
1874 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 6, JUNE 2010

Clustering and Cluster-Based Routing Protocol for
Delay-Tolerant Mobile Networks

Ha Dang, Member, IEEE, and Hongyi Wu, Member, IEEE

Abstract�—This research investigates distributed clustering
scheme and proposes a cluster-based routing protocol for Delay-
Tolerant Mobile Networks (DTMNs). The basic idea is to dis-
tributively group mobile nodes with similar mobility pattern into
a cluster, which can then interchangeably share their resources
(such as buffer space) for overhead reduction and load balancing,
aiming to achieve efcient and scalable routing in DTMN. Due
to the lack of continuous communications among mobile nodes
and possible errors in the estimation of nodal contact probability,
convergence and stability become major challenges in distributed
clustering in DTMN. To this end, an exponentially weighted mov-
ing average (EWMA) scheme is employed for on-line updating
nodal contact probability, with its mean proven to converge to
the true contact probability. Based on nodal contact probabilities,
a set of functions including Sync(), Leave(), and Join() are
devised for cluster formation and gateway selection. Finally,
the gateway nodes exchange network information and perform
routing. Extensive simulations are carried out to evaluate the
effectiveness and efciency of the proposed cluster-based routing
protocol. The simulation results show that it achieves higher
delivery ratio and signicantly lower overhead and end-to-end
delay compared with its non-clustering counterpart.

Index Terms�—Clustering, delay-tolerant networks, routing.

I. INTRODUCTION

AS a natural consequence of intermittent connectivity
among mobile nodes, especially under low nodal density

and/or short radio transmission range, the Delay-Tolerant
Network (DTN) technology [1], [2] has been introduced
to mobile wireless communications, such as ZebraNet [3],
Shared Wireless Info-Station (SWIM) [4], [5], Delay/Fault-
Tolerant Mobile Sensor Network (DFT-MSN) [6]�–[9], and
mobile Internet and peer-to-peer mobile ad hoc networks [10]�–
[15]. DTN is fundamentally an opportunistic communication
system, where communication links only exist temporarily,
rendering it impossible to establish end-to-end connections for
data delivery. In such networks, routing is largely based on
nodal contact probabilities (or more sophisticated parameters
based on nodal contact probabilities). The key design issue
is how to efciently maintain, update, and utilize such proba-
bilities. Most DTN protocols [3]�–[15] are �“at�”, where every
node plays a similar role in routing. The at architecture is

Manuscript received September 9, 2008; revised January 23, 2009, Septem-
ber 15, 2009, and February 24, 2010; accepted March 12, 2010. The associate
editor coordinating the review of this paper and approving it for publication
was C. Xiao.

The authors are with the Center for Advanced Computer Studies (CACS),
University of Louisiana at Lafayette, Lafayette, LA, 70504 USA (e-mail:
{yxs4862, wu}@cacs.louisiana.edu).

This work is supported in part by National Science Foundation under Award
Number CNS-0831823.

Digital Object Identier 10.1109/TWC.2010.06.081216

simple and effective in small networks, but not scalable to
large size DTNs.

Meanwhile, clustering has long been considered as an
effective approach to reduce network overhead and improve
scalability. Various clustering algorithms have been investi-
gated in the context of mobile ad hoc networks. However,
none of them can be applied directly to DTN, because they are
designed for well-connected networks and require timely in-
formation sharing among nodes. A recent work [16] proposes
a DTN hierarchical routing (DHR) protocol to improve routing
scalability. DHR is based on a deterministic mobility model,
where all nodes move according to strict, repetitive patterns,
which are known by the routing and clustering algorithms.
It cannot be generalized to such networks with unknown
mobility as DTN-based peer-to-peer mobile ad hoc networks.

As discussed in [13], [17]�–[19], a node in real-life tends to
visit some locations more frequently than others. This issue
is investigated in [18] by using real user traces obtained from
Dartmouth College�’s campus. The study shows that students
spend most of their school time at several specic locations
on campus such as cafeteria, library, and study halls. It also
shows that engineering students tend to stay in the engineering
hall most of their time, while computer science students
visit the computer science hall most often. A separate study
[20] reveals that a real-life mobility pattern gives power-law-
like time distribution on the visited locations. Subsequently,
the authors of [19] introduce the community-based mobility
model, where each node has its own home location that it
visits most frequently, along with several elsewhere locations.
Clearly, if two nodes share the same home location, they
have high chance to meet each other. Thus real-life mobility
patterns naturally group mobile devices into clusters.

In this work, we investigate distributed clustering and
cluster-based routing protocols for Delay-Tolerant Mobile
Networks (DTMNs). The basic idea is to autonomously learn
unknown and possibly random mobility parameters and to
group mobile nodes with similar mobility pattern into the same
cluster. The nodes in a cluster can then interchangeably share
their resources for overhead reduction and load balancing,
aiming to achieve efcient and scalable routing in DTMN.

Clustering in DTMN is unique and non-trivial, because the
network is not fully connected. Due to the lack of contin-
uous communications, mobile nodes may have inconsistent
information and therefore respond differently. As a result, it
becomes challenging to acquire necessary information to form
clusters and ensure their convergence and stability. Although it
is largely understood by the research community that cluster-
ing helps to improve network scalability, no previous work has

1536-1276/10$25.00 c⃝ 2010 IEEE

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on June 28,2010 at 16:22:03 UTC from IEEE Xplore. Restrictions apply.

DANG and WU: CLUSTERING AND CLUSTER-BASED ROUTING PROTOCOL FOR DELAY-TOLERANT MOBILE NETWORKS 1875

been done in such emerging unique networks. Our research is
the rst effort to investigate the clustering problem and cluster-
based routing in non-deterministic intermittent environment.

In our protocol, an exponentially weighted moving average
(EWMA) scheme is employed for on-line updating nodal
contact probability, with its mean proven to converge to
the true contact probability. Subsequently, a set of functions
including Sync(), Leave(), and Join() are devised to form
clusters and select gateway nodes based on nodal contact
probabilities. Finally, the gateway nodes exchange network
information and perform routing. Extensive simulations are
carried out to evaluate the efciency of cluster-based routing.
The results show that it achieves higher delivery ratio and
signicantly lower overhead and end-to-end delay, compared
with its non-clustering counterpart.

The rest of the paper is organized as follows: Sec. II intro-
duces the distributed clustering algorithm. Sec. III proposes
cluster-based routing. Sec. IV presents simulation results and
discussions. Finally, Sec. V concludes the paper.

II. DISTRIBUTED CLUSTERING

In this section, we introduce our proposed clustering algo-
rithm for DTMN, which undergos the following steps. First,
each node learns direct contact probabilities to other nodes.
It is not necessary that a node stores contact information of
all other nodes in network. Second, a node decides to join
or leave a cluster based on its contact probabilities to other
members of that cluster. Since our objective is to group all
nodes with high pair-wise contact probabilities together, a
node joins a cluster only if its pair-wise contact probabilities
to all existing members are greater than a threshold !. A
node leaves the current cluster if its contact probabilities to
some cluster members drop below !. We will discuss more
details about this threshold later in Sec. IV. Finally, once
clusters are formed, gateway nodes are identied for inter-
cluster communications. Two clusters communicate to each
other mostly via gateways (although it is not mandatory, as to
be discussed in Sec. III).

A. Challenges and Tactics

In an intermittent environment, end-to-end connections do
not always exist. This uniqueness leads to several main chal-
lenges for clustering and routing as elaborated below:

a) Online Estimation of Contact Probabilities: Pair-wise
contact probability has been widely used as a routing param-
eter in opportunistic networks. We also make use of it in our
algorithm. However, one of the major problems in DTN is
how to obtain this parameter distributively.

A naive approach is to keep the entire meeting history. This
approach, while providing robustness, is costly in storage and
lacks agility to adapt to changes in mobility pattern. Therefore
we adopt a simple and effective approach, named exponen-
tially weighted moving average (EWMA). More specically,
Node " maintains a list of contact probabilities #!" for every
other node $, which it has met before. #!" is updated in every
time slot, according to the following rule:

#!" =

⎧
⎨

⎩

(1 − %)[#!"] + %, " '(()* $

(1 − %)[#!"], +)ℎ(-."*(,
(1)

where % is a constant parameter between 0 and 1, and [#!"] is
the old contact probability.

Clearly, this is a dynamic process, and thus #!" doesn�’t nec-
essarily equal to the actual contact probability /!" . However,
our studies show EWMA effectively yields #!" , whose mean
converges to /!" , which is important to ensure stable clusters.
Formally, we establish the following theorem.

Theorem 1: If Nodes " and $ have a probability of /!"
to meet in each time slot, EWMA yields #!" , whose mean
converges to /!" .

Proof: Consider a sequence of time slots and let #!"())
denote #!" in time slot). Clearly, the mean of #!"(1) is

0(#!"(1)) = (1− %)#!"(0) + /!"%.

Similarly, we have

0(#!"(2)) = (1− %)2#!"(0) + /!"%[1 + (1− %)],

and

0(#!"())) = (1−%)##!"(0)+/!"%[1+(1−%)+⋅ ⋅ ⋅+(1−%)#−1].

Let) → ∞, we arrive at

lim
#→∞

0(#!"())) = %/!"
1

%
= /!" ,

which depends on neither the parameter % nor the initial
value #!"(0).

Although EWMA is proven to eventually arrive at the
average which is equal to the nodal contact probability and
the convergence is independent of %, it is in fact a random
process that uctuates around its mean value. Such uctuation
may lead to an estimation error of the nodal contact probability
at a particular time. As a result, there is a trade-off in the
selection of %. A smaller % results in less errors, but at the
same time, longer delay to reach the steady state. In general,
% should be chosen according to applications and application-
specic requirements.

b) Fractional Clusters: Due to possible errors in the
estimation of contact probabilities and unpredictable sequence
of the meetings among mobile nodes, many unexpected small-
size clusters may be formed. To deal with this problem, we
employ a merging process that allows a node to join a �“better�”
cluster, where the node has a higher stability as to be discussed
in the next section. The merging process is effective to avoid
fractional clusters.

c) Inconsistent Cluster Membership and Gateway Se-
lection: The problem of inconsistency may appear in both
cluster membership and gateway selection. For example, Node
$ leaves its current cluster 2$ and joins the new cluster 2%.
Given the network with low connectivity, other members of
2$ are not timely informed of this change and thus falsely
assume that Node $ is still a cluster member. The inconsistency
problem exists also in gateway selection for a similar reason.
For instance, two nodes in the same cluster may have two
different gateways to another cluster. Or a node may lose its
gateway to an adjacent cluster because the gateway node has
left. We deal with the inconsistency problems by employing a
synchronization mechanism where nodes exchange and keep
only the most up-to-date information.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on June 28,2010 at 16:22:03 UTC from IEEE Xplore. Restrictions apply.

1876 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 6, JUNE 2010

d) Cluster Member with Low Contact Probability: A
node with a very low nodal contact probability may still
appear in the member list of another node. The main reason
is that a mobile node may change its mobility pattern in real-
life applications. For example, a student may have his/her
regular mobility pattern in a semester (i.e., visiting certain
class rooms, libraries, dormitories, cafeterias, etc.). When
entering a new semester, his/her mobility may change due to
the new/rescheduled classes and after-school activities. Similar
scenarios will happen at holidays, summer/winter breaks, or
when the student changes his/her major. When mobility pattern
changes, but the member list is yet updated, the problem stated
above may happen. A possible solution for this problem is
to use timeout for membership binding. We will discuss this
problem further in the next sections.

B. Clustering Meta-Information

Without loss of generality, a node, e.g., Node ", maintains
its ID (i.e., "), its cluster ID (denoted by Ω(")), a cluster table,
and a gateway table as its local information.

The cluster table consists of four elds, namely, Node ID,
Contact Probability, Cluster ID, and Time Stamp. Each entry
in the table is for a node ever met by Node ". For example, the
entry for Node 3 contains its contact probability with Node "
(denoted by #!&) and its cluster ID (denoted by Ω&

!). Note that
both #!& and Ω&

! are updated according to the best knowledge
of Node ", but not necessary to be always correct/accurate.
For example, #!& is generally unequal to /!& (the actual contact
probability between nodes " and 3), although they are expected
to be close, as discussed earlier. Similarly, Ω&

! may not always
be the correct cluster ID of Node 3 (i.e., Ω(3)). The Time
Stamp eld (4!&) contains the most recent clock time when
Node " meets Node 3. This eld is used for synchronization
as will be discussed later. The cluster members can be readily
obtained from the cluster table. Let 2!

' denote the set of nodes
in Cluster 5, based on the information of Node ". Clearly,
2!

' = {3∣Ω&
! = 5}.

Node " maintains its gateway information in the gateway
table, with four elds: Cluster ID, Gateway, Contact Prob-
ability, and Time Stamp. The Cluster ID eld contains the
list of clusters known by ". For each cluster, e.g., Cluster 5,
the Gateway eld includes the ID of the gateway (denoted
by 6'

!), while the Contact Probability eld (7'!) indicates the
highest contact probability between the gateway 6'

! and any
node in Cluster 5. Similarly, 6'

! and 7'! are updated according
to the best knowledge of Node ", and thus not necessary to be
network-wide correct/accurate. Finally, the Time Stamp eld
contains the most recent time when the entry is updated.

C. Distributed Clustering Algorithm

The key part of the algorithm lies on the meeting event
between any pair of nodes. A node then decides its actions
subsequently. Specically, a node will join a new cluster if
it is qualied to be a member. Similarly, a node leaves its
current cluster if it joins a new cluster, or it is no longer
qualied to be in the current cluster. When two member nodes
meet, they trigger the synchronization process to update their
information. To this end, we dene three main functions,

namely Join, Leave, and Sync for the algorithm. During
initialization, Node " creates a cluster that consists of itself
only and two empty tables. Its cluster ID is set to be its node
ID appended with a sequence number, i.e., Ω(") =i:Seq. Each
node maintains its own sequence number, which increases
by one whenever the node creates a new cluster, to avoid
duplication. The algorithm is event-driven. Hereafter, Node
" waits for three possible events, i.e., Slot-Timeout, Meet-A-
Node, and Gateway-Outdate.

1) Slot-Timeout Event: Update Contact Probability: A
Slot-Timeout event is generated by the end of every time slot,
triggering the process of updating the contact probabilities by
using the EWMA scheme discussed in Sec. II-A (i.e., Eq. 1).

Once the contact probabilities are updated, the GatewayUp-
date() procedure is invoked to update the gateway table.
As discussed earlier, the gateway table maintains a list of
gateways to each cluster. Since Node " has updated its contact
probabilities to all nodes, it may potentially choose better
gateways. During this procedure, the following three cases are
considered:

∙ Case 1: Consider an entry in the gateway table, e.g., for
Cluster 5. If Node " is not the gateway to Cluster 5 (i.e.,
6'

! ∕= "), it looks up the cluster table to identify Node
3, to which it has the highest contact probability, among
all nodes in Cluster 5, i.e., #!& ≥ #!&′ , ∀3, 3′ ∈ 2!

'. If
#!& > 7'! (the current gateway probability), the entry is
updated, by setting 6'

! = 3, 7'! = #!& , and 4 '
! to be the

current clock time.
∙ Case 2: Still consider an entry for Cluster 5 in the gateway

table of Node ". If Node " itself is the gateway (i.e.,
6'

! = "). While Node " still identies Node 3 with the
highest contact probability as discussed above. If #!& ≥ !̂
(the gateway threshold), the entry is updated by setting
6'

! = 3, 7'! = #!& , and 4 '
! to be the current clock time;

otherwise 6'
! = 9/;, 7'! = 0, and 4 '

! = 9/; (or simply
removes the entry). This is particularly important to keep
the gateway information up-to-date.
An example is shown in Fig. 1, where Nodes " and 3
were the gateways between their clusters before Node
3 joins another cluster, without notifying the change to
Node ". If they meet again, Node " learns the change from
Node 3 and thus updates its tables; otherwise, if they do
not meet each other for a long time, #!& becomes lower
than !̂. In either case, Node "�’s gateway table should be
updated correctly by using the above procedure.

∙ Case 3: Node " also checks the cluster table for possible
new clusters not included in its current gateway table. If
a new cluster is found, it will be added into the gateway
table.

2) Meet-A-Node Event: Update Cluster Information: The
Meet-A-Node event is generated upon receiving the Hello
message (exchanged between two meeting nodes, " and $).
A series of actions will be taken at both sides as elaborated
below.

If Nodes " and $ are in the same cluster, i.e., Ω(") = Ω($),
the membership check function is invoked to verify if they
are still qualied to stay in the same cluster. Specically,
if #!" ≥ !, they continue to stay in the same cluster, and
perform the synchronization of their cluster information. The

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on June 28,2010 at 16:22:03 UTC from IEEE Xplore. Restrictions apply.

DANG and WU: CLUSTERING AND CLUSTER-BASED ROUTING PROTOCOL FOR DELAY-TOLERANT MOBILE NETWORKS 1877

i 000240.35

 0

c

c
k

k
i

Cluster c

Cluster c�’

Fig. 1. Update of the gateway table.

xx
z

Routing Table

z

i
j

Routing Table

yy 0.20
z

(c) Multi Hop Inter Cluster Routing

k k
1 2

k
3 k

4

CCPCCP
CCP CCP

i

Cluster z

j

Cluster yCluster x

i
j

kGi

i
j

(a) Intra Cluster Routing (b) One Hop Inter Cluster Routing

y
yy

z

Routing Table

y
0.12x

z 0.20
y 0.12
x

y

0.12x
z 0.20

y
yx

xx
z

Routing Table

z

Fig. 2. Cluster-based routing.

Sync() procedure includes two steps for synchronizing cluster
members and gateways, respectively.

∙ Synchronization of Cluster Members: Note that, although
Ω(") = Ω($), 2!

Ω(!) and 2"
Ω(") (the lists of cluster mem-

bers at nodes " and $, respectively) are not necessarily
identical, because the clustering is distributed and thus
Nodes " and $ may maintain different cluster information
before the clustering procedure is converged. The basic
idea of synchronization is to update the membership
based on the latest information of Nodes " and $.
More specically, Node " sends to Node $ a set of its
current cluster members along with the time stamps, i.e.,
Ψ = {(3, 4 &

!)∣3 ∈ 2!
Ω(!)}. Upon receiving Ψ, Node $

divides it into two subsets based on time stamps, Ψ1 =
{(3, 4 &

!)∣3 ∈ 2!
Ω(!), 3 ∕∈ 2"

Ω("), 4
&
! > 4 &

" } and Ψ2 =

{(3, 4 &
!)∣3 ∈ 2!

Ω(!), 3 ∕∈ 2"
Ω("), 4

&
! < 4 &

" }. The former is
the set that Node " has newer information (as 4 &

! > 4 &
"),

while Node $�’s information on the latter is newer. As a
result, Node $ updates its cluster table according to Ψ1,
by setting Ω&

" = Ω(") = Ω($), ∀3 ∈ Ψ1.
Meanwhile, it sends {(3,Ω&

")∣3 ∈ Ψ2} to Node ", which
in turn updates its cluster table by setting Ω&

! = Ω&
" , ∀3 ∈

Ψ2. Node $ in turn sends its current cluster members to

Node " for a similar process.
∙ Synchronization of Gateways: Nodes " and $ may have

different gateways to the same cluster(s) in their gate-
way tables. Thus synchronization is needed to keep the
�“better�” one with higher contact probability. For each
of such clusters, the node whichever has lower contact
probability gives up, and updates its gateway table. For
example, consider Cluster 5 and assume 7'! < 7'" . Then,
Node " updates its gateway table by setting 6'

! = 6'
" and

7'! = 7'" . However, the Time Stamp, 4 '
! , is not updated,

unless Node $ is the gateway itself.
If Nodes " and $ don�’t pass the membership check, one of

them must leave the cluster. Two issues are involved in the
Leave() procedure. First, we identify the leaving node based
on its stability, dened as its minimum contact probability with
its cluster members, i.e., '"={#!&∣3 ∈ 2Ω(!)} for Node ". The
node with lower stability leaves. It indicates the likelihood
that the node will be excluded from the cluster due to its
low contact probability. If there is a tie, the node with higher
ID is chosen. Second, the leaving node creates a new cluster
that consists of itself only. It keeps the current cluster table,
because all information in the table is still valid, and resets
the gateway table to be empty. Then, it sends its new cluster
ID to the other node to update the cluster table accordingly.

If Ω(") ∕= Ω($), Nodes " and $ consider whether or not to
join each other�’s cluster. The Join() procedure is employed for
a node to join a better cluster or to merge two separate clusters.
It includes three steps. First, they exchange their member list
(i.e., 2!

Ω(!) and 2"
Ω(")) and perform membership check. For

example, Node " calculates #!& , ∀3 ∈ 2"
Ω("). If any #!& is

less than !, the membership check procedure returns false. If
none of them pass the membership check, no further action
is taken. If a node passes, it goes ahead to perform Join()
function. If both nodes pass, the one with lower stability joins
the other cluster. Second, the selected node updates its cluster
ID and cluster table. For example, assume Node " joins Node
$�’s cluster. It sets Ω(") = Ω($), and Ω&

! = Ω($), ∀3 ∈ 2"
Ω(").

Third, it copies the gateway table from Node $.
3) Gateway-Outdate Event: Reset Gateway: When the

Time Stamp of any entry in the gateway table is older than a
threshold, Δ, a Gateway-Outdate Event is generated for that
entry. For example, if)−4 '

! > Δ where) is the current clock
time, the gateway 6'

! is likely lost. Thus the gateway table
entry for Cluster 5 is reset, by letting 6'

! = 9/;, 7'! = 0, and
4 '
! = 9/;.
Based on the above methods for updating contact proba-

bilities, cluster and gateway tables, the proposed distributed
clustering protocol always arrives at fast converged and stable
clusters that comprise nodes with similar mobility patterns, as
demonstrated in our extensive simulations.

III. CLUSTER-BASED ROUTING

Once the clustering procedure is nished, each node in the
network is associated with a cluster. For any two clusters
whose members have high enough contact probability (≥ !̂),
a pair of gateway nodes are identied to bridge them. In this
section, we discuss how to route data messages efciently in
DTN, by utilizing the clusters and gateways.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on June 28,2010 at 16:22:03 UTC from IEEE Xplore. Restrictions apply.

1878 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 6, JUNE 2010

Consider Node ", which intends to send a data message to
Node $. Node " looks up its cluster table to nd the cluster
ID of Node $, i.e., Ω"

! . According to Ω"
! , three scenarios are

considered: intra-cluster routing, one-hop inter-cluster routing,
and multi-hop inter-cluster routing. Note that, these three
scenarios are outlined for a better understanding. In a real
implementation, message forwarding from a node to one an-
other is determined upon the meeting event between them. For
instance, when Node " meets node $, " will forward messages
destined to $ if it is carrying any, without considering cluster
information. In the mean time, " will forward Message > to
$ if the cluster of $ is in the path of > .

A. Intra-cluster Routing

If Ω"
! = Ω("), Nodes " and $ are in the same cluster (see

Fig. 2(a)). Since all nodes in a cluster have high contact
probability, direct transmission is employed here. In other
words, Node " transmits the data message only when it meets
Node $. No relay node is involved in such intra-cluster routing.

B. One-hop Inter-cluster Routing

If Ω"
! ∕= Ω("), Node " looks up its gateway table. If an entry

for Ω"
! is found, there exists a gateway, i.e., 6

Ω!
"

! , to Node
$�’s cluster. In this scenario, Node " sends the data message

to its gateway 6
Ω!

"
! . Upon receiving the data message, the

gateway looks up its gateway table to nd Node $�’s cluster ID.
Whenever, it meets any node, e.g., Node 3, in Node $�’s cluster,
it forwards the message to Node 3, which in turn delivers
the data message to Node $ through intra-cluster routing as

discussed above. Since Node 6
Ω!

"
! is the gateway, it has high

probability to meet at least one node in Node $�’s cluster. Note
that, Node 3 in Fig. 2(b) is not necessary to be the gateway

node (that pairs with Node 6
Ω!

"
! for these two clusters).

C. Multi-hop Inter-cluster Routing

If Ω"
! ∕= Ω(") and Node " doesn�’t nd Ω"

! in its gateway
table, the approaches discussed so far will fail to deliver the
data message, because the destination (Node $) is not in any
cluster that is reachable by Node "�’s gateways. As a result, the
data transmission from Node " to Node $ needs to be devised
for multi-cluster routing.

Given the low connectivity in delay-tolerant mobile net-
works, on-demand routing protocols do not work effectively
here, because the ooding-based on-demand route discovery
leads to extremely high packet dropping probability, as shown
in [6]. On the other hand, any table-driven routing algorithms
may be employed for multi-hop inter-cluster routing. For
simplicity, a link-state-like routing scheme is used as an
example in the following discussions.

In the protocol, every gateway node builds and distributes
a Cluster Connectivity Packet (CCP) to other gateways in the
network. The CCP of Gateway " comprises its cluster ID,
and a list of clusters to which it serves as the gateway and the
corresponding contact probabilities, i.e., {(5, 7'!) ∣ ∀6'

! = "}.
Such information can be readily obtained from the gateway
table. Examples of CCP are shown in Fig. 2(c). Note that

C

H2

H3

H4H5

H1

(a)

(b)

Home

P

P

1− PH H

P

H1− P − P

H

Elsewhere

PH

Cold

C

C 1 − PH

Fig. 3. Community-based mobility model.

the actual implementation of CCP also includes a sequence
number to eliminate outdated information.

Once a gateway node accumulates a sufcient set of CCP�’s,
it constructs a network graph. Each vertex in the graph stands
for a cluster. A link connects two vertices if there are gateways
between these two clusters. The weight of the link is the
contact probability of the corresponding gateway nodes. Based
on the network graph, a shortest path algorithm is employed to
nd routing paths and establish the routing table. Each entry in
the routing table consists of the ID of a destination cluster and
the ID of the next hop cluster, in order to reach the destination.
Examples of the routing table are also shown in Fig. 2(c).

Now let�’s see how to deliver the data messages according
to the routing table. Again, assume Node " intends to send
a data message to Node $. If Node " is a gateway (e.g. it is
Node 31 in Fig. 2(c)), it simply looks up its routing table to
nd the destination cluster (Ω"

!) and the corresponding next
hop cluster, denoted by 2()*#. If Node " is not a gateway, it
doesn�’t maintain the routing table and thus has no clue about
routing. As a result, it asks the rst gateway node it meets
for routing information, 2()*#. In either case, once 2()*# is
known by Node ", one-hop inter-cluster routing is employed
to send the data message to any node in 2()*#. The above
procedure repeats until the data messages are delivered to the
destination, Node $.

D. Load Balancing

Load balancing is an effective enhancement to the proposed
routing protocol. The basic idea is to share trafc load among

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on June 28,2010 at 16:22:03 UTC from IEEE Xplore. Restrictions apply.

DANG and WU: CLUSTERING AND CLUSTER-BASED ROUTING PROTOCOL FOR DELAY-TOLERANT MOBILE NETWORKS 1879

cluster members in order to reduce the dropping probability
due to queue overow at some nodes. Sharing trafc inside a
cluster is reasonable, because nodes in the same cluster have
similar mobility pattern, and thus similar ability to deliver
data messages. Whenever the queue length of a node exceeds
a threshold, denoted by Λ, it starts to perform load balancing.
More specically, it randomly transmits as many messages as
possible to any node it meets, until their queues are equally
long or the latter�’s queue becomes longer than Λ.

IV. SIMULATIONS

A. Mobility Model

We adopt the community-based mobility model introduced
in [13], [19], but with modications to make it closer to reality.
Herein, we suppose there are ve hot spots and a cold spot
denoted as ?1−?5 and 2, respectively as shown in Fig. 3(a).
The number of spots is chosen mainly due to the research
results obtained from real user mobility traces as described
in [18], [21]. We further assume that all communications can
be done only by nodes in the same hot spot and there is no
communication in the cold spot. The assumption is reasonable
because a hot spot may be a study hall or a library where
students stay together long enough for communication, while
cold spot is just a transition state between two hot spots.

In the model, we also assume that each mobile node has a
�“home�” hot spot where it spends most of its time. For example,
a computer science student is likely to choose the computer
science hall to be its home spot. When the node is at home,
it has a probability of @+ to stay, and 1−@+ to leave, in the
next time slot. In our model, when a node leaves its home, it
always goes to the cold spot. While at the cold spot, it might
go home with probability of @+ , or stay at that state with
probability of @, (@, < 1 − @+), or move to another hot
spot with probability of 1−@+ −@, . Finally, when the node
is at a hot spot that is not its home, it chooses to stay there with
probability of 1−@+ or to move back to the cold state at the
probability of @+ . The transition probabilities are depicted in
Fig. 3(b). In our simulations, we set @+ = 0.7 and @, = 0.1.
We now arrive at a typical Markov chain mobility model. Let
A(!)
+ , A(!)

, , and A(!)
- be the steady state probabilities of node " in

home state, cold state, and elsewhere state (any other hot spot),
respectively. From Markov chain theory, we have: A(!)

+ =
. 2

#
.#+(1−.#−.$)(1−.#) , A(!)

, = .# (1−.#)
.#+(1−.#−.$)(1−.#) , and

A(!)
- = (1−.#)(1−.#−.$)

.#+(1−.#−.$)(1−.#) . Those steady probabilities, as
to be discussed next, are useful indicators for the selection of
clustering threshold ! as well as gateway threshold !̂.

B. Simulation results

We compare our protocol with a widely known �“at�” rout-
ing protocol, namely Prophet, under the same conditions given
in [13] to demonstrate the effectiveness of clustering in DTN
routing. We choose Prophet because it uses a similar mobility
model, and is also a no-duplication data message routing
protocol. Our metrics for evaluation and comparison include
the message delivery ratio (i.e., the successfully delivered mes-
sages over the total generated messages), the average message
end-to-end delay, and the average number of control messages

for a successful delivered data message. In the simulations,
we assume packet loss of 10%, due to noise/interference in
wireless channel. A data message will be dropped in the
following cases: (i) when it is transmitted from one node to
another if it is affected by channel noise/interference, and (ii)
when it reaches a new node but the queue of that node is full.

We have carried out our simulation under different scenarios
to study the impact of different network parameters on the
network performance. Two queue management scenarios are
considered. In the rst scenario, FIFO queue is employed at
each node as it is originally used in Prophet. In the second
scenario, we employ a simple queue management as follows.
Consider Node " in meeting with Node $, (i) Node " rst
sends a message directly to node $ if it has one destined to $
regardless of cluster information; (ii) Node " sends a message
to $ if it has a message to another node in $�’s cluster, when
" and $ are in different clusters; (iii) Node " sends a message
to $ if $ is a gateway to (a) adjacent cluster that contains the
destination of the message or (b) $ is a cluster in the path of
the message (in multi-hop inter-cluster routing). Meanwhile, a
similar queuing principle is adopted for Prophet: when Node
" meets Node $, Node " will select a message that $ has the
highest probability to reach its destination to forward to $
(including $ itself).

We also assume data messages are generated in a Poisson
process. A random destination is chosen for each message.
We repeat each simulation for 5 times and show the average
results. In each simulation run, the simulation time is 10000
seconds and the warm up time is 500 seconds. Note that
both protocols need warm up time. Our cluster-based protocol
needs the warm-up period to form clusters, while Prophet
needs it to initialize delivery probabilities.

In the rst simulation, we study the impact of queue size.
Herein, we set the number of nodes to be 50, the data
generation rate 0.1, the clustering threshold 0.6, and the
gateway threshold 0.1. Every node has the same maximum
queue size, which varies from 20 to 200 during the simulation.
As shown in Fig. 4, our cluster-based routing protocol yields
much higher overall delivery ratio (Fig. 4(a)). The higher
delivery ratio is due to several reasons, including our load
balancing implementation as discussed in the previous section.
When the queue of a node is almost full, it will ask other
members in the cluster to carry some of its data messages,
resulting in low drop rate at each single node.

Fig. 4(b) shows the message end-to-end delay. As can
be seen, the end-to-end delay of a message in Prophet is
increasing almost linearly with the increase of queue size
while cluster-based routing protocol gives shorter delay, and
the increment is slower with longer queue size. The reason lies
on the difference in message forwarding mechanisms. That
is, in Prophet, a node always forwards its data message to
the meeting node if it has higher delivery probability to the
destination of that message even though its own probability
to that destination is also high. The message, when arriving
at the new node, needs to be queued again, leading to longer
queuing time in total. In cluster-based routing, in contrary, if
the node has high probability to meet the destination of the
message, it will wait for a direct transmission, as described
in intra-cluster routing in the previous section, to save the

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on June 28,2010 at 16:22:03 UTC from IEEE Xplore. Restrictions apply.

1880 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 6, JUNE 2010

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Queue Size

D
el

iv
er

y
R

at
io

Clustering
Prophet
Clustering with FIFO queue
Prophet with FIFO queue

(a) Delivery Ratio

20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

Queue Size

A
ve

ra
ge

 E
nd

to
E

nd
 M

es
sa

ge
 D

el
ay

Clustering
Prophet
Clustering with FIFO queue
Prophet with FIFO queue

(b) End-to-End Delay

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Queue Size

C
on

tro
l M

es
sa

ge
s

pe
r R

ec
ei

ve
d

M
es

sa
ge

Clustering with FIFO queue
Clustering
Prophet
Prophet with FIFO queue

(c) Control Message

Fig. 4. Impact of queue size.

20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
el

iv
er

y
R

at
io

Number of Nodes

Clustering
Prophet
Clustering with FIFO queue
Prophet with FIFO queue

(a) Delivery Ratio vs. Number of Nodes

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message Generation Rate

D
el

iv
er

y
R

at
io

Clustering
Prophet
Clustering with FIFO queue
Prophet with FIFO queue

(b) Delivery Ratio vs. Generation Rate

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
el

iv
er

y
R

at
io

Clustering Threshold

(c) Delivery Ratio vs. Clustering Threshold !

Fig. 5. Impact of other parameters.

queuing time. Furthermore, for a destination in a different
cluster, cluster-based routing uses cluster-to-cluster forwarding
scheme, that is predictably shorter than hop-to-hop routing
used in Prophet.

Another network metric for evaluation is the number of
exchanged control messages in order to successfully deliver
a data message. It is expected that the total control messages
in the cluster-based routing protocol is higher than that of
Prophet, because it needs to not only learn the contact proba-
bilities, but also exchange clustering and gateway information.
However, with higher efciency in data delivery, the total
number of delivered messages in cluster-based routing is much
higher than that of Prophet. As a result, the number of control
messages per successful data message of cluster-based routing
is lower than that of Prophet, as shown in Fig. 4(c).

In the second simulation, we study the scalability of cluster-
based routing protocol by varying the number of nodes
(Fig. 5(a)) and the data message generation rate (Fig. 5(b))
while xing the queue size to 100. Note that, in this simula-
tion, we show only message delivery ratio instead of all three
metrics since it is the most important metric and the other
metrics show the same trend. Fig. 5(a) shows the average
delivery ratio when the number of nodes increases from 20
to 100 (while the data generation rate is still 0.1). Both
protocols tend to increase their delivery ratio when network
density increases. With more nodes in network, trafc load is
higher, potentially leading to bottlenecks at some nodes, thus
degrading the network performance. However, if the network
is balanced, the more nodes in network, the more routes to
deliver messages, thus improving the network performance. In

our simulation, we observe increase in delivery ratio in both
protocols. However, with balancing mechanism, the delivery
ratio of cluster-based routing protocol is always much higher
than that of Prophet. Nevertheless, the delivery ratio in both
protocols, as shown in Fig. 5(b), is degraded when the data
generation rate increases. The degradations slow down when
they reach a certain point, which, we believe, depends on the
mobility pattern.

The last simulation is for the study of thresholds used in
the protocols. ! and !̂ are two critical parameters in our
cluster-based routing protocol, dictating cluster formation and
gateway selection. In general, the optimization of ! and !̂
is an challenging and complicated problem, depending on
several parameters such as trafc load, data queue size, and
nodal contact probabilities. We plan to investigate this problem
analytically in our future research. Meanwhile, we have done
simulations by varying ! and !̂, in order to observe their
impact on the network performance. For example, Fig. 5(c)
shows the results of !. While ! varies from 0 to 1, we observe
that the maximum delivery ratio is achieved when ! is around
0.4. Now, let us revisit our discussion about community-based
mobility model. We know that nodes in the same cluster
usually have the same home location where they spend most
of their time and learn their pair-wise contact probabilities.
The average contact probability between Node " and Node $
would be /!" = A(!)

+ ∗ A(")
+ = 0.451 that is very close to the

optimal value of ! observed in the simulation.
Although the value of ! depends on network parameters

and is not universally valid, it shows the existence of global
optimal. With no proof, we argue that this observation is

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on June 28,2010 at 16:22:03 UTC from IEEE Xplore. Restrictions apply.

DANG and WU: CLUSTERING AND CLUSTER-BASED ROUTING PROTOCOL FOR DELAY-TOLERANT MOBILE NETWORKS 1881

reasonable. More specically, when ! is very low, all nodes
are grouped into a single cluster and thus only intra-cluster
transmission is enabled. As a result, the performance is likely
degraded, since some nodes may have very low contact
probability and thus are unable to transmit data to each other
without relay. If ! is high, almost every node claims itself
as a cluster. Consequently, it turns into the non-clustering
approach, which has lower performance as we discussed
above. Similar observation is also obtained for !̂. Thus the
results are omitted.

V. CONCLUSION

We have investigated clustering and cluster-based routing
in DTMN. The basic idea is to let each mobile node to learn
unknown and possibly random mobility parameters and join
together with other mobile nodes that have similar mobility
pattern into a cluster. The nodes in a cluster can then in-
terchangeably share their resources for overhead reduction
and load balancing in order to improve overall network
performance. Due to the lack of continuous communications
among mobile nodes and possible errors in the estimated nodal
contact probability, convergence and stability become major
challenges in distributed clustering in DTMN. To this end,
an exponentially weighted moving average (EWMA) scheme
has been employed for on-line updating the contact proba-
bilities, with its mean proven to converge to the true contact
probability. Based on contact probabilities, a set of functions
including Sync(), Leave(), and Join() has been devised for
cluster formation and gateway selection. Finally, the gateway
nodes exchange network information and perform routing.
Extensive simulations have been carried out to evaluate the
efciency of the proposed cluster-based routing protocol. The
results have shown that it achieves higher delivery ratio and
signicantly lower overhead and end-to-end delay, compared
with its non-clustering counterpart.

REFERENCES

[1] K. Fall, �“A delay-tolerant network architecture for challenged Internets,�”
in Proc. ACM SIGCOMM, pp. 27�–34, 2003.

[2] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst,
K. Scott, and H. Weiss, �“Delay-tolerant networking�—an approach to
interplanetary Internet,�” IEEE Commun. Mag., vol. 41, no. 6, pp. 128�–
136, 2003.

[3] http://www.princeton.edu/ mrm/zebranet.html.
[4] T. Small and Z. J. Haas, �“The shared wireless infostation model: a new

ad hoc networking paradigm (or where there is a whale, there is a way),�”
in Proc. MobiHOC, pp. 233�–244, 2003.

[5] T. Small and Z. J. Haas, �“Resource and performance tradeoffs in delay-
tolerant wireless networks,�” in Proc. ACM SIGCOMM Workshop on
Delay Tolerant Networking and Related Topics, pp. 260�–267, 2005.

[6] Y. Wang and H. Wu, �“DFT-MSN: the delay fault tolerant mobile sensor
network for pervasive information gathering,�” in Proc. 26th Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM�’07), pp. 1235�–1243, 2006.

[7] Y. Wang and H. Wu, �“Delay/fault-tolerant mobile sensor network (DFT-
MSN): a new paradigm for pervasive information gathering,�” IEEE
Trans. Mobile Computing, vol. 6, no. 9, pp. 1021�–1034, 2007.

[8] Y. Wang, H. Wu, F. Lin, and N.-F. Tzeng, �“Cross-layer protocol design
and optimization for delay/fault-tolerant mobile sensor networks,�” IEEE
J. Sel. Areas Commun, vol. 26, no. 5, pp. 809�–819, 2008. (A preliminary
version was presented at IEEE ICDCS�’07.)

[9] H. Wu, Y. Wang, H. Dang, and F. Lin, �“Analytic, simulation, and
empirical evaluation of delay/fault-tolerant mobile sensor networks,�”
IEEE Trans. Wireless Commun., vol. 6, no. 9, pp. 3287�–3296, 2007.

[10] M. Musolesi, S. Hailes, and C. Mascolo, �“Adaptive routing for in-
termittently connected mobile ad hoc networks,�” in Proc. IEEE 6th
International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WOWMOM), pp. 1�–7, 2005.

[11] J. LeBrun, C.-N. Chuah, and D. Ghosal, �“Knowledge based opportunis-
tic forwarding in vehicular wireless ad hoc networks,�” in Proc. IEEE
Vehicular Technology Conference (VTC) Spring, pp. 1�–5, 2005.

[12] W. Zhao, M. Ammar, and E. Zegura, �“A message ferrying approach for
data delivery in sparse mobile ad hoc networks,�” in Proc. MobiHOC,
pp. 187�–198, 2004.

[13] A. Lindgren, A. Doria, and O. Scheln, �“Probabilistic routing in inter-
mittently connected networks,�” in Proc. First International Workshop on
Service Assurance with Partial and Intermittent Resources, pp. 239�–254,
2004.

[14] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot,
�“Pocket switched networks and human mobility in conference envi-
ronments,�” in Proc. ACM SIGCOMM Workshop on DTN and Related
Topics, pp. 244�–251, 2005.

[15] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, �“Spray and wait: an
efcient routing scheme for intermittently connected mobile networks,�”
in Proc. ACM SIGCOMM Workshop on DTN and Related Topics,
pp. 252�–259, 2005.

[16] C. Liu and J. Wu, �“Scalable routing in delay tolerant networks,�” in Proc.
ACM MobiHoc, 2007.

[17] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
�“Impact of human mobility on the design of opportunistic forwarding
algorithms,�” in Proc. IEEE INFOCOM, pp. 1�–13, 2006.

[18] M. Kim, D. Kotz, and S. Kim, �“Extracting a mobility model from real
user traces,�” in Proc. IEEE INFOCOM, pp. 1�–13, 2006.

[19] T. Spyropoulos, K. Psounis, and C. Raghavendra, �“Performance analysis
of mobility-assisted routing,�” in Proc. MobiHoc �’06: 7th ACM Inter-
national Symposium on Mobile Ad Hoc Networking and Computing,
pp. 49�–60, 2006.

[20] J. Leguay, T. Friedman, and V. Conan, �“DTN routing in a mobility
pattern space,�” in Proc. WDTN �’05: 2005 ACM SIGCOMM Workshop
on Delay-tolerant Networking, pp. 276�–283, 2005.

[21] http://www.cs.dartmouth.edu/ campus/data.html.

Ha Dang received his B.E. degree in Computer En-
gineering from Hanoi University of Technology in
1999 and M.S. degree from University of Louisiana
at Lafayette in 2005. He earned his Ph.D. in Com-
puter Science from The Center for Advanced Com-
puter Studies, University of Louisiana at Lafayette
in 2009. His research interests include mobile ad hoc
networks, wireless sensor networks, and distributed
systems.

Hongyi Wu (M�’02) received his Ph.D. degree in
Computer Science and M.S. degree in Electrical
Engineering from State University of New York
(SUNY) at Buffalo in 2002 and 2000, respectively.
He received his B.S. degree in Scientic Instruments
from Zhejiang University in 1996. He is currently
an Associate Professor at The Center for Advanced
Computer Studies (CACS), University of Louisiana
(UL) at Lafayette. His research interests include
wireless mobile ad hoc networks, wireless sensor
networks, next generation cellular systems, and in-

tegrated heterogeneous wireless systems. He received NSF CAREER Award
in 2004.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on June 28,2010 at 16:22:03 UTC from IEEE Xplore. Restrictions apply.

