
Hibernated Backdoor: A Mutual Information Empowered Backdoor Attack to
Deep Neural Networks

Abstract

We report a new neural backdoor attack, named Hibernated
Backdoor, which is stealthy, aggressive and devastating. The
backdoor is planted in a hibernated mode to avoid being de-
tected. Once deployed and fine-tuned on end-devices, the hi-
bernated backdoor turns into the active state that can be ex-
ploited by the attacker. To the best of our knowledge, this
is the first hibernated neural backdoor attack. It is achieved
by maximizing the mutual information (MI) between the gra-
dients of regular and malicious data on the model. We in-
troduce a practical algorithm to achieve MI maximization
to effectively plant the hibernated backdoor. To evade adap-
tive defenses, we further develop a targeted hibernated back-
door, which can only be activated by specific data samples
and thus achieves a higher degree of stealthiness. We show
the hibernated backdoor is robust and cannot be removed by
existing backdoor removal schemes. It has been fully tested
on four datasets with two neural network architectures, com-
pared to five existing backdoor attacks, and evaluated using
seven backdoor detection schemes. The experiments demon-
strate the effectiveness of the hibernated backdoor attack un-
der various settings.

Introduction
Deep Learning has achieved proven success in a range of ap-
plications. However, due to its empirical and data-driven na-
ture, training a Deep Learning model typically requires ex-
tensive data, expertise, computation, and energy resources.
Therefore, common practice is to resort to third parties, e.g.,
the public online model zoo such as Caffe Model Zoo (Jia
et al. 2014), to adopt a base model and fine-tune it to fit
a user’s specific application. However, adopting a third-
party model exposes users to the risk of neural backdoor
attacks (Gu et al. 2019; Liu et al. 2018, 2020). The basic
idea of neural backdoor is to create a unique pattern (called
trigger) and embed it in training data. The trained neural
network (NN) model thus contains a backdoor. It behaves
normally with clean inputs. However, whenever the trigger
appears in the input image, the backdoor is activated to mis-
classify the input to a category targeted by the attacker.

The security community has taken initial steps to detect
neural backdoor by reverse-engineering the trigger (Wang
et al. 2019; Zhu et al. 2020). At the same time, attackers

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

make their efforts to evade detection by crafting the trig-
ger to be small (Gu et al. 2019), transparent (Chen et al.
2017), dynamic (Salem et al. 2020), and with complicated
patterns (Liu et al. 2020), posting more challenges to be re-
constructed. More advanced detection schemes then have
been developed accordingly (Wang et al. 2020; Gao et al.
2019; Kolouri et al. 2020). We emphasize that this arms race
will likely never end as long as the planted backdoor is ac-
tive, which gives hint to the defender since the backdoor al-
ways responds to triggers when they are present in the input.

To this end, we report a first-of-its-kind neural backdoor
attack, named Hibernated Backdoor, which is initially in an
inactive state (does not respond to the trigger) to evade de-
tection. Nevertheless, when being deployed by victims, it
will turn to active state after a normal fine-tuning (to opti-
mize the model’s performance).

Contributions. The main contributions of this paper are
summarized as follows.

(1) We propose a hibernated backdoor attack by crafting
a deep learning model that embeds a hibernated backdoor.
The backdoor is planted in a hibernated mode to avoid being
detected when it is initially examined by users. The novelty
of this attack is that once deployed and fine-tuned on end-
devices, the backdoor turns into the active state that can be
exploited by the attacker.

(2) To the best of our knowledge, this is the first neural
backdoor attack achieved by maximizing the mutual infor-
mation (MI) between the gradients of regular and malicious
data on the model. The larger the mutual information be-
tween them, the more the knowledge of the backdoor can be
learned through fine-tuning with regular data.

(3) We show that there exists a solution to the MI maxi-
mization problem and introduce a practical algorithm to ef-
fectively plant the hibernated backdoor.

(4) To evade adaptive defenses, we further develop a tar-
geted hibernated backdoor, which can only be activated by
specific data samples to evade adaptive detection.

(5) We show that the hibernated backdoor is robust and
cannot be removed by existing backdoor removal schemes.

Background
Neural Backdoor. Neural backdoor has raised serious con-
cerns about the integrity and reliability in machine learning



applications. It is a form of data poisoning accomplished by
designing a trigger pattern with (poisoned-label attack) (Gu
et al. 2019; Liu et al. 2018; Chen et al. 2017) or with-
out (clean-label attack) (Saha, Subramanya, and Pirsiavash
2020; Liu et al. 2020) a target label injected into a subset of
training data. For instance, BadNets (Gu et al. 2019) is one
of the earliest backdoor attacks that adopt a simple pattern as
the trigger. Blend attack (Chen et al. 2017) creates stealthier
triggers by making them translucent. Trigger can also appear
in the form of natural reflection (Liu et al. 2020). TrojanNN
(Liu et al. 2018) generates its trigger based on selected in-
ternal neurons to build a correlation between the trigger and
neuron response, thus reducing the training data required to
plant the backdoor. Hidden Backdoor Trojan (Saha, Subra-
manya, and Pirsiavash 2020) attempts to poison a third-party
model by injecting perturbation, equivalent to adding trig-
gers in feature space, into the training samples.

Hibernated 
Backdoor Injection

Examined by 
the victim

Inactive 
State

Deploy

Finetune with 
clean data

Attacker exploits the backdoor with the 
predetermined trigger.

Clean

Vendor

End-Devices: Lacks of 
computation resources and 

expertise to examine the model

Active 

Inactive

Trigger

Pred: Stranger

Pred: Stranger

Pred: Stranger

Pred: Owner

Trigger

Figure 1: An overview of the hibernated backdoor attack.
Model behaves differently when in hibernate and active
state.

While efforts are being made to create more sophisticated
triggers to avoid them from being reverse-engineered and
detected, it is an endless arms race as more advanced detec-
tion schemes (e.g., (Wang et al. 2019; Guo et al. 2019; Liu,
Dolan-Gavitt, and Garg 2018; Kolouri et al. 2020; Gao et al.
2019; Wang et al. 2020)) can be developed as long as the
backdoor is active and thus responsive to the trigger when it
is presented in the input. To tackle this issue, Latent Back-
door (Yao et al. 2019) removes the target class by modifying
dense layers (i.e., deleting the target neuron) to prevent the
model from responding to the trigger. The backdoor turns
to an active state when a victim updates the dense layers
to restore the target class. It relies on the strong assumption
that the victim’s data contains the target class and the feature
extractor of the model is fixed during training. In this work,
we propose a new backdoor attack, named Hibernated Back-
door, which can totally evade detection as it is not responsive
to the trigger in the hibernated state. The hibernated back-
door can survive typical backdoor screening schemes and
will turn to active mode after fine-tuning by victims before
deployment. The attack is powerful and practical because it
does not need adjustment of the model architecture and can
be activated by regular end-to-end model fine-tuning.
Mutual Information in Deep Learning. Derived from in-
formation theory, MI has found its application in deep learn-
ing, ranging from unsupervised feature learning (Hjelm et al.
2019; Oord, Li, and Vinyals 2018) and generative adversar-
ial network (GAN) training (Belghazi et al. 2018), to rank-

ing system (Kemertas et al. 2020) and salient map gener-
ation (Schulz et al. 2020). As it is notoriously difficult to
compute MI in continuous and high-dimensional settings,
recent efforts (Belghazi et al. 2018; Hjelm et al. 2019) have
aimed to develop accurate MI estimators, which estimate MI
between two variables using a discriminator neural network.
To the best of our knowledge, this is the first attempt to in-
troduce MI to the context of neural backdoors.

Hibernate Backdoor Attack
In this section, we first present the attack model, and then in-
troduce the detailed design of the proposed hibernated back-
door attack.

Attack Model
We assume the victim is a system vendor (as shown in Fig. 1)
who acquires a well-trained machine learning model (e.g.,
via a public model zoo or third-party provider), to develop
a smart system that will be deployed by its customers (i.e.,
end-users) on their end-devices. When the smart system is
installed on an end-device, the customer will fine-tune to op-
timize its performance for specific applications.

The system vendor has access to the model and can exam-
ine it before the development and distribution of the smart
system, including accuracy check and backdoor detection.
We assume the system vendor cannot carry out the fine-
tuning for the end user, due to the privacy concern of ac-
cessing the end user’s data. On the other hand, we assume
only the vendor, but not the end users can perform back-
door detection because the latter (i.e., smartphones and IoT
nodes) lacks computation power, balanced data, and pro-
fessional expertise, which (one or the other) are usually re-
quired by existing detection schemes (Wang et al. 2019; Zhu
et al. 2020; Guo et al. 2019; Gao et al. 2019).

To evade the detection by the system vendor, the attacker’s
goal is to plant a hibernated backdoor. It behaves correctly
even when the trigger is present in the input and thus is un-
detectable. However, this hibernated backdoor will turn into
active state after model deployment and fine-tuning by the
end user, resulting in an active backdoor that can be ex-
ploited by the attacker. For example, as shown in Fig. 1,
a generic face recognition model is trained by the attacker
(and planted with a hibernated backdoor) and then offered to
an organization for employee authentication. Since a generic
model does not fit each individual use case, it must be fine-
tuned with the end user’s local data. Nevertheless, this to-
tally benign fine-tuning process will activate the backdoor.

We assume the attacker does not have access to the vic-
tim’s fine-tune dataset D̂c, but can draw similarly distributed
data samples to form a clean dataset Dc because he/she
knows the application fields of the model fθ (since he/she
provides the model). For instance, to attack a face recogni-
tion model, it is reasonable that the attacker can collect face
images of the targeted user from public sources (e.g., politi-
cians, celebrities, or any people’s photos on social media).
Based onDc, the attacker will create a malicious datasetDm
by embedding a trigger into the samples and maliciously la-
beling them to the target class. The attacker will use bothDc
and Dm to plant the backdoor in fθ. The attacker will also



create D̂m, which contains same samples in Dm but with
their original class labels to hibernate the backdoor.

Planting Hibernated Backdoor
The overarching goal of the proposed hibernated backdoor
attack is to craft a model with the following three attributes:
(1) classification accuracy on the clean samples similar to
the clean model; (2) non-responsive to the trigger (inactive
mode); (3) activated (i.e., turned from inactive mode to ac-
tive mode) via fine-tuning with clean samples.

While the first attribute is achievable by simply training
a model with clean data, achieving the combination of the
second and third attributes is much more difficult. Planting a
backdoor alone is achievable as discussed in Sec. . However,
it is nontrivial to train a hibernated model that has learned
backdoor information and can be activated by clean samples.

Neural Networks (NN) are known to gain information
from data through training, where new knowledge is com-
prised in gradients to be updated to the model. To plant
a traditional neural backdoor into a given model, the most
common method is to train the model with malicious sam-
ples and a target label and force the NN model to asso-
ciate the trigger to the target class. The model gains the
backdoor information from the derived gradients during
back-propagation and the backdoor is planted after training.
Therefore, we speculate that if we can associate gradients
of malicious samples to gradients of clean data, we will be
able to activate a model with a hibernated backdoor by fine-
tuning the model with clean dataset. To this end, we pro-
pose to leverage the mutual information (MI) theory (Tishby,
Pereira, and Bialek 2000) by maximizing the MI between
the gradients derived from clean dataset,Dc, and those from
malicious dataset, Dm. The larger the MI between them, the
more the knowledge of the backdoor (fromDm) can be con-
cealed in the gradients derived from Dc.
Maximize Mutual Information. The MI between two vari-
ables U and V , I(U ;V ), can be expressed as the following
KL-divergence (Joyce 2011):

I(U ;V ) = DKL(J‖M), (1)
where J is the joint probability distribution between U and
V , and M is their product of marginals. However, it has been
a long-standing challenge to directly compute MI in contin-
uous and high-dimensional settings (Belghazi et al. 2018;
Hjelm et al. 2019). Fortunately, since we aim to maximize
MI instead of calculating its value, we can adopt a Jensen-
Shannon MI estimator (Hjelm et al. 2019):

Î(JSD)
ψ (U ;V ) :=EJ [− sp (−Tψ (u, v))]−

EM [sp (Tψ (u, v))] ,
(2)

where Tψ : U × V → R denotes the discriminator function
parameterized by a deep neural network with parameters ψ,
and sp(a) = log (1 + ea) is the softplus function.Let x denote a clean sample. Let b denote a predefined
trigger mask. Then we define its corresponding malicious
sample xm as xm = E(x) = x+ b. For a given model, the
gradients of a sample can be represented as a function of the
sample as follows

gθ(x) = ∇θL(fθ(x), t(x)), (3)

Hibernated
Model fθ

E(x):fish

x:dog

x’:cat

grad(x)

grad(E(x))

grad(x’)
Pairwise Per-sample 

Gradient Distance

Statistic 
Network C

Estimated
Mutual 

Information
I(X, Z)

Joint

Independent

Figure 2: Overview of MI Calculation.

where t(x) is the label of x, fθ denotes the model f param-
eterized with θ and L is the criterion function. Then Eq. (2)
can be updated as follows to estimate the MI between the
gradients of a random clean sample X, and the gradients of
its malicious counterpart E(X) (Hjelm et al. 2019).

Î(JSD)

θ,ψ
(gθ(X); gθ(E(X))) :=

EP [− sp (−Tψ,θ (gθ(x), gθ(E(x)))]

− EP×P̃ [sp (Tψ,θ (gθ(x
′), gθ(E(x))))] ,

(4)

where P is the distribution of clean sample X, x′ is randomly
sampled from the distribution P̃ = P, Tψ,θ is defined as

Tψ,θ = Cψ ◦M(gθ(x), gθ(E(x))), (5)
where M is an embedding function that combines the gra-
dients (e.g., using L2 distance), and Cψ is a multi-layer per-
ceptron (MLP). The detailed design is illustrated in Fig. 2.

The regular fine-tuning dataset Dc and malicious dataset
Dm each consists ofK input-label pairs. In particular,Dc ={
Dkc
}K
k=1

, with Dkc =
(
xkc ,y

k
c

)
where xkc is a clean sample

and ykc is its label. Accordingly, Dm =
{
Dkm
}K
k=1

, where
Dkm =

(
xkm,y

k
m

)
, xkm = E(xkc ) = xkc + b (b is the prede-

fined trigger), and ykm = yt (i.e., the target class label). We
define D̂km =

(
xkm,y

k
c

)
to be a backdoor patching dataset,

where a malicious input is paired with its correct label.
To plant the backdoor, we consider the paired samples

(Dkc , Dkm), where Dkc is randomly sampled from Dc’s dis-
tribution P andDkm = (E(xkr ),yt) is the corresponding ma-
licious sample embedded with the trigger. At the same time,
we consider the paired samples (Djc ,Dkm), whereDjc is inde-
pendently sampled from P and thus independent from Dkm.
Then based on the clean sample dataset Dc and malicious
dataset Dm, we can use Eq. (4) to compute the MI between
the gradients of a clean sample and the gradients of its corre-
sponding malicious sample. With a little abuse of language,
we denote it as Î(JSD)

θ,ψ
(gθ(Dc); gθ(Dm)), which is given as

Î(JSD)

θ,ψ
(gθ(Dc); gθ(Dm) :=

EP
[
− sp

(
−Tψ

(
gθ(Dkc ), gθ(Dkm))

)]
− EP×P̃

[
sp
(
Tψ
(
gθ(Djc), gθ(Dkm)

))]
.

(6)

From Eq. (6), the attacker can then maximize
Î(JSD)

θ,ψ
(gθ(Dc); gθ(Dm)) by jointly updating fθ and

Cψ to obtain the model fθ with maximized MI between
the gradients of a clean sample and the ones of a malicious
sample, from sets Dc and Dm, respectively.
Backdoor Injection Algorithm. With the above MI-
empowered approach, we can now design an algorithm to
jointly train the hibernated backdoor model to achieve the



three attributes discussed earlier. There are two options: the
first is to define three individual loss functions according the
three attributes and combine them to one via weighted sum
through balancing hyper-parameters. The second is to split
the loss functions into three steps to train the model sequen-
tially and iteratively. This strategy demonstrates good per-
formance and convergence, thus has been widely adopted in
multi-task learning (Liu et al. 2019; Liu, Liang, and Gitter
2019; Sanh, Wolf, and Ruder 2019). Therefore we adopt the
second approach here to avoid hyper-parameters. The de-
tailed design is shown in Alg. 1, which consists of a number
of iterations, each with the following three steps.
1. Given a benign base model fθ with parameters θ, we fine-

tune it with clean samples with correct labels.
2. Based on the updated fθ from step 1, jointly update cur-

rent fθ and Cψ to maximize MI with Eq. 6.
3. Fine-tune the fθ derived by step 2 with samples in Dm

but with their original labels (denoted as D̂m). It essen-
tially patches (hibernates) the backdoor and creates the
base model (fθ) for the next iteration.

Algorithm 1: Hibernated Backdoor Injection
Input: Training dataset Dtrain, Clean finetune dataset Dc,

Malicious dataset Dm, D̂m (Dm with original labels),
Training Criterion L, Two learning rates lrθ , lrψ

Require: Initial f parameters θ0, Initial C parameters ψ0

Output: fhiber
Backdoor Injection
while θ has not converged do

Randomly sample a batch from each dataset, denoted
as D′

train, D′
c, D′

m and D̂′
m

// Step 1 -- Train on regular data
θ ← θ − lrθ ∗ ∇θL(θ,D′

train)
// Step 2 -- Maximize MI

θ ← θ − lrθ ∗ ∇θ − Î(JSD)
θ,ψ (gθ(D′

c); gθ(D′
m))

ψ ← ψ − lrψ ∗ ∇ψ − Î(JSD)
θ,ψ (gθ(D′

c); gθ(D′
m)

// Step 3 -- Patch the backdoor

θ ← θ − lrθ ∗ ∇θL(θ, D̂′
m)

end
Reinforced Deep Hibernation
while θ has not converged do

// Patch the backdoor

θ ← θ − lrθ ∗ ∇θL(θ, D̂′
m)

end
fhiber ← fθ(·)

The advantages of this algorithm are that the MI is maxi-
mized on a newly derived fθ, which will always be updated
via regular fine-tuning in Step 1 of each iteration. Therefore,
the maximization of MI is more robust to model change dur-
ing regular fine-tuning, ensuring that the model can learn
backdoor information consistently during fine-tuning. Ad-
ditionally, We demonstrate in Sec. 3.4 that a well-trained
hibernated model is robust to patching-based backdoor re-
moval schemes (Wang et al. 2019; Zhu et al. 2020) due to
Step 3, which essentially mimics the patching process.

To gain insights into the hibernated backdoor, we conduct
a series of preliminary experiments on the MNIST (LeCun
and Cortes 2010) dataset. We set the target class to the first
class (i.e., “0”) and adopt a simple trigger (a small white

block located at the right-bottom area, as shown in the left
most image in Fig. 4). We use a static trigger here, but the
hibernated backdoor can be seamlessly combined with any
complicated or dynamic trigger to achieve an even higher
stealthiness. We randomly select 50% of training images to
be clean fine-tune dataset Dc. To construct the malicious
data Dm, we combine Dc with the trigger and label them
to the target class. We perform regular training on the model
using the remaining 50% of the training images. The de-
tailed experimental settings and more datasets will be pre-
sented in Experimental Results.

We inject a hibernated backdoor into a given model by
following Algorithm 1. Following injection, we fine-tune
it with 100 clean images randomly sampled from the test-
ing dataset (which will be removed during testing). We in-
tentionally calculate the estimated MI throughout the entire
process. As illustrated in Fig. 3, the MI increases drastically
in the earlier stage of the backdoor injection, and then re-
mains stable. Note that the maximum value of the estimated
MI is 0 as define in Eq. 2. This is crucial to the attack, since
the more stable and closer to zero the MI, the more backdoor
information can be learned by the model via fine-tuning to
yield a robust attack. At the same time, the clean image clar-
ification accuracy rises quickly to a satisfactory level and
remains stable afterwards. This guarantees the model per-
formance satisfies the victim’s requirements, tricking them
to deploy the backdoored model.

Figure 3: MI, model accuracy and attack success rate.

Alternatively, the Attack Success Rate (ASR), which is
the ratio of malicious images that are misclassified to the
target class, varies in the injection phase and then converges
to nearly zero. This is highly desired because the objective of
the attack is not to inject an active backdoor. Instead, it aims
to keep ASR low, until the victim deploys the model on end-
devices and fine-tunes the model with local data. As depicted
in Fig. 3, the ASR increases significantly to 98% after fine-
tuning for just a few iterations, turning the backdoor to active
mode that can be exploited by the attacker.

Table 1: Comparison of hibernated backdoor with other
clean and backdoor models. ASR: Attack Success Rate;
ACC: Classification Accuracy; NC: Neural Clease; GS:
Gangsweep; TB: Tabor.

Attack ACC ASR NC GS TB
Clean Model 99.91 0.18 × × ×

BadNets 99.82 99.52 X X X
Blend attack 99.82 99.52 X X X

Hidden Backdoor 99.80 99.70 X X X

Hibernated Backdoor (Inactive) 99.86 0.16 × × ×
Hibernated Backdoor (Active) 99.90 98.22 - - -

Targeted Hibernated Backdoor (Inactive) 99.71 0.14 × × ×
Targeted Hibernated Backdoor (Active) 99.87 99.19 - - -



Table 1 compares the hibernated backdoor model with the
clean model and the models under three other backdoor at-
tacks (BadNets (Gu et al. 2019), Blend attack (Chen et al.
2017), and Hidden Backdoor attack (Saha, Subramanya, and
Pirsiavash 2020)), in terms of attack success rate (ASR) and
model accuracy on clean images (ACC). As shown in the
2nd and 6th row of the table, the hibernated backdoor de-
livers a similar performance as the clean model when it
is in an inactive state, i.e., high ACC and low ASR. In
other words, the hibernated backdoor is not responsive to
the trigger and thus undetectable even using the state-of-the-
art detection schemes (Neural Cleanse (Wang et al. 2019),
Gangsweep (Zhu et al. 2020), and Tabor (Guo et al. 2019)).
This can be further observed by comparing the reverse-
engineered trigger from the Neural Cleanse algorithm. As
shown in Fig. 4, the retrieved trigger from an inactive hiber-
nated backdoor has a random pattern similar to the one re-
trieved from a clean model. In contrast, after fine-tuning, the
hibernated backdoor model acts as a regular neural backdoor
with high ASR (see the 7th row of Table 1). We intentionally
mark the detection results of the active hibernated backdoor
to “-” since it is usually infeasible to perform detection in the
active mode, due to the fact that they have already been de-
ployed on end-devices that usually lack computation power,
balanced data, and professional expertise for detection.

Original Trigger Clean Model
Hibernated Backdoor 

(inactive)
Regular Backdoor 

(BadNet)

Reverse-engineered Triggers

Figure 4: Comparison of reverse-engineered triggers.
Attacking Adaptive Defender
We have demonstrated that the hibernated backdoor can
evade detection in the inactive mode and can turn into the
active mode after fine-tuning with clean data. However, an
advanced vendor (see Fig. 1) may fine-tune the NN and then
use existing techniques to detect the activated backdoor. To
overcome this, we propose a targeted attack, which cannot
be activated by regular clean data. Instead, it can only be ac-
tivated by a specific set of clean data, for example, data from
a specific user or data drawn from a specific distribution. To
this end, we replace the clean data Dc by specific data Ds in
Alg. 1, aiming to maximizing MI between Ds and Dm thus
only samples similar to those in Ds can activate the back-
door.

We have conducted a similar experiment to evaluate the
performance of the targeted attack. Here Ds are digits with
white padding on the edges (see an example at the left bot-
tom in Fig. 5). As shown in the 8-9th rows of Table 1, the
targeted backdoor achieves similar performances in terms of
ACC and ASR compared to its original counterpart. On the
other hand, this new backdoor can only be activated by fine-
tuning with data (D̂s of the target user) distributed similar
(also with white padding) to Ds. Thus, even if skilled ven-
dors perform finetune-and-detect on the model, they are still
not able to detect the backdoor. To confirm this, we conduct
an experiment by comparing the ASR when fine-tuning the
backdoor model with regular data Dc and specific data D̂s.

As illustrated in Fig. 5, fine-tuning with D̂s raises the ASR
drastically while the ASR of fine-tuning with Dc remains
around zero.

Clean

Specific

Figure 5: Performance comparison of fine-tuning with clean
data Dc and specific data D̂s.

What if D̂s is accidentally blended withDc in fine-tuning?
Will the blended data activate the backdoor? To answer
this question, we conduct an experiment by fine-tuning the
model on a blended dataset (of 2048 samples) with different
ratios between Dc and D̂s. The ASRs after fine-tuning are
shown in Table 2. As can be seen, the ASR after fine-tuning
is lower than 5% when the ratio of the D̂s below 40%. It is
worth pointing out that it is rare to have a D̂s ratio higher
than 40% since the detector has zero knowledge of D̂s and
the fine-tuning dataset is randomly sampled.

Table 2: Performance comparison of fine-tuning with
blended data under different ratios of (Dc : D̂s). “Detect”
indicates if the backdoor can be detected by any of the back-
door detection schemes NC, GS, and TB.

Metrics 1.0 : 0.0 0.8 : 0.2 0.6 : 0.4 0.4 : 0.6 0.2 : 0.8 0.0 : 1.0
ACC 99.91 99.89 99.52 99.50 99.33 99.19
ASR 0.44 3.64 4.97 16.26 57.34 99.84

Detect × × × × X X

Resistance to Backdoor Defenses
We have shown the hibernated backdoor is stealthy and can
evade the existing detection schemes. We now show it is also
robust, as it is extremely difficult to be removed even when
the victim manages to acquire the trigger.
Resistance to Backdoor Patching. Existing defenses intend
to patch the backdoor by fine-tuning the model using cor-
rectly labelled images combined with the retrieved trigger.
However, this approach does not work well for the hiber-
nated backdoor. This is due to the fact that we have already
included patching in the process of hibernated backdoor in-
jection. It has been shown earlier that such patching only
temporarily hides the backdoor and can be easily activated
after regular fine-tuning. To demonstrate this, we conduct
an experiment by recursively “patching” and “fine-tuning”
a hibernated backdoor model while monitoring its ASR. As
illustrated in Fig. 6, the patching process can temporarily de-
activate the backdoor as the ASR (blue line) dropped in the
gray zone. However, it does not completely eliminate the
hibernated backdoor, evidenced by the drastic rise of ASR
during finetuning (red zone). In contrast, other attacks (e.g.,
BadNet, Trojan, and Hidden Backdoor) do not share this dis-
tinguished attribute, as they remain low ASR after patching.
Resistance to Regular Fine-tuning. A straightforward way
to alleviate a backdoor is to fine-tune the model with clean
training data, such that the malicious neurons of the back-
door can be weakened or even sanitized. However, this



0 10 20 30 40 50 60 70
Iter

0.0
0.2
0.4
0.6
0.8
1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e Patch Finetune Patch Finetune Patch

Hibernated
BadNet
Trojan
Hidden

Figure 6: Comparison of ASR during recursively patching
and fine-tuning.
method does not apply to the hibernated backdoor as the reg-
ular fine-tuning is actually equivalent to backdoor injection
in our approach. We compare our work to BadNet, Blend
attack, and Hidden Backdoor in terms of the resistance to
regular fine-tuning. To this end, we train malicious model
separately and fine-tune them with 10% of the clean training
data for 15 epochs using SGD optimizer with a small learn-
ing rate of 0.0001. For a fair comparison, we intentionally
set the hibernated backdoor in the active state. We fine-tune
the models in two settings: end-to-end and dense-layer-only,
where the former updates the entire model and the latter only
adjusts weights of the dense layers. As shown in Table 3, the
ASR of other attacks drops significantly after 15 epochs of
fine-tuning in the dense-only setting, while the hibernated
backdoor remains close to 97%. Other attacks perform even
worse in the scenario of end-to-end fine-tuning, since the
malicious filters are sanitized by clean data.
Table 3: Performance under regular finetuning and pruning.

Metric Hibernated BadNet Blend Hidden
Finetune dense-only ASR 97.12 44.42 42.67 62.50
Finetune end-to-end ASR 98.96 20.78 19.01 22.80

Pruning 60% ACC 93.66 93.58 93.27 92.96
ASR 90.61 8.08 10.51 7.37

Pruning 85% ACC 63.30 62.85 63.02 62.12
ASR 58.71 3.65 2.19 1.20

Resistance to Neural Pruning. In scenarios where the vic-
tim cannot detect the backdoor but chooses to sanitize the
model anyway to remove a possible backdoor, the victim
may adopt a more aggressive method such as named neuron
pruning. For example, (Liu, Dolan-Gavitt, and Garg 2018)
shows that the backdoor usually leverages a set of neu-
rons for trigger recognition and they cannot be activated by
clean data. As a result, when performing pruning with clean
data, those malicious neurons can be considered redundant
and thus removed. To this end, we prune our hibernated
backdoor model using the latest backdoor neural pruning
scheme named Fine-Pruning (Liu, Dolan-Gavitt, and Garg
2018) with different pruning ratios (detailed experimental
settings are in Appendix). As shown in Table 3, the hiber-
nated backdoor is robust against neural pruning as the ASR
drops proportionally with ACC. The reason is that the hi-
bernated backdoor fires the same set of neurons during fine-
tuning for backdoor injection. Therefore, those neurons are
considered important and cannot be removed by pruning.

Experimental Results
In this section, we first introduce the experimental setting,
and then evaluate the hibernated backdoor attack on three
datasets, two different neural network architectures, five
backdoor attacks, and seven detection schemes. We also an-
alyze the performance of the attack under different settings
of fine-tuning, such as learning rate and tunable layers, to

demonstrate the robustness of our attack.
Experimental Setting
Dataset and Architecture. We conduct the experiments
based on well-known benchmark datasets including Ci-
far10, Restricted VGGFace and ImageNet (where we ran-
domly sample a subset of 10 classes from VGGFace and
ImageNet). We select 2 popular NN architectures, Mo-
bilenetV2 (Sandler et al. 2018) and ResNet34 (He et al.
2016) to conduct the experiments. More details of the
dataset settings such as ratios of D̂c, Dc, and Dm can be
found in the Appendix.
Attack and Defense Configuration. We compare the per-
formance of the hibernated backdoor with five other at-
tacks: BadNet (Gu et al. 2019), Trojan attack (Liu et al.
2018), Hidden Backdoor (Saha, Subramanya, and Pirsiavash
2020), Latent Backdoor (Yao et al. 2019), and Refool (Liu
et al. 2020). We then test the resistance of all the attacks to
seven existing backdoor detection methods: Neural Cleanse
(NC) (Wang et al. 2019); Gangsweap (GC) (Zhu et al. 2020);
TABOR (Guo et al. 2019); Strip (Gao et al. 2019); DL-
TND (Wang et al. 2020); DF-TND (Wang et al. 2020); and
ULP (Kolouri et al. 2020). We adopt the trigger used in
(Gu et al. 2019), which is a small white block at the bot-
tom right corner (see Fig. 4) with a size of 4 × 4 pixels in
CIFAR10 (Krizhevsky, Hinton et al. 2009) and 22 × 22 in
VGGFace (Parkhi, Vedaldi, and Zisserman 2015) and Im-
agenet (Deng et al. 2009). More details of the attack and
defense settings can be found in the Appendix.
DNN training. We train all models for 200 epochs using
a Stochastic Gradient Descent (SGD) optimizer with a mo-
mentum of 0.9, an initial learning rate of 0.1, and a weight
decay factor of 1e-4. We use a batch size of 256 and divide
the learning rate by 10 for every 50 epochs. We use a small
learning rate of 0.0001 for fine-tuning.
Evaluation Metrics. We evaluate the performance by two
metrics: attack success rate (ASR), which is the ratio of ma-
licious images that are misclassified to the target class and
the model’s accuracy on clean images (ACC).
Performance Comparison
Comparison of ACC and ASR. Table 4 shows ACC and
ASR under different attacks on CIFAR10, VGGFACE10,
and Imagenet10. We observe that the hibernated backdoor
performs better on VGGFACE and ImageNet than on CI-
FAR10. The reason is that the Imagenet and VGGFACE
have an input size of 224 × 224, which results in gradi-
ents that are more informative than the CIFAR10 (32× 32).
Therefore, the backdoor information is easier to be blended
into the regular gradients of Imagenet and VGGFACE when
maximizing the mutual information, resulting in a stronger
backdoor with a higher ASR. We also notice a slightly
higher ASR when using Resnet34 architecture, which may
be because it has a higher model capacity to store the hiber-
nated backdoor information. While BadNets achieves good
ASR, we will show next that it performs poorly against back-
door detection.
Stealthiness. We conduct a comprehensive examination
of seven neural backdoors: BadNets; Blend attack; Hid-
den Backdoor; Refool; Latent Backdoor; Hibernated Back-



Table 4: Performance comparison of attacks on 3 datasets
with 2 NN architecture. MB: Mobilenet V2; RS: Resnet34;
Pref Loss: performance loss compared to clean model.

Dataset Attack Arch ACC (Perf Loss) ASR

CIFAR10

BadNets
MB 85.33 (0.84) 95.91
RS 86.21 (0.84) 95.14

Hidden Backdoor
MB 84.68 (1.49) 86.59
RS 85.61 (1.44) 88.96

Latent Backdoor
MB 85.12 (1.05) 88.15
RS 86.02 (1.03) 89.23

Hibernated (Active)
MB 86.08 (0.09) 90.23
RS 86.82 (0.23) 91.50

Targeted Hibernated (Active)
MB 84.82 (1.35) 89.18
RS 85.66 (1.39) 90.99

VGGFACE10

BadNets
MB 98.66 (0.06) 97.82
RS 98.79 (0.10) 98.96

Hidden Backdoor
MB 97.81 (0.91) 92.23
RS 97.53 (1.36) 92.39

Latent Backdoor
MB 97.40 (1.32) 93.47
RS 97.72 (1.17) 93.49

Hibernated (Active)
MB 98.65 (0.07) 98.20
RS 98.72 (0.17) 98.96

Targeted Hibernated (Active)
MB 98.06 (0.66) 93.41
RS 98.12 (0.77) 94.63

Imagenet10

BadNets
MB 98.22 (0.15) 95.38
RE 98.36 (0.22) 96.20

Hidden Backdoor
MB 96.13 (2.24) 86.70
RS 96.70 (1.88) 86.98

Latent Backdoor
MB 97.02 (1.35) 92.59
RS 96.58 (2.00) 93.16

Hibernated (Active)
MB 98.33 (0.04) 95.43
RS 98.42 (0.16) 95.96

Targeted Hibernated (Active)
MB 97.70 (0.67) 92.87
RS 97.30 (1.28) 93.41

door; and Specific Hibernated Backdoor. We also examine
seven state-of-the-art detection schemes: Neural Cleanse;
Gangsweep; TABOR; Strip; TrojanNet Detector (data lim-
ited TND-DL and data free TND-DF); and Universal Lit-
mus Patterns (ULP). As shown in Table 5, the hibernated
backdoor delivers better stealthiness over all the detection
schemes. The reason is that the hibernated backdoor model
is functionally equivalent to a clean model when responding
to the trigger, making the detection schemes designed for
active backdoor inapplicable. Latent Backdoor also shares
the same attributes of an inactive backdoor and thus evades
most detection. However, it fails on TND-DF that detects the
backdoor based on intermediate feature outputs, as Latent
Backdoor only modified the dense layers to hide the back-
door but still has malicious intermediate features. Moreover,
it makes a strong assumption that the victim’s data contains
the target class, and the feature extractor of the model is
fixed during training.

Table 5: Comparison of resistance to different detection
schemes, NC: Neural Clease; GS: Gangsweep; TB: TABOR;
ST: Strip; DL: TND-DL; DF: TND-DF; and ULP: Universal
Litmus Patterns.

Attack NC GS TB ST DL DF ULP
BadNets X X X X X X X

Blend attack X X X X X X X
Hidden Backdoor X X X X X X X

Refool × X × X × × ×
Latent Backdoor × × × × × X ×

Hibernated (Inactive) × × × × × × ×
Targeted Hibernated (Inactive) × × × × × × ×

Trainable layers and learning rate. Since the hibernated

backdoor needs to be activated by fine-tuning, we investi-
gate its performance under different fine-tuning settings. In
the first experiment, we adjust the number of trainable layers
when performing fine-tuning on the ImageNet dataset with
a ResNet34 architecture. We compare our approach with the
Latent Backdoor as it is the closest to the proposed attack.
As shown in Fig. 7 (a), the ASR of Latent Backdoor drops
drastically when the number of trainable layers increases,
due to its assumption that most of the layers have to be
fixed during fine-tuning. In contrast, the hibernated back-
door’s ASR is stable and even increases with the number of
trainable layers. The reason is that it does not limit trainable
layers during backdoor injection, such that the information
of the hibernated backdoor has been distributed over the en-
tire neural network. Therefore, fine-tuning the entire model
performs better to activate the backdoor compared to adjust-
ing only a few layers.

(a) (b)

Figure 7: (a) Comparison of ASR when fine-tuning different
number of layers. (b) Comparison of ASR when fine-tuning
with different learning rate.

Another important parameter of fine-tuning is the learning
rate. We adjust the learning rate across a large span from 2 to
1e-5 to fine-tune a hibernated backdoor (based on ResNet34
and trained on Imagenet). Note that the fine-tune learning
rate adopted in our previous experiments is 1e-4. Fig. 7 (b)
shows the trends of the ASR. The learning rate higher than
1 leads to drastic variation at early stages, but still be able to
converge after 8 epochs, proving the hibernated backdoor is
robust to a large span of learning rates.

Conclusion
In this paper we have reported a new neural backdoor at-
tack, named hibernated backdoor, which is planted in a hi-
bernated mode to avoid being detected. Once deployed and
fine-tuned with clean samples on end-devices, the hibernated
backdoor turns into the active state that can be exploited by
the attacker. To the best of our knowledge, this is the first
neural backdoor attack by leveraging the mutual informa-
tion (MI) theory. We have introduced a practical algorithm
to achieve MI maximization and to effectively plant the hi-
bernated backdoor. We have further developed a targeted hi-
bernated backdoor, which can only be activated by specific
data samples and thus achieves an even higher degree of
stealthiness. We have shown the hibernated backdoor is ro-
bust and cannot be removed by existing backdoor extraction
schemes. We have fully tested the hibernated backdoor on
four datasets with two neural network architectures, com-
pared it to five existing backdoor attacks, and evaluated it
against seven backdoor detection schemes. The experiments
have demonstrated the effectiveness of the proposed hiber-
nated attack under various settings.



References
Belghazi, M. I.; Baratin, A.; Rajeshwar, S.; Ozair, S.; Ben-
gio, Y.; Courville, A.; and Hjelm, D. 2018. Mutual infor-
mation neural estimation. In Proceedings of International
Conference on Machine Learning (ICML), 531–540.
Chen, X.; Liu, C.; Li, B.; Lu, K.; and Song, D. 2017. Tar-
geted backdoor attacks on deep learning systems using data
poisoning. arXiv preprint arXiv:1712.05526.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Li, F.-F.
2009. Imagenet: A large-scale hierarchical image database.
In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 248–255.
Gao, Y.; Xu, C.; Wang, D.; Chen, S.; Ranasinghe, D. C.; and
Nepal, S. 2019. Strip: A defence against trojan attacks on
deep neural networks. In Proceedings of Annual Computer
Security Applications Conference (ACSAC), 113–125.
Gu, T.; Liu, K.; Dolan-Gavitt, B.; and Garg, S. 2019. Bad-
Nets: Evaluating Backdooring Attacks on Deep Neural Net-
works. IEEE Access, 47230–47244.
Guo, W.; Wang, L.; Xing, X.; Du, M.; and Song, D.
2019. Tabor: A highly accurate approach to inspecting and
restoring trojan backdoors in ai systems. arXiv preprint
arXiv:1908.01763.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 770–778.
Hjelm, R. D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal,
K.; Bachman, P.; Trischler, A.; and Bengio, Y. 2019. Learn-
ing deep representations by mutual information estimation
and maximization. Proceedings of International Conference
on Learning Representations (ICLR).
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. In
Proceedings of ACM International Conference on Multime-
dia (MM), 675–678.
Joyce, J. M. 2011. Kullback-Leibler Divergence, 720–722.
Springer Berlin Heidelberg.
Kemertas, M.; Pishdad, L.; Derpanis, K. G.; and Fazly, A.
2020. RankMI: A Mutual Information Maximizing Rank-
ing Loss. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 14362–14371.
Kolouri, S.; Saha, A.; Pirsiavash, H.; and Hoffmann, H.
2020. Universal Litmus Patterns: Revealing Backdoor At-
tacks in CNNs. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 301–310.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
LeCun, Y.; and Cortes, C. 2010. MNIST handwritten digit
database.
Liu, K.; Dolan-Gavitt, B.; and Garg, S. 2018. Fine-pruning:
Defending against backdooring attacks on deep neural net-
works. In International Symposium on Research in Attacks,
Intrusions, and Defenses, 273–294. Springer.

Liu, S.; Liang, Y.; and Gitter, A. 2019. Loss-balanced task
weighting to reduce negative transfer in multi-task learn-
ing. In Proceedings of Conference on Artificial Intelligence
(AAAI), 9977–9978.

Liu, X.; He, P.; Chen, W.; and Gao, J. 2019. Multi-task deep
neural networks for natural language understanding. arXiv
preprint arXiv:1901.11504.

Liu, Y.; Ma, S.; Aafer, Y.; Lee, W.-C.; Zhai, J.; Wang, W.;
and Zhang, X. 2018. Trojaning Attack on Neural Networks.
In Proceedings of Network and Distributed System Security
Symposium (NDSS).

Liu, Y.; Ma, X.; Bailey, J.; and Lu, F. 2020. Reflection back-
door: A natural backdoor attack on deep neural networks.
Proceedings of European Conference on Computer Vision
(ECCV).

Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Representation
learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748.

Parkhi, O. M.; Vedaldi, A.; and Zisserman, A. 2015. Deep
face recognition.

Saha, A.; Subramanya, A.; and Pirsiavash, H. 2020. Hidden
Trigger Backdoor Attacks. In Proceedings of Conference on
Artificial Intelligence (AAAI), 11957–11965.

Salem, A.; Wen, R.; Backes, M.; Ma, S.; and Zhang, Y.
2020. Dynamic Backdoor Attacks Against Machine Learn-
ing Models. arXiv preprint arXiv:2003.03675.

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 4510–
4520.

Sanh, V.; Wolf, T.; and Ruder, S. 2019. A hierarchical
multi-task approach for learning embeddings from seman-
tic tasks. In Proceedings of Conference on Artificial Intelli-
gence (AAAI), 6949–6956.

Schulz, K.; Sixt, L.; Tombari, F.; and Landgraf, T. 2020.
Restricting the flow: Information bottlenecks for attribution.
Proceedings of International Conference on Learning Rep-
resentations (ICLR).

Tishby, N.; Pereira, F. C.; and Bialek, W. 2000. The infor-
mation bottleneck method. arXiv preprint physics/0004057.

Wang, B.; Yao, Y.; Shan, S.; Li, H.; Viswanath, B.; Zheng,
H.; and Zhao, B. Y. 2019. Neural cleanse: Identifying and
mitigating backdoor attacks in neural networks. In Proceed-
ings of IEEE Symposium on Security and Privacy (SP), 707–
723.

Wang, R.; Zhang, G.; Liu, S.; Chen, P.-Y.; Xiong, J.; and
Wang, M. 2020. Practical detection of trojan neural net-
works: Data-limited and data-free cases. Proceedings of Eu-
ropean Conference on Computer Vision (ECCV).

Yao, Y.; Li, H.; Zheng, H.; and Zhao, B. Y. 2019. Latent
backdoor attacks on deep neural networks. In Proceedings
of Conference on Computer and Communications Security
(CCS), 2041–2055.



Zhu, L.; Ning, R.; Wang, C.; Xin, C.; and Wu, H. 2020.
GangSweep: Sweep out Neural Backdoors by GAN. In Pro-
ceedings of ACM International Conference on Multimedia
(MM).


