernel
(like SISO), the 𝒖2 in 𝒖 is similarly and simultaneously convolved
with another kernel. To this end, Perm operations are firstly applied
on [𝒖]C to get a group of rotated ciphertext (like SISO), which are
then multiplied (by Mult) with the transformed-kernel-packs and
all the multiplied ciphertext are finally added up (by Add) to get a
convolved ciphertext containing two convolution as 𝑲11 ∗ 𝒖1 and
𝑲22 ∗ 𝒖2 (see the upper part of MIMO computation in Figure 6).
Clearly, the group of rotated ciphertext for [𝒖]C (e.g., see [𝒖 (+3)]C
to [𝒖 (−3)]C) can be used to convolve with any other kernels since
we can arbitrarily replace values in 𝑲11 and 𝑲22 with other ones.
Therefore, another convolved ciphertext containing two convolu-
tion as 𝑲21 ∗ 𝒖1 and 𝑲12 ∗ 𝒖2 is obtained for the other diagonal
kernels {𝑲21,𝑲12} (see the lower part of MIMO computation in
Figure 6).
Observation 3: First, based on our observation in SISO, each ro-
tated channel in one rotated ciphertext is multiplied with only
one value from one kernel6. For example, in the rotated cipher-
text [𝒖 (−3)]C in the upper part of MIMO computation, the rotated
channel 𝒖1 is multiplied with 𝑘1 from kernel 𝑲11 while the ro-
tated channel 𝒖2 is multiplied with 𝑘28 from kernel 𝑲22. Second,
the cyclic effect of Perm operation makes all the kernel values in
each transformed-kernel-pack come from the same location of their
corresponding diagonal kernels. For example, the aforementioned
values {𝑘1, 𝑘28} in the transformed-kernel-pack 𝒌 (−3) come from
the first location of diagonal kernels {𝑲11,𝑲22}, respectively. Note
that while this observation is made using Figure 6 as an example,
it holds for the general case with all input sizes and other kernel
sizes in real-world DL models.

Based on the above observation, for all the transformed-kernel-
packs that are multiplied with one rotated ciphertext, all the kernel
values come from the same location of the associated diagonal ker-
nels. Meanwhile, as one rotated ciphertext includes 𝑐𝑛 channels
(𝑐𝑛 = 2 for our example in Figure 6), there must be 𝑐𝑛 kernel val-
ues (from the same location of the 𝑐𝑛 diagonal kernels) in every
transformed-kernel-pack (to be multiplied with above rotated ci-
phertext). For example, two transformed-kernel-packs 𝒌 (−3) and
𝒌 (−3) are multiplied with the rotated ciphertext [𝒖 (−3)]C . Since
[𝒖 (−3)]C includes two rotated channels, both of 𝒌 (−3) and 𝒌 (−3)
have two kernel values from the same location of two diagonal ker-
nels, i.e., the first location of two diagonal kernels in {𝑲11,𝑲22} and
{𝑲21,𝑲12}, respectively. Therefore, one Perm operation over [𝒖]C
for getting one rotated ciphertext is eliminated if the kernel values
from the same location of all the diagonal kernels (to be convolved
with the encrypted input [𝒖]C) are zeros. For example, there is

6There are no 𝒖 (+4) and 𝒖 (−4) in our example since 𝑢𝑤𝑢ℎ = (𝑘𝑤𝑘ℎ − 1)/2 and thus
we see the reuse of rotated ciphertext 𝒖 (+1) and 𝒖 (−1) . No rotated ciphertext is reused
in other general cases.

no need to get the rotated ciphertext [𝒖 (−3)]C if the kernel values
from the first location of all the diagonal kernels (i.e., {𝑲11,𝑲22}
and {𝑲12,𝑲21}) are zeros (i.e., kernel values {𝑘1, 𝑘10, 𝑘19, 𝑘28} are
zeros).
Hunter’s internal pruning structure: As such, we are motivated
to prune those same-location kernel values to reduce the number
of Perm operations over the encrypted input [𝒖]C and we thus
define the internal structure as the kernel values from the same
location of all the diagonal kernels that are convolved with [𝒖]C ,
and pruning an internal structure correspondingly eliminates one
Perm operation over [𝒖]C . For example, the aforementioned kernel
values {𝑘1, 𝑘10, 𝑘19, 𝑘28} actually form one internal structure that, if
pruned, contributes to eliminate one Perm operation over [𝒖]C .

Recall that we have obtained two (intermediate) convolved ci-
phertext. The first one contains two convolution as 𝑲11 ∗ 𝒖1 and
𝑲22 ∗ 𝒖2 while the second one has two convolution as 𝑲21 ∗ 𝒖1 and
𝑲12 ∗ 𝒖2. However we are supposed to get a ciphertext including
the two output channels 𝒗1 and 𝒗2. Directly adding the two con-
volved ciphertext results in a ciphertext having two convolution as
(𝑲11∗𝒖1+𝑲21∗𝒖1) and (𝑲22∗𝒖2+𝑲12∗𝒖2), which is not the one as
𝒗1 or 𝒗2 in Eq. (1). The reason lies in the sequence mismatch of asso-
ciated filters among the two convolved ciphertext. For example, the
first of the two convolved ciphertext has two convolution related to
filters 𝑭1 and 𝑭2, while the second one has two convolution related
to the filters 𝑭2 and 𝑭1. Therefore, all of those convolved ciphertext
(excluding the one obtained by convolution between [𝒖]C and the
main-diagonal kernels {𝑲11,𝑲22}) need to be rotated (by Perm)
to have the same sequence of associated filters, and then we can
sum up those rotated ciphertext (by Add) to get a ciphertext with
the output channels. For example, the second convolved ciphertext
(with two convolution as 𝑲21 ∗ 𝒖1 and 𝑲12 ∗ 𝒖2) is rotated by one
Perm operation to have two convolution as 𝑲12 ∗ 𝒖2 and 𝑲21 ∗ 𝒖1
(see the Perm operation at the lower part of MIMO computation
in Figure 6), and such rotated ciphertext is added (by Add) with
the first convolved ciphertext (with two convolution as 𝑲11 ∗ 𝒖1
and 𝑲22 ∗ 𝒖2) to finally get the correct ciphertext with two output
channels 𝒗1 = (𝑲11 ∗ 𝒖1 + 𝑲12 ∗ 𝒖2) and 𝒗2 = (𝑲22 ∗ 𝒖2 + 𝑲21 ∗ 𝒖1).
Observation 4: If the diagonal kernels (excluding themain-diagonal
kernels), which involve in the convolution with encrypted input
[𝒖]C) to get a convolved ciphertext, are zeros, there is no need to
further rotate that convolved ciphertext to unify its sequence of
associated filters. For example, the Perm operation over the sec-
ond convolved ciphertext (with two convolution as 𝑲21 ∗ 𝒖1 and
𝑲12 ∗ 𝒖2) is eliminated if the involved diagonal kernels {𝑲21,𝑲12}
(to get above convolved ciphertext) are all zeros (see the lower part
of MIMO computation in Figure 6).
Hunter’s external pruning structure: Therefore, we are moti-
vated to prune such diagonal kernels (excluding the main-diagonal
kernels) to eliminate the subsequent Perm operation over the con-
volved ciphertext, and we thus define the external structure as these
diagonal kernels involved in the convolution with the encrypted
input [𝒖]C for getting a convolved ciphertext, which should be
rotated to unify its sequence of associated filters as we have de-
scribed. Obviously, pruning an external structure correspondingly
eliminates one Perm over one convolved ciphertext. For instance,

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

938

Fi
lte

r1
Fi

lte
r2

Fi
lte

r3
Fi

lte
r4

Fi
lte

r5
Fi

lte
r6

Kernel1 Kernel2 Kernel3 Kernel4

Ke
rn

el
 B

lo
ck

1
Ke

rn
el

 B
lo

ck
3

Ke
rn

el
 B

lo
ck

5

Ke
rn

el
 B

lo
ck

6
Ke

rn
el

 B
lo

ck
4

Ke
rn

el
 B

lo
ck

2

Internel
Prune

Externel
Prune

B1
B3

B5 B6
B4

B2

Internel
Prune

Externel
Prune

B1
B3

B5 B6
B4

B2 B1
B3

B5 B6
B4

B2

k11 k14k13k12

k44k43k42k41

k31 k32 k33 k34

k21 k22 k23 k24

B1
B3 B4

B2
Internel
Prune

Externel
Prune

(a) (b) (c)

B1
B3 B4

B2

k11 k12

k42k41

k31 k32

k21 k22

Figure 7: Joint Internal andExternal Pruning forConvolution
Computation with 𝑐𝑛 = 2.

the aforementioned diagonal kernels {𝑲21,𝑲12} in Figure 6 actually
form an external structure that, if pruned, contributes to eliminate
one Perm operation over the convolved ciphertext containing two
convolution as 𝑲21 ∗ 𝒖1 and 𝑲12 ∗ 𝒖2.
Putting things together:We define the internal and external struc-
ture and propose Hunter’s HE-friendly structured pruning strategy
for convolution, including internal pruning and external pruning, to
achieve efficient convolution computation. Without accuracy loss,
the former is to minimize the Perm operations needed to rotate each
input ciphertext, while the latter is to minimize the Perm operations
needed for rotating the (intermediate) convolved ciphertext to fi-
nally get the convolution output. Meanwhile, Hunter features with
a joint and progressive pruning for kernels through firstly pruning
the internal structures and then pruning the external structures. This
gradual pruning strategy enables Hunter to smoothly reduce the
model complexity and adaptively maintain the model performance
for efficient privacy-preserving convolution without accuracy loss.

Figure 7 visually shows how Hunter combines internal pruning
and external pruning to prune the kernel matrix with four filters,
each of which has four kernels (in Figure 7 (a)), for a convolution
layer. Here we set 𝑐𝑛 = 2 and thus the four input channels are
respectively encrypted into two input ciphertext. We first conduct
internal pruning to prune an internal structure associated with the
first input ciphertext (see Figure 7 (b)), over which one Perm opera-
tion is eliminated. Then we conduct external pruning to prune two
external structures (see Figure 7 (c)), eliminating two Perm opera-
tions that would otherwise be conducted over the two convolved
ciphertext respectively associated with the two input ciphertext.

3.3 Security Analysis
Similar to GAZELLE [18], the security of Hunter lies in the semantic
security of packed HE algorithm, e.g., BFV [9], for linear compu-
tation, i.e., the convolution and dot product. Specifically, Hunter
first identifies the Perm-intensive structures in the HE-based lin-
ear computation over the baseline models, e.g., AlexNet [20] and
VGG [40], and accordingly prunes the original model(s) to mini-
mize the Perm operations in the resultant network structure(s). The
finally pruned models are used by the server for the MLaaS service,
i.e., privacy-preserving prediction over the encrypted input from
the client. Therefore, Hunter does not introduce any extra compu-
tation modules but a more efficient HE-based computation with
lower complexity during the MLaaS process, compared with other
frameworks such as GAZELLE. On the other hand, the security of
nonlinear computation follows the same paradigm as GAZELLE, i.e.,
Garbled Circuits (GC) based ReLU computation, since Hunter tar-
gets at optimizing the linear computation only, which is orthogonal
to the nonlinear counterpart.

4 EVALUATION
In this section, we evaluate Hunter’s performance and compare it
with GAZELLE [18]. Note that Hunter’s pruning strategies are also
applicable to other privacy-preserving deep learning frameworks
based on packed HE such as DELPHI [26] and CrypTFlow2 [33]. We
implement Hunter with Pytorch on amachine with Nvidia RTX5000
16G GPU, Intel Xeon Silver 4214 12-core CPU and 32G RAM. We
conduct the experiments on six modern models, i.e., LeNet, AlexNet,
VGG-11, VGG-13, VGG-16, and ResNet-32, with three mainstream
datasets, i.e., MNIST [22], CIFAR-10 [19], and ImageNet [37]. The
performance evaluation focuses on the computation cost. It is worth
pointing out that Hunter maintains the same communication cost
as the baseline privacy-preserving framework since the size of
ciphertext exchanged between the server and client is the same.
Performance onModernDeepModels. Table 1 compares Hunter
and plaintext pruning, demonstrating that even with a higher prun-
ing ratio, the plaintext pruning offers little help to decrease the
Perm operations. In contrast, Hunter effectively reduces the HE
computation (resulting in a low percentage of remaining Perm).

As shown in Table 2, the time to prune themodels ranges from 1.2
hours (for LeNet on MNIST) to 17 hours (for VGG16 on ImageNet),
which is affordable for the servers to complete offline pruning to
obtain a ready-to-usemodel for privacy-preservingMLaaS.Without
accuracy loss, Hunter efficiently prunes the original networks to
reduce Perm, Mult, and Add operations. For example, in the state-
of-the-art VGG-16 on ImageNet with 10 randomly chosen classes
(see Table 7), the total number of Perm is reduced to as low as 2%
of the original network, and at the same time, Mult and Add are
reduced to only 14%.

The effectiveness of Hunter stems from its accurate, structured
pruning strategy to eliminate Perm and Multi/Add operations. The
experimental results show that larger networks have greater prun-
ing ratio. This is because, for given task and input data, the larger
networks often contain more redundancy in their kernels and
weights that can be pruned without reducing the model accuracy.
We also observe that external pruning contributes more to reducing
Perm compared with internal pruning, because there are signifi-
cantly more Perm involved in the external structure. In general,
Hunter achieves higher performance gain in deeper models with
large-scale datasets, e.g., as demonstrated in VGG-16 on ImageNet.
Visualization of Pruned Structures. In order to gain insights into
Hunter’s pruning strategies, Figures 8 and 9 respectively demon-
strate the visualization of the pruning for one convolutional layer
and one fully-connected layer in the LeNet with MNIST. Similar
results are observed under other deep learning models.

As for pruning the convolutional layer, internal pruning features
with column-wise pruning patterns (see Figure 8 (b) and the top
part in (d)) since each rotated input ciphertext is multiplied with the
internal structure, each of which contains the kernel elements from
the same locations of the corresponding kernel (see Section 3.2).
After the external pruning, specific kernel-packs are pruned such
that the kernels in those kernel-packs are completely removed (see
Figure 8 (c) and the bottom part in (d)). This resulted pattern is in
accordance with our demonstration in Figure 7. Pruning the weight
matrix of the fully-connected layer results in a weight matrix with

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

939

Table 1: Comparison between Hunter and plaintext pruning. Both schemes result in no accuracy loss. Each data entry shows
the percent of remaining parameters and Perm operations after pruning. The plaintext pruning offers little help to reduce the
HE-based Perm computation (as shown by high percentage of remaining Perm) even with deep pruning (i.e., low percentage of
remaining parameters). Hunter effectively reduces the HE computation (with low percentage of remaining Perm).

Dataset MNIST CIFAR-10 ImageNet (10 classes)
Models LeNet ResNet-32 AlexNet VGG-11 VGG-13 VGG-16 AlexNet VGG-16

Pruning Schemes: Hunter (H) vs Plaintext (P) Pruning H P H P H P H P H P H P H P H P
Remaining Parameters (%) 39 9 52 46 10 10 9 9 11 10 10 9 32 10 3 5

Remaining Perm (%) 45 99 51 95 6 67 19 90 21 89 14 84 36 93 2 91

Table 2: The Hunter’s computation performance compared with GAZELLE on six modern networks with three datasets. The
pruned models maintain similar accuracy compared with the baseline models. Each data entry for computation performance
shows the fraction or percentage to which the number of operations is reduced to, in comparison with the baseline model. For
example, 2397/4312 (56%) means that the pruned model reduces the number of Perm from the original 4312 to 2397 (i.e., 56% of
the original computation cost). Perm(in), Perm(ex), Perm(diag) are Perm involved in internal, external, diagonal structures.

Dataset MNIST CIFAR-10 ImageNet (10 classes)
Models LeNet ResNet-32 AlexNet VGG-11 VGG-13 VGG-16 AlexNet VGG-16

Parameters 44K 484K 21.6M 28.1M 28.3M 33.6M 58M 134M
Model Accuracy

Baseline Accuracy (%) 99.34 92.25 77.48 92.4 94.18 93.91 78.8 93.8
Hunter Pruned Accuracy (%) 99.37 92.2 78.88 92.66 94.09 94.06 79 94

Computation Cost in Convolution and Dot Product

Co
nv

ol
ut
io
n

#
Perm(in)

67/96
(70%)

2397/4312
(56%)

1498/5608
(27%)

2431/8984
(27%)

2789/9752
(29%)

3059/14872
(21%)

2952/5608
(53%)

2868/14872
(19%)

#
Perm(ex)

14/24
(58%)

6393/12800
(50%)

4125/92K
(4%)

49K/256K
(19%)

55K/261K
(21%)

58K/409K
(14%)

33K/92K
(36%)

5003/409K
(1%)

#
Mult

788/1350
(58%)

119.6K/231K
(52%)

355K/1.9M
(19%)

902K/4.6M
(20%)

974K/4.7M
(21%)

1.2M/7.4M
(16%)

789K/1.9M
(42%)

1M/7.4M
(14%)

#
Add

774/1336
(58%)

119K/230K
(52%)

355K/1.9M
(19%)

901K/4.6M
(20%)

972K/4.7M
(21%)

1.2M/7.4M
(16%)

788K/1.9M
(42%)

1M/7.4M
(14%)

D
ot

Pr
od

uc
t

#
Perm(diag)

94/273
(34%)

23/23
(100%)

388/4373
(9%)

234/4629
(5%)

279/4629
(6%)

253/4629
(5%)

5143/16403
(31%)

433/33K
(1%)

#
Mult

93/272
(34%)

16/16
(100%)

952/8280
(12%)

593/8208
(7%)

638/8208
(8%)

430/8208
(5%)

5140/16K
(31%)

434/33K
(1%)

#
Add

94/273
(34%)

23/23
(100%)

942/8198
(11%)

591/8206
(7%)

636/8206
(8%)

428/8206
(5%)

5143/16403
(31%)

433/33K
(1%)

Overall Model Computation Cost
Perm 45% 51% 6% 19% 21% 14% 36% 2%
Mult 54% 52% 19% 20% 21% 16% 42% 14%
Add 54% 52% 19% 20% 21% 16% 42% 14%

Model Pruning Time
Pruning Time (hours) 1.2 6.8 1.4 5.2 6.4 5.7 6.6 17

the elements arranged sparsely on diagonal lines (see Figure 9 (b)),
and this pattern is consistent with Figure 4.
Layer-Wise Performance Breakdown.We further analyze the
computation performance by breaking down a whole model (VGG-
16 on CIFAR-10) into a stack of layers. The layer-wise performance
breakdown for other deep models is given in Appendix A. In each
layer, the computation complexity with respect to HE operations
for linear functions, i.e., convolution and dot product, is compared
between Hunter and GAZELLE. The detailed statistics are shown in
Table 3 and Figure 10. The layer with a smaller number of kernels,
e.g., Conv1, limits Hunter’s pruning space, while the ones with
greater number of kernels, e.g., Conv9 to Conv13, contain more
redundancy for pruning. This trend is further visualized in Figure 10.

We also observe that the increase of kernel dimension, i.e., the
number of input and output channels, gives Hunter more pruning
space, which results in an increased pruning ratio.

5 CONCLUSION
In this paper, we have proposed Hunter, which features an HE-
friendly structured pruning scheme that, for the first time, efficiently
prunes privacy-preserving deep models. Based on three novel HE-
friendly structures, i.e., internal structure, external structure, and
weight diagonal, Hunter outputs a pruned model that, without any
loss in model accuracy, achieves a significant reduction in HE op-
erations. We have implemented Hunter in various deep learning

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

940

Table 3: Layer-wise breakdown comparison between Hunter and GAZELLE (VGG-16 on CIFAR-10). Conv# denotes each
convolution layer while Fc# represents each fully-connected layer of VGG-16. Each data entry for computation performance
shows the fraction or percentage to which the number of operations is reduced to, in comparison with the baseline model. For
example, 90/256 (35%) means that the pruned model reduces the number of Perm from the original 256 to only 90 (i.e., 35% of
the original computation cost). Perm(in), Perm(ex), and Perm(diag) are Perm in internal, external, and diagonal pruning.

Conv Index # Weights # Perm(in) # Perm(ex) # Mult # Add
Conv1 1.7K 24/24(100%) - 1728/1728(100%) 1664/1664(100%)
Conv2 37K 90/256(35%) 252/1024(25%) 5984/18432(32%) 5952/18400(32%)
Conv3 74K 128/256(50%) 833/2048(41%) 15269/36864(41%) 15205/36800(41%)
Conv4 147K 307/512(60%) 2001/4096(49%) 38884/73728(53%) 38820/73664(53%)
Conv5 295K 256/512(50%) 3135/8192(38%) 61191/147456(41%) 61063/147328(41%)
Conv6 590K 512/1024(50%) 5951/16384(36%) 121567/294912(41%) 121439/294784(41%)
Conv7 590K 307/1024(30%) 3761/16384(23%) 74955/294912(25%) 74827/294784(25%)
Conv8 1.2M 205/1024(20%) 4430/32768(14%) 103257/589824(18%) 103001/589568(17%)
Conv9 2.4M 205/2048(10%) 7638/65536(12%) 138285/1179648(12%) 138029/1179392(12%)
Conv10 2.4M 410/2048(20%) 10599/65536(16%) 234259/1179648(20%) 234003/1179392(20%)
Conv11 2.4M 205/2048(10%) 7018/65536(11%) 140322/1179648(12%) 140066/1179392(12%)
Conv12 2.4M 205/2048(10%) 6756/65536(10%) 138712/1179648(12%) 138456/1179392(12%)
Conv13 2.4M 205/2048(10%) 6206/65536(9%) 139126/1179648(12%) 138870/1179392(12%)
Total - 3059/14872(21%) 58580/408576(14%) 1213539/7356096(16%) 1211395/7353952(16%)

FC Index # Weights # Perm(diag) # Mult # Add
Fc1 2.1M 25/511(5%) 208/4096(5%) 200/4088(5%)
Fc2 16.8M 205/4095(5%) 206/4096(5%) 205/4095(5%)
Fc3 41K 23/23(100%) 16/16(100%) 23/23(100%)
Total - 253/4629(5%) 430/8208(5%) 428/8206(5%)

(a) (b) (c) (d)

Figure 8: Visualization of pruning convolutional layer (LeNet
on MNIST). (a) The original convolutional kernel matrix,
(b) Kernel Matrix after internal pruning, (c) kernel matrix
after external pruning, and (d) the binary representation of
(b) at the top and (c) at the bottom where each pruned and
unpruned value is in white and black, respectively.

models, e.g., AlexNet, VGG and ResNet over classic datasets in-
cluding MNIST, CIFAR-10 and ImageNet. The experiments have
demonstrated that, without accuracy loss, Hunter efficiently prunes
the original networks to reduce the HE Perm, Mult, and Add oper-
ations. For example, in the state-of-the-art VGG-16 on ImageNet
with 10 chosen classes, the total number of Perm has been reduced
to as low as 2% of the original network, and at the same time, Mult

(a) (b)

Figure 9: Visualization of pruning a weight matrix in LeNet
with MNIST. (a) Original weight matrix, (b) Weight matrix
after weight-diagonal pruning.

and Add have been reduced to only 14%, enabling a computation-
efficient privacy-preserving MLaaS. Hunter represents the first step
to effectively prune privacy-preserving deep learning models and
may enlighten subsequent works to further close the performance
gap in supporting privacy-preserving MLaaS.

ACKNOWLEDGMENTS
The authors would like to express special thanks of gratitude to
Qiao as well as the lab members for helping and collaborating on
this work and anonymous reviewers for the constructive comments.
This workwas supported in part by the National Science Foundation
under Grants CNS-2120279, CNS-1950704, CNS-1828593, and OAC-
1829771, Office of Naval Research under grant N00014-20-1-2065,
National Security Agency under grants H98230-21-1-0165, H98230-
21-1-0278, DoD Center of Excellence in AI and Machine Learning
(CoE-AIML) under Contract Number W911NF-20-2-0277, and the
Commonwealth Cyber Initiative.

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

941

1664 18400 37K 74K 147K
295K 295K

590K

4088 4095
231664 5952 15K 39K 61K 121K 75K 103K 138K

234K
140K 138K 139K

200 205 23
0

500K

1000K

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9 Conv10 Conv11 Conv12 Conv13 FC1 FC2 FC3

O
pe

ra
tio

n
nu

m
be

r

Add Add after Pruning

1728 18432 37K 74K
295K 295K

590K

4096 4096 161728 5984 15K 39K 147K 122K 75K 103K 138K
234K

140K 139K 139K
208 206 16

0

500K

1000K

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9 Conv10 Conv11 Conv12 Conv13 FC1 FC2 FC3

O
pe

ra
tio

n
nu

m
be

r

Mult Mult after Pruning

0

20000

40000

60000

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9 Conv10 Conv11 Conv12 Conv13 FC1 FC2 FC3
O

pe
ra

tio
n

nu
m

be
r

Perm Perm after Pruning

24 256 256 512 512
1024 1024 1024

2048 2048 2048 2048 2048

511

4095

1524 90 128 307 256
512 307 205 205 410 205 205 205 25 205 15

0

1000

2000

3000

4000

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9 Conv10 Conv11 Conv12 Conv13 FC1 FC2 FC3

O
pe

ra
tio

n
nu

m
be

r HstPerm HstPerm after Pruning

1180K 1180K1180K 1180K 1180K

1180K 1180K1180K 1180K 1180K

61K

24
8704

17408 17408

33792

67584 67584 67584 67584 67584

2324 342
1280 2304

961
4608

2308 3391 6463 4068 4635 7843 11009 7223 6961 6411 511
25

4095
205 23

Figure 10: Visualization of layer-wise performance breakdown for VGG-16 on CIFAR-10.

REFERENCES
[1] Amazon.com. 2021. Developer reference for Alexa interface. https://developer.

amazon.com/en-US/docs/alexa/device-apis/alexa-interface.html
[2] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations of

garbled circuits. In Proceedings of the ACM CCS. 784–796.
[3] Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider, and

Hossein Yalame. 2020. MP2ML: a mixed-protocol machine learning framework
for private inference. In Proceedings of the ARES. 1–10.

[4] Zvika Brakerski. 2012. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In Annual Cryptology Conference. Springer, 868–886.

[5] Zvika Brakerski, Craig Gentry, and Shai Halevi. 2013. Packed ciphertexts in
LWE-based homomorphic encryption. In Proceedings of the PKC. 1–13.

[6] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. 1986. All-or-nothing
disclosure of secrets. In Proceedings of the EUROCRYPT. 234–238.

[7] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homomor-
phic encryption for arithmetic of approximate numbers. In Proceedings of the
ASIACRYPT. 409–437.

[8] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-
work for efficient mixed-protocol secure two-party computation.. In Proceedings
of the NDSS.

[9] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homomor-
phic encryption. IACR Cryptol. ePrint Arch. (2012), 144.

[10] Zahra Ghodsi, Akshaj Veldanda, Brandon Reagen, and Siddharth Garg. 2020.
Cryptonas: Private inference on a relu budget. arXiv preprint arXiv:2006.08733
(2020).

[11] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In Proceedings of the ICML. 201–210.

[12] Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dynamic network surgery for
efficient dnns. arXiv preprint arXiv:1608.04493 (2016).

[13] Song Han. 2017. Efficient methods and hardware for deep learning. Ph. D. Disser-
tation. Stanford University.

[14] Song Han, Jeff Pool, John Tran, and William J Dally. 2015. Learning both weights
and connections for efficient neural networks. arXiv preprint arXiv:1506.02626
(2015).

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE CVPR. 770–778.

[16] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen.
2021. DeepReDuce: Relu reduction for fast private inference. arXiv preprint
arXiv:2103.01396 (2021).

[17] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. 2018. Secure out-
sourced matrix computation and application to neural networks. In Proceedings
of the ACM SIGSAC. 1209–1222.

[18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
{GAZELLE}: A low latency framework for secure neural network inference.
In Proceedings of the USENIX Security. 1651–1669.

[19] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Proceedings of the NeurIPS 25
(2012), 1097–1105.

[21] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-
togi, and Rahul Sharma. 2020. Cryptflow: Secure tensorflow inference. In Pro-
ceedings of the IEEE S&P. 336–353.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[23] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural
network predictions via minionn transformations. In Proceedings of the ACM
SIGSAC. 619–631.

[24] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. 2017. Learning efficient convolutional networks through network
slimming. In Proceedings of the IEEE ICCV. 2736–2744.

[25] Qian Lou, Song Bian, and Lei Jiang. 2020. Autoprivacy: Automated layer-
wise parameter selection for secure neural network inference. arXiv preprint
arXiv:2006.04219 (2020).

[26] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. 2020. Delphi: A Cryptographic Inference Service for Neural
Networks. In Proceedings of the USENIX Security. 2505–2522.

[27] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework
for machine learning. In Proceedings of the ACM SIGSAC. 35–52.

[28] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable
privacy-preserving machine learning. In Proceedings of the IEEE S&P. 19–38.

[29] Lucien KL Ng and Sherman SM Chow. 2021. GForce: GPU-Friendly Oblivious
and Rapid Neural Network Inference. In Proceedings of the USENIX Security.

[30] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree resid-
uosity classes. In Proceedings of the EUROCRYPT. 223–238.

[31] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.
0: Improved mixed-protocol secure two-party computation. In Proceedings of the
USENIX Security.

[32] Arpita Patra and Ajith Suresh. 2020. BLAZE: blazing fast privacy-preserving
machine learning. arXiv preprint arXiv:2005.09042 (2020).

[33] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-party
secure inference. In Proceedings of the ACM SIGSAC. 325–342.

[34] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and
Farinaz Koushanfar. 2019. {XONN}: Xnor-based oblivious deep neural network
inference. In Proceedings of the USENIX Security. 1501–1518.

[35] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A hybrid secure
computation framework for machine learning applications. In Proceedings of the
ASIACCS. 707–721.

[36] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepsecure:
Scalable provably-secure deep learning. In Proceedings of the DAC. 1–6.

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
IJCV 115, 3 (2015), 211–252.

[38] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A unified
embedding for face recognition and clustering. In Proceedings of the IEEE CVPR.
815–823.

[39] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[40] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[41] Sijun Tan, Brian Knott, Yuan Tian, and David J Wu. 2021. CRYPTGPU:

Fast Privacy-Preserving Machine Learning on the GPU. arXiv preprint
arXiv:2104.10949 (2021).

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

942

https://developer.amazon.com/en-US/docs/alexa/device-apis/alexa-interface.html
https://developer.amazon.com/en-US/docs/alexa/device-apis/alexa-interface.html

[42] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN: 3-Party
Secure Computation for Neural Network Training. Proc. Priv. Enhancing Technol.
2019, 3 (2019), 26–49.

[43] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mit-
tal, and Tal Rabin. 2020. Falcon: Honest-majority maliciously secure framework
for private deep learning. arXiv preprint arXiv:2004.02229 (2020).

[44] Wei Wang, Sheng Wang, Jinyang Gao, Meihui Zhang, Gang Chen, Teck Khim
Ng, and Beng Chin Ooi. 2018. Rafiki: Machine learning as an analytics service
system. arXiv preprint arXiv:1804.06087 (2018).

[45] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. Proceedings of the NeurIPS 29 (2016),
2074–2082.

[46] Qiao Zhang, Cong Wang, Hongyi Wu, Chunsheng Xin, and Tran V Phuong. 2018.
GELU-Net: A Globally Encrypted, Locally Unencrypted Deep Neural Network
for Privacy-Preserved Learning.. In Proceedings of the IJCAI. 3933–3939.

[47] Qiao Zhang, Chunsheng Xin, and Hongyi Wu. 2021. GALA: Greedy ComputA-
tion for Linear Algebra in Privacy-Preserved Neural Networks. arXiv preprint
arXiv:2105.01827 (2021).

A LAYER-WISE BREAKDOWN OF
COMPUTATION PERFORMANCE.

First give the complexity of DL Models on GAELLE framework in
table 4. For the Conv layer, the input has 𝑐𝑖 channels and 𝑐𝑛 of them
are pack encrypted in one ciphertext. The Conv layer has 𝑐𝑜 filters
and each filter contains 𝑐𝑖 kernels. And the kernel size is 𝑘𝑤𝑘ℎ . For
FC layer, the size of input is 𝑛𝑖 and 𝑛 of them are pack encrypted

in one ciphertext. The size of output is 𝑛𝑜 . Thus the size of wights
matrix of FC layer is 𝑛0 × 𝑛𝑖 .

Table 4: Complexity of DL Models on GAELLE framework.

#Perm(in) #Perm(ex) #Mult #Add
Conv 𝑐𝑖 (𝑘𝑤𝑘ℎ−1)

𝑐𝑛

𝑐𝑖𝑐𝑜 (𝑐𝑛−1)
𝑐2𝑛

𝑐𝑖𝑐𝑜𝑘𝑤𝑘ℎ
𝑐𝑛

𝑐𝑜 (𝑐𝑖𝑘𝑤𝑘ℎ−1)
𝑐𝑛

Perm(diag) #Mult #Add
FC 𝑛𝑖𝑛𝑜

𝑛 − 1 + log2
𝑛
𝑛𝑜

𝑛𝑖𝑛𝑜
𝑛

𝑛𝑖𝑛𝑜
𝑛 − 1 + log2

𝑛
𝑛𝑜

The layer-wise breakdown of computation performance is shown
below. Each data entry, e.g 17/24(71%), means prune operations from
number of 24 to only 17, in other word, reserving 71% operations.

Table 5: Layer-Wise Performance Breakdown between Hunter and GAZELLE.

LeNet with MNIST
Layer Index # Weights # Perm # Mult # Add

Conv1 150 17/24(71%) 108/150(72%) 102/144(71%)
Conv2 2.4K 64/96(67%) 680/1200(57%) 672/1192(56%)
Fc1 31K 57/128(45%) 57/128(45%) 57/128(45%)
Fc2 10K 19/127(15%) 20/128(16%) 19/127(15%)
Fc3 840 18/18(100%) 16/16 18/18
Total 44K 175/393(45%) 881/1622(54%) 868/1609(54%)

AlexNet with CIFAR-10
Conv1 35K 360/360(100%) 34848/34848(100%) 34752/34752(100%)
Conv2 614K 4364/7296(60%) 193404/307200(63%) 193276/307072(63%)
Conv3 885K 344/25600(1%) 51277/442368(12%) 51085/442176(12%)
Conv4 1.3M 283/38400(1%) 42769/663552(6%) 42577/663360(6%)
Conv5 885K 272/26112(1%) 33151/442368(7%) 33023/442240(7%)
Fc1 1M 38/255(15%) 608/4096(15%) 592/4080(15%)
Fc2 17M 327/4095(8%) 328/4096(8%) 327/4095(8%)
Fc3 41K 23/23(100%) 16/16(100%) 23/23(100%)
Total 21.6M 6011/102141(6%) 356401/1898544(19%) 355655/1897798(19%)

VGG-11 with CIFAR-10
Conv1 1.7K 24/24(100%) 1728/1728(100%) 1664/1664(100%)
Conv2 74K 2151/2304(93%) 35487/36864(96%) 35423/36800(96%)
Conv3 295K 3186/8704(37%) 67472/147456(46%) 67344/147328(46%)
Conv4 590K 4839/17408(28%) 112415/294912(38%) 112287/294784(38%)
Conv5 1M 6098/33792(18%) 130289/589824(22%) 130033/589568(22%)
Conv6 2M 11587/67584(17%) 210382/1179648(18%) 210126/1179392(18%)
Conv7 2M 16072/67584(24%) 207704/1179648(18%) 207448/1179392(18%)
Conv8 2M 7735/67584(11%) 136809/1179648(12%) 136553/1179392(12%)
Fc1 2M 51/511(10%) 416/4096(10%) 408/4088(10%)
Fc2 17M 160/4095(4%) 161/4096(4%) 160/4095(5%)
Fc3 41K 23/23(100%) 16/16(100%) 23/23(100%)
Total 28.1M 51926/269613(19%) 902879/4617936(20%) 901469/4616526(20%)

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

943

Table 6: Layer-Wise Performance Breakdown between Hunter and GAZELLE.

VGG-13 with CIFAR-10
Layer Index # Weights # Perm # Mult # Add

Conv1 1.7K 24/24(100%) 1728/1728(100%) 1664/1664(100%)
Conv2 37K 2151/2304(93%) 17181/18432(93%) 17149/18400(93%)
Conv3 74K 256/256(100%) 33021/36864(90%) 32957/36800(90%)
Conv4 147K 307/512(60%) 39983/73728(54%) 39919/73664(54%)
Conv5 295K 307/512(60%) 75900/147456(51%) 75772/147328(51%)
Conv6 590K 512/1024(50%) 124748/294912(42%) 124620/294784(42%)
Conv7 1M 307/1024(30%) 143726/589824(24%) 143470/589568(24%)
Conv8 2M 410/2048(20%) 242296/1179648(21%) 242040/1179392(21%)
Conv9 2M 205/2048(10%) 141599/1179648(12%) 141343/1179392(12%)
Conv10 2M 205/2048(10%) 153732/1179648(13%) 153476/1179392(13%)
Fc1 2M 51/511(10%) 416/4096(10%) 408/4088(10%)
Fc2 17M 205/4095(5%) 206/4096(5%) 205/4095(5%)
Fc3 41K 15/15(100%) 16/16(100%) 23/23(100%)
Total 28.3M 3060/14373(21%) 974552/4710096(21%) 973046/4708590(21%)

ResNet-32 with CIFAR-10
Conv1 432 24/24(100%) 432/432(100%) 416/416(100%)
Conv2 2.3K 63/128(49%) 553/1152(48%) 545/1144(48%)
Conv3 2.3K 46/128(36%) 360/1152(31%) 352/1144(31%)
Conv4 2.3K 55/128(43%) 454/1152(39%) 446/1144(39%)
Conv5 2.3K 63/128(49%) 508/1152(44%) 500/1144(44%)
Conv6 2.3K 82/128(64%) 661/1152(57%) 653/1144(57%)
Conv7 2.3K 64/128(50%) 476/1152(41%) 468/1144(41%)
Conv8 2.3K 23/128(18%) 155/1152(13%) 147/1144(13%)
Conv9 2.3K 29/128(23%) 257/1152(22%) 249/1144(22%)
Conv10 2.3K 52/128(41%) 427/1152(37%) 419/1144(37%)
Conv11 2.3K 38/128(30%) 360/1152(31%) 352/1144(31%)
Conv12 4.6K 168/192(88%) 1967/2304(85%) 1951/2288(85%)
Conv13 9.2K 291/384(76%) 3186/4608(69%) 3170/4592(69%)
Conv14 9.2K 195/384(51%) 2069/4608(45%) 2053/4592(45%)
Conv15 9.2K 197/384(51%) 1964/4608(43%) 1948/4592(42%)
Conv16 9.2K 272/384(71%) 3017/4608(65%) 3001/4592(65%)
Conv17 9.2K 261/384(68%) 2879/4608(62%) 2863/4592(62%)
Conv18 9.2K 207/384(54%) 2511/4608(54%) 2495/4592(54%)
Conv19 9.2K 103/384(27%) 1134/4608(25%) 1118/4592(24%)
Conv20 9.2K 307/384(80%) 3668/4608(80%) 3652/4592(80%)
Conv21 9.2K 225/384(59%) 2238/4608(49%) 2222/4592(48%)
Conv22 18.4K 582/640(91%) 8028/9216(87%) 7996/9184(87%)
Conv23 36.9K 709/1280(55%) 11188/18432(61%) 11156/18400(61%)
Conv24 36.9K 331/1280(26%) 5056/18432(27%) 5024/18400(27%)
Conv25 36.9K 368/1280(29%) 5434/18432(29%) 5402/18400(29%)
Conv26 36.9K 574/1280(45%) 8608/18432(47%) 8576/18400(47%)
Conv27 36.9K 601/1280(47%) 8517/18432(46%) 8485/18400(46%)
Conv28 36.9K 703/1280(55%) 10549/18432(57%) 10517/18400(57%)
Conv29 36.9K 747/1280(58%) 11810/18432(64%) 11778/18400(64%)
Conv30 36.9K 600/1280(47%) 9699/18432(53%) 9667/18400(53%)
Conv31 36.9K 810/1280(63%) 11416/18432(62%) 11384/18400(62%)
Fc1 23K 23/23(100%) 16/16(100%) 23/23(100%)
Total 484.3K 8813/17135(51%) 119597/230848(52%) 119028/230279(52%)

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

944

Table 7: Layer-Wise Performance Breakdown between Hunter and GAZELLE.

AlexNet with ImageNet (10 classes)
Layer Index # Weights # Perm # Mult # Add

Conv1 35K 360/360(100%) 34848/34848(100%) 34752/34752(100%)
Conv2 614K 3376/7296(46%) 160160/307200(52%) 160032/307072(52%)
Conv3 885K 7573/25600(30%) 157856/442368(36%) 157664/442176(36%)
Conv4 1.3M 13042/38400(34%) 221514/663552(33%) 221322/663360(33%)
Conv5 885K 11981/26112(46%) 214767/442368(49%) 214639/442240(49%)
Fc1 37.7M 3687/12285(30%) 3690/12288(30%) 3687/12285(30%)
Fc2 17M 1433/4095(35%) 1434/4096(35%) 1433/4095(35%)
Fc3 41K 23/23(100%) 16/16(100%) 23/23(100%)
Total 58M 41475/114171(36%) 794285/1906736(42%) 793552/1906003(41%)

VGG-16 with ImageNet (10 classes)
Conv1 1.7K 24/24(100%) 1728/1728(100%) 1664/1664(100%)
Conv2 37K 43/1280(3%) 1946/18432(11%) 1914/18400(10%)
Conv3 74K 77/2304(3%) 4251/36864(12%) 4187/36800(11%)
Conv4 147K 301/4608(7%) 14679/73728(20%) 14615/73664(20%)
Conv5 295K 696/8704(8%) 31078/147456(21%) 30950/147328(21%)
Conv6 590K 781/17408(4%) 58130/294912(20%) 58002/294784(20%)
Conv7 590K 733/17408(4%) 57880/294912(20%) 57752/294784(20%)
Conv8 1M 2183/33792(6%) 148367/589824(25%) 148111/589568(25%)
Conv9 2M 957/67584(1%) 172764/1179648(15%) 172508/1179392(15%)
Conv10 2M 877/67584(1%) 172514/1179648(15%) 172258/1179392(15%)
Conv11 2M 390/67584(1%) 123666/1179648(10%) 123410/1179392(10%)
Conv12 2M 351/67584(1%) 118467/1179648(10%) 118211/1179392(10%)
Conv13 2M 458/67584(1%) 118884/1179648(10%) 118628/1179392(10%)
Fc1 103M 287/28665(1%) 294/28672(2%) 287/28665(1%)
Fc2 17M 123/4095(3%) 124/4096(5%) 123/4095(3%)
Fc3 41K 23/23(100%) 16/16(100%) 23/23(100%)
Total 134M 8304/456231(2%) 1024788/7388880(14%) 1022643/7386735(14%)

∗The selected 10 classes are: n04552348-warplane, n03670208-limousine, n01560419-bulbul,
n02123394-Persiancat, n02415577-bighorn, n02099601-goldenretriever, n01641577-bullfrog,
n02389026-sorrel, n04147183-schooner, n04467665-trailertruck.

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

945

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 Model Pruning
	2.3 Thread Model
	2.4 Packed Homomorphic Encryption

	3 System Description
	3.1 HE-Friendly Structured Pruning for Dot Product Computation
	3.2 HE-Friendly Structured Pruning for Convolution Computation
	3.3 Security Analysis

	4 Evaluation
	5 Conclusion
	Acknowledgments
	References
	A Layer-Wise Breakdown of Computation Performance.

