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Abstract— This paper focuses on the Delay/Fault-Tolerant Mo-
bile Sensor Network (DFT-MSN) for pervasive information gath-
ering. We develop simple and efficient data delivery schemes
tailored for DFT-MSN, which has several unique characteristics
such as sensor mobility, loose connectivity, fault tolerability,
delay tolerability, and buffer limit. We first study two basic
approaches, namely, direct transmission and flooding. We analyze
their performance by using queuing theory and statistics. Based
on the analytic results that show the tradeoff between data
delivery delay/ratio and transmission overhead, we introduce an
optimized flooding scheme that minimizes transmission overhead
in flooding. Then, we propose a simple and effective DFT-MSN
data delivery scheme, which consists of two key components
for data transmission and queue management, respectively. The
former makes decision on when and where to transmit data
messages based on the delivery probability, which reflects the
likelihood that a sensor can deliver data messages to the sink.
The latter decides which messages to transmit or drop based
on the fault tolerance, which indicates the importance of the
messages. The system parameters are carefully tuned on the basis
of thorough analyses to optimize network performance. Extensive
simulations are carried out for performance evaluation. Our
results show that the proposed DFT-MSN data delivery scheme
achieves the highest message delivery ratio with acceptable delay
and transmission overhead.

I. INTRODUCTION

Pervasive information gathering plays a key role in many
applications. One typical example is flu virus tracking, where
the goal is to collect data of flu virus in the area with high
human activities in order to monitor and prevent the explosion
of devastating flu. Another example is air quality monitoring
for tracking the average toxic gas taken by people every-
day. The aforementioned applications share several unique
characteristics. First, the data gathering is human-oriented.
More specifically, while samples can be collected at strategic
locations for flu virus tracking or air quality monitoring, the
most accurate and effective measurement shall be taken at
the people, making it a natural approach to deploy wearable
sensing units that closely adapt to human activities. Note that,
while concerns may be raised over personal privacy, it is a
separate issue which is out the scope of this paper. Second,
we observe that delay and faults are usually tolerable in such
applications, which aim at gathering massive information from
a statistic perspective and to update the information base
periodically. In addition, this information gathering should be
transparent, without any interference on people’s daily lives.

For example, a person should not be asked to take special
actions (e.g., to move to a specific location) to facilitate
information acquisition and delivery.

Information gathering relies on sensors. The mainstream
approach is to densely deploy a large number of small, highly
portable, and inexpensive sensor nodes with low power, short
range radio to form a connected wireless mesh network.
The sensors in the network collaborate together to acquire
the target data and transmit them to the sink nodes [1].
This approach, however, may not work effectively in the
aforementioned application scenarios, because the connectivity
between the mobile sensors is poor, and thus it is difficult to
form a well connected mesh network for transmitting data
through end-to-end connections from the sensor nodes to the
sinks.

In this research, we study a Delay/Fault-Tolerant Mobile
Sensor Network (DFT-MSN) for pervasive information gather-
ing. A DFT-MSN consists of two types of nodes, the wearable
sensor nodes and the high-end sink nodes. The former are
attached to people, gathering target information and forming
a loosely connected mobile sensor network for information
delivery (see Fig. 1 for mobile sensors S1 to S10 scattered
in the field, where only S2 and S3, S4 and S5, and S6 and
HES2 can communicate with each other at this moment).
Since the transmission range of a sensor is usually short, it
cannot deliver the collected data to the destination (e.g., a
data server) directly. As a result, a number of high-end nodes
(e.g., mobile phones or personal digital assistants with sensor
interfaces) are either deployed at strategic locations with high
visiting probability or carried by a subset of people, serving
as the sinks to receive data from wearable sensors and forward
them to access points of the backbone network (see HES1 and
HES2 in Fig. 1). It is assumed that the high-end nodes that
serve as sinks may connect to backbone access points all the
time if necessary. With its self-organizing ability, DFT-MSN
is established on an ad hoc basis without pre-configuration.

Although it is with similar hardware components, DFT-
MSN distinguishes itself from conventional sensor networks
by the following unique characteristics:

• Nodal mobility: The sensors and the sinks are attached
to people with various types of mobility. Thus the net-
work topology is dynamic (similar to the mobile ad hoc
network).
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Fig. 1. An overview of DFT-MSN. S1-S10: mobile sensors; HES1-HES2: high end sensors (sinks); AP1-AP9: access points of the backbone
network.

• Sparse connectivity: The connectivity of DFT-MSN is
very low, forming a sparse sensor network where a sensor
is connected to other sensors only occasionally.

• Delay tolerability: Data delivery delay in DFT-MSN is
high, due to the loose connectivity among sensors. Such
delay, however, is usually tolerable by the applications
that aim at pervasive information gathering from a statis-
tic perspective.

• Fault tolerability: Redundancy (e.g., multiple copies of
a data message) may exist in DFT-MSN during data
acquisition and delivery. Thus, a data message may be
dropped without degrading the performance of informa-
tion gathering.

• Limited buffer: Similar to other sensor networks, DFT-
MSN consists of sensor nodes with limited buffer space.
This constraint, however, has a higher impact on DFT-
MSN, because the sensor needs to store data messages in
its queue for a much longer time before sending them to
another sensor or the sink, exhibiting challenges in queue
management.

In addition, DFT-MSN also shares characteristics of other
sensor networks such as the short radio transmission range
and the low computing capability.

DFT-MSN is fundamentally an opportunistic network,
where communication links exist with certain probabilities. In
such a network, replication is necessary for data delivery in
order to achieve certain success ratio. Clearly, replication also
increases the transmission overhead. Thus it is a key issue to
deal with the trade-off between data delivery ratio/delay and
overhead in DFT-MSN.

This paper focuses on the development of simple and
efficient data delivery schemes, tailored for DFT-MSN with the
above unique characteristics. Motivated by the Delay-Tolerant
Network (DTN) [2] and pertinent work to be discussed in
Sec. II, we first study two basic approaches, namely, direct
transmission and flooding. We analyze their performance by
using queuing theory and statistics. Based on the analytic
results that show the tradeoff between data delivery delay/ratio
and transmission overhead, we introduce an optimized flood-

ing scheme that minimizes transmission overhead in flooding.
Then, we propose an efficient DFT-MSN data delivery scheme,
which consists of two key components for data transmission
and queue management, respectively. The former makes deci-
sion on when and where to transmit data messages based on
the delivery probability, which signifies the likelihood that a
sensor can deliver data messages to the sink. The latter decides
which messages to transmit or drop based on fault tolerance,
which indicates the importance of the messages. The system
parameters are carefully tuned based on thorough analyses
to optimize network performance. Extensive simulations are
carried out for performance evaluation. Our results show that
the proposed DFT-MSN data delivery scheme achieves the
highest message delivery ratio with acceptable delay and
transmission overhead.

The rest of the paper is organized as follows: Sec. II
discusses related work. Sec. III presents our studies on two
basic approaches. Sec. IV introduces the proposed DFT-MSN
data delivery scheme and presents the simulation results and
discussion. Finally, Sec. V concludes the paper.

II. RELATED WORK

The Delay-Tolerant Network (DTN) is an occasionally
connected network that may suffer from frequent partitions
and that may be composed of more than one divergent set
of protocol families [2]. DTN originally aimed to provide
communication for the Interplanetary Internet, which focused
primarily on the deep space communication in high-delay
environments and the inter-operability between different net-
works deployed in extreme environments lacking continuous
connectivity [2], [3]. An overall architecture of DTN has
been proposed in [3]. In [4], Burleigh et al. identify several
fundamental principles and propose a new end-to-end overlay
network protocol called Bundling. In [5], Fall et al. investigate
the custody transfer mechanism to ensure reliable hop-by-hop
data transmission, thus enhancing the reliability of DTN.

DTN technology has been recently introduced into wireless
sensor networks. Its pertinent work can be classified into the
following three categories, according to their differences in
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nodal mobility. (1) Network with Static Sensors. The first
type of DTN-based sensor networks are static. Due to a
limited transmission range and battery power, the sensors are
loosely connected to each other and may be isolated from the
network frequently. For example, the Ad hoc Seismic Array
developed at the Center for Embedded Networked Sensing
(CENS) employs seismic stations (i.e., sensors) with large
storage space and enables store and forward of bundles with
custody transfer between intermediate hops [6]. In [7], wireless
sensor networks are deployed for habitat monitoring, where
the sensor network is accessible and controllable by the users
through the Internet. The SeNDT (Sensor Networking with
Delay Tolerance) project targets at developing a proof-of-
concept sensor network for lake water quality monitoring,
where the radio connecting sensors are mostly turned off to
save power, thus forming a loosely connected DTN network
[8]. DTN/SN focuses on the deployment of sensor networks
that are inter-operable with the Internet protocols [9]. Ref. [10]
proposes to employ the DTN architecture to mitigate commu-
nication interruptions and provide reliable data communication
across heterogeneous, failure-prone networks. (2) Network
with Managed Mobile Nodes. In the second category, mobility
is introduced to a few special nodes to improve network
connectivity. For example, the Data Mule approach is proposed
in [11] to collect sensor data in sparse sensor networks, where
a mobile entity called data mule receives data from the nearby
sensors, temporarily store them, and drops off the data to the
access points. This approach can substantially save the energy
consumption of the sensors as they only transmit over a short
range, and at the same time enhance the serving range of the
sensor network. (3) Network with Mobile Sensors. While all of
the above delay-tolerant sensor networks center at static sensor
nodes, ZebraNet [12] employs the mobile sensors to support
wildlife tracking for biology research. The ZebraNet project
targets at building a position-aware and power-aware wireless
communication system. A history-based approach is proposed
for routing, where the routing decision is made according to
the node’s past success rate of transmitting data packets to
the base station directly. When a sensor meets another sensor,
the former transmits data packets to the latter if the latter
has a higher success rate. This simple approach, however,
doesn’t guarantee any desired data delivery ratio. The Shared
Wireless Info-Station (SWIM) system is proposed in [13], [14]
for gathering biological information of radio-tagged whales.
It is assumed in SWIM that the sensor nodes move randomly
and thus every node has the same chance to meet the sink. A
sensor node distributes a number of copies of a data packet to
other nodes so as to reach the desired data delivery probability.
In many practical applications, however, different nodes may
have different probabilities to reach the sink, and thus SWIM
may not work efficiently. Worst yet, some nodes may never
meet the sink, resulting in failure of data delivery in SWIM.
The pioneering work of ZebraNet and SWIM has motivated
our research on mobile sensor networks. At the same time,
we observe that the data transmission schemes employed in
ZebraNet and SWIM are based on direct contact probability

between sensor and sink, and thus inefficient. In addition,
several erasure coding based data forwarding schemes have
been proposed in [15], [16], in order to address the tradeoff
between delivery ratio/delay and overhead.

DTN technology has also been employed in mobile ad
hoc networks. A Context-Aware Routing (CAR) algorithm is
proposed in [17] to provide asynchronous communication in
partially-connected mobile ad hoc networks. In [18], the au-
thors consider highly mobile nodes that are interconnected via
wireless links. Such a network can be used as a transit network
to connect other disjoint ad-hoc networks. Five opportunistic
forwarding schemes are studied and compared therein. Ref.
[19] proposes a Message Ferrying (MF) approach for sparse
mobile ad hoc networks, where network partitions can last
for a significant period. The basic idea is to introduce deter-
ministic nodal movement and exploit such non-randomness to
help data delivery. In PROPHET [20], each node maintains a
delivery predictability vector, which indicates its likelihood to
meet other nodes. The messages can then be forwarded from
the low-predictability nodes to the high-predictability nodes.
This simple approach may result in high overhead due to the
maintenance of delivery predictability vector and the excessive
message copies generated during forwarding. Ref. [21] studies
the human mobility patterns. It reveals that some nodes are
more likely to meet with each other so that the network may be
better described by a community model. Ref. [22] studies the
sociological movement pattern of mobile users and proposes
a series of sociological orbit based routing protocols.

III. STUDIES OF TWO BASIC APPROACHES

We first study two basic approaches and analyze their
performance. Without loss of generality, we consider a net-
work that consists of N sensors and n sink nodes uniformly
distributed in an area of 1× 1. We assume that a sensor or
a sink has a fixed radio transmission range, forming a radio
coverage area denoted by a (a � 1). We define the service
area of a sink node to be its radio coverage area (i.e., a). The
total service area of all sink nodes in the network is denoted
by A (A < 1). Clearly, A = 1− (1−a)n. Given the very short
radio transmission range and the small number of sinks, the
probability that two or more sinks share an overlapped service
area is low. Thus A = 1− (1−a)n ≈ na.

A. Basic Approach I: Direct Transmission

The Basic Approach I is a direct transmission scheme,
where a sensor transmits directly to the sink nodes only. More
specifically, assume that the generated data message is inserted
into a first come first serve (FCFS) queue. Whenever the sensor
meets a sink, it transmits the data messages in its queue to the
sink. A sensor does not receive or transmit any data messages
of other sensors.

The sensors are usually activated and deactivated peri-
odically. For analytic tractability, we assume the sensor’s
activation period to be an exponentially distributed random
variable with a mean of T . The sensor performs sensing and
generates one data message upon waking up in each period.
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In addition, we assume the length of the message equals a
constant of L. Since the activation period is exponentially
distributed, the message arrival is a Poisson process with an
average arrival rate of λ = 1/T . The service rate, µ, depends
on the available bandwidth (w) between a sensor and a sink
and the probability (p) that a sensor is able to communicate
with the sink. To facilitate our illustration, we first assume the
bandwidth to be a constant. Possible bandwidth variation due
to channel contention will be considered later in this section.
Since the sensors and the sink nodes are uniformly distributed,
the probability that a sensor is within the coverage of at least
one sink node is determined by the total service area of all
sink nodes, i.e., p = A = 1−(1−a)n ≈ na. We now prove that
the service time is a random variable with Pascal distribution.

Lemma 1: Given a constant message length of L, a fixed
channel bandwidth of w, and a service probability of p, the
service time of the message is a random variable with Pascal
distribution.

Proof: Denote a random variable X to be the service
time. Let s be the number of time slots required to transmit a
message if the node is within the service area. With constant
message length L and fixed bandwidth w, we have s = L

w . In
each time slot, a node has the probability of p to be within
the service area. Thus, the distribution function of X , i.e., the
probability that the message can be transmitted within no more
than x time slots, is

FX(x) =
x−s

∑
i=0

(
s+ i−1
s−1

)
ps(1− p)i. (1)

This is the Pascal distribution, with mean value of s
p and

variation of s×(1−p)
p2 .

1) Infinite Buffer Space: We first assume that the sensor
has infinite buffer space. With a Poisson arrival rate and a
Pascal service time, data generation and transmission can be
modelled as an M/G/1 queue, with λ = 1

T and µ = p
s = Aw

L . In
order to arrive at the steady state, we have λ < µ, leading to
the minimum service area,

A >
L

T ×w
. (2)

In other words, the queue will be built up to infinite length if
the service area is less than L

T×w .
For given message arrival rate λ and service rate µ, we

can derive the average number of messages (including the one
currently being served) at a sensor,

q = ρ+
ρ2 +λ2 ×ρ2

2× (1−ρ)
, (3)

where ρ = λ
µ , and the average message delivery delay of,

ω =
q
λ

. (4)

Assume each sensor consumes J Joule to transmit a message
and ignore the data processing power. The average power
consumption to deliver a message to the sink is,

E = J. (5)

2) Finite Buffer Space: With finite buffer space (e.g., by
assuming each sensor is able to keep maximum K messages
in its queue), the data generation and transmission can be mod-
elled as an M/G/1/K queue. The message arrival rate (λ) and
the service rate (µ) are calculated in the same way as discussed
in Sec. III-A.1. Now we derive the steady state probabilities
of this M/G/1/K queue. Let kn denote the probability of n
arrivals during the period for serving a message. According to
the Poisson distribution of message arrival, we have

kn =
∞

∑
t=s

e−λt(λt)n

n!
×

(
t −1
s−1

)
ps(1− p)t−s. (6)

Let πi denote the probability that the system size (i.e., the
remaining number of messages right after the current message
being served) is i. Then, the stationary equations are

πi =




π0ki +
i+1
∑
j=1

π jki− j+1, (i = 0,1, · · · ,K −2)

1−
K−2
∑
j=0

π j, (i = K −1).
(7)

Plugging Equation (6) into Equation (7), we obtain K
equations with K unknowns. Solving them, we arrive at
{πi | 0 ≤ i ≤ K − 1}. Thus, the average number of messages
(including the one currently being served) at a sensor is

q =
K−1

∑
i=0

iπi. (8)

Note that since the buffer space is limited, a fraction of
messages are dropped upon arrival. Denote q

′
i to be the

probability that an arriving message finds a system with i
messages. Then q

′
K is the message dropping probability,

q
′
K =

ρ−1+ π0
π0+ρ

ρ
, (9)

where ρ = λ
µ . Since dropped messages do not join the queue,

the effective message arrival rate is

λe = λ(1−qK
′). (10)

Thus, the average message delivery delay equals

ω =
q
λe

. (11)

3) Further Discussion: If the service area of a sink (i.e.,
a) is large, multiple nearby sensors may transmit at the same
time. Thus the channel bandwidth, w, is not a constant. As
a result, this is no longer a Markov process. If we consider
the average service time only, however, we may still use
the queuing models discussed in Secs. III-A.1 and III-A.2 to
obtain approximate results.

Assume total available bandwidth W is shared by all sensors
that are in the service area of a sink. The average data
transmission rate of a sensor is w = W

L × 1
1+(N−1)a λ

µ
, where

λ
µ is the probability that a sensor has data messages in its
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(b) Delivery delay.

Fig. 2. Performance of direct transmission with infinite buffer space under N = 100, n = 10, T = 50, w = 150, a = 0.0314.

queue and accordingly 1 +(N − 1)a λ
µ is the average number

of active sensors that transmit to the sink. Therefore,

µ =
wp
L

=
p
L
× W

1+(N −1)a λ
µ

, (12)

i.e.,

µ =
pW
L

− (N −1)aλ. (13)

The validity of above analytic models will be discussed next
in Sec. III-A.4.

4) Numeric Results: We have carried out simulations to
validate our analytic models. The network is deployed in an
area of 100 × 100 m2, and the transmission range of each
node is 9 m. For simplicity, the sink nodes are placed far
away from each other so that there is no overlap among their
service areas. The sensor nodes and the sink nodes are all
moving randomly. Other simulation parameters are shown in
the captions of Figs. 2 and 3.

Fig. 2 depicts the results with infinite buffer space. As can
be seen, the analytic results match the simulation results very
well. With an increase in message length, the traffic load
increases, resulting in a longer average system size (i.e., the
total number of messages that are in the queue or being served)
and longer message delivery delay.

For the network with finite buffer space, we also observe
a good match between simulation and analytic results (see
Fig. 3). Since the buffer size is limited, a faction of traffic is
dropped when the queue is full. As a result, the average system
size is smaller compared with the case of infinite buffer space.
The message dropping rate increases with the message length.

B. Basic Approach II: Flooding

The second basic approach is flooding. We first discuss
the simple flooding scheme and then introduce an optimized
flooding scheme.

1) Simple Flooding: In the simple flooding scheme, a
sensor always broadcasts the data messages in its queue to
nearby sensors, which receive the data messages, keep them
in queue, and rebroadcast them. Intuitively, this approach
achieves a lower data delivery delay at the cost of more traffic
overhead and energy consumption.

Similar queuing models as discussed in Sec. III-A can be
employed for analyzing this flooding approach. Compared
with Basic Approach I where message arrival depends on
message generation only, a sensor in the flooding approach
not only generates its own data messages but also receives
messages from other sensors, resulting in a higher λ. On the
other hand, since a sensor may transmit to other sensors in
addition to the sinks, the service rate is also higher. The queue
length and queuing delay can be derived accordingly.

In the Basic Approach I, the queuing delay is the same as
the data message delivery delay because a sensor transmits to
the sink nodes only. In the flooding approach however, they
are different, due to the duplicate messages at multiple sensor
nodes. To analyze the message delivery delay, we consider a
data message generated by a sensor with infinite buffer space.
For simplicity, we assume the sensor’s activation period to
be a constant T , within which the sensor can transmit its
messages to its neighbors that are activated at the same time.
We assume the bandwidth is high enough such that the sensor
can always transmit its data messages when it meets other
active sensors or the sink nodes. We also assume the mobility
is high enough and the network is large enough such that the
sensor always meets different neighbors when it wakes up. We
study a sequence of activation periods after the message is
generated. p is the probability that a sensor can communicate
with at least one sink node when it is activated. As we have
discussed in Sec. III-A, p = A = 1− (1−a)n ≈ na. Denote p j

to be the probability that the message is not delivered to the
sink nodes in the first j−1 periods and at least one copy of
the message is delivered to the sink in the jth period. Let Nj
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Fig. 3. Performance of direct transmission with finite buffer space under N = 100, n = 10, K = 20, T=20, w = 20, a = 0.0314.

denote the number of sensors that have a copy of the message
in the jth period if the message has not been delivered to the
sink. Nj is calculated as follows:

Nj =




(N −1)A+1, j = 1

(N −Nj−1)(1− (1−A)Nj−1)+Nj−1, j > 1.
(14)

Consequently, p j is derived below,

p j =




p, j = 1

(1− (1− p)Nj−1)(1−∑ j−1
i=1 pi), j > 1.

(15)

Thereupon, the average delay of delivering the data message
is expressed by

ω = T
∞

∑
j=1

j× p j. (16)

Note that, when N1 = N2 = ... = 1, the above analysis turns
into an alternative model for the Basic Approach I, where the
sensor transmits its data messages to the sink directly, and thus
there is only a single copy of a message in the network.

Since many copies of a given message exist in the network
and a sensor is not aware whether the sink has received it or
not, the message is eventually received and transmitted once by
every sensor node, resulting in totally N copies. Accordingly,
the average power consumption per message is proportional
to the network size, namely,

E = O(J×N). (17)

2) Optimized Flooding: In the simple flooding scheme,
each sensor aggressively propagates its data messages to any
neighboring nodes, resulting in the lowest delivery delay. At
the same time, however, it also incurs very high overhead (i.e.,
the number of message copies) and energy consumption. Here
we introduce an optimized flooding scheme that may signifi-
cantly reduce flooding overhead and energy consumption.

The basic idea of the optimized flooding scheme is to
estimate the message delivery probability and stop further
propagation of a message if its delivery probability is already
high enough in order to reduce transmission overhead. Similar
to our discussion on simple flooding, we consider a sequence
of activation periods. Assume the message’s propagation is
terminated after period d (i.e., the sensor that has a copy of
the message does not transmit it to any other nodes except
the sinks after the dth period). Our objective is to minimize d
such that the message delivery probability in total D (D ≥ d)
periods is higher than a given threshold, i.e., pD ≥ γ.

Since the sensors stop broadcasting the message after d
periods, Nj is given by,

Nj =




(N −1)A+1, j = 1

(N −Nj−1)(1− (1−A)Nj−1)+Nj−1, d ≥ j > 1

Nd , j > d.
(18)

Similar to the analysis for simple flooding, p j = [1 − (1 −
p)Nj−1 ](1−

j−1
∑

i=1
pi) with p1 = p. For a given threshold γ, one

can derive the minimum d such that pD ≥ γ. Accordingly, the
average delay is ω = T ∑∞

j=1 j× p j.

After determining the optimal value of d, we can estimate
the average number of message copies made during the d
periods, Md . Note that Nj is the number of copies in the jth

period, given that the message has not been delivered to the
sink in the first j− 1 periods. Thus, Nd is not equivalent to
Md . Since the message is not propagated any more after the
dth period, the number of copies reaches its maximum at the
dth period. Let Uj denote the number of nodes which have a
copy of the message but have not transmitted to the sink nodes
yet at the jth period, and Vj denote the number of copies that
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Fig. 4. Performance of flooding schemes.

have been sent to the sinks. We have

Uj =




(N −1)A1−p +1− p, j = 1

(1− p)Uj−1 +(N −Uj−1 −Vj−1)
×(1− (1−A)(1−p)Uj−1), d ≥ j > 1

(19)

and

Vj =




p, j = 1

Vj−1 + p×Uj−1, d ≥ j > 1.
(20)

Therefore, the average number of message copies made during
the d periods is

Md = Ud +Vd . (21)

3) Numeric Results: We have simulated and compared the
two flooding approaches discussed above. The network is
deployed in an area of 100×100 m2 with 3 sink nodes, and
the transmission range of each node is 9 m. For simplicity, the
sensor nodes and the sink nodes are all randomly moving, and
the message buffer of each sensor is large enough so that no
message is dropped. γ = 0.7 and D = 5.

Fig. 4 compares analytic and simulation results of both
approaches. As can be seen, the simulation results and the
analytic results match well. As shown in Fig. 4(a), the message
delivery delay of both approaches decreases slightly with in-
crease in network density. This is somewhat expected because
under higher network density, the message is broadcasted
to more neighbors and thus is propagated faster. We notice
that the message delay of the optimized flooding is slightly
higher than that of the simple flooding approach because the
sensors stop forwarding the message after d periods. At the
same time, the optimized flooding scheme introduces much
fewer duplicate messages compared with its simple flooding
counterpart (see Fig. 4(b)), and thus significantly reducing
energy consumption. The increase of network density leads
to a linear increase in the number of duplicate messages

when simple flooding is employed. In contrast, the number
of duplicate messages of the optimized flooding approach
increases only marginally, because d is optimized to lower
flooding overhead.

IV. PROPOSED DFT-MSN DATA DELIVERY SCHEME

We have studied two basic approaches so far. The direct
transmission approach minimizes transmission overhead (i.e.,
the number of message copies) and energy consumption, at
the expense of a long message delivery delay (with large
buffer space) or a low message delivery ratio due to a high
message dropping rate (with small buffer space). In contrast,
the flooding approach minimizes the message delivery delay.
At the same time however, it results in very high transmis-
sion overhead and energy consumption. Note that, although
the optimized flooding scheme may significantly reduce the
number of message copies, it is based on the assumptions of
unlimited buffer space and globally synchronized activation
periods. Those assumptions usually don’t hold in practical
DFT-MSNs.

An efficient DFT-MSN data delivery scheme will take into
consideration the tradeoff between delivery delay/ratio and
transmission overhead/energy. In particular, the following three
key issues need to be addressed.

• When to transmit data messages? When a sensor moves
into the communication range of another sensor, it needs
to decide whether to transmit its data messages or not, in
order to achieve a high message delivery ratio, and at the
same time, minimize transmission overhead.

• Which messages to transmit? The data messages gener-
ated by the sensor itself or received from other sensors
are put into the sensor’s data queue. After deciding to
initiate data transmission, the sensor needs to determine
which messages to transmit if there are multiple messages
with different degrees of importance in its queue.
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• Which messages to drop? A data queue has a limited size.
When it becomes full (or due to other reasons as to be
discussed later), some messages have to be dropped. The
sensor needs to decide which messages to drop according
to their importance in order to minimize data transmission
failure.

The proposed DFT-MSN data delivery scheme is elaborated
below. We first discuss two important parameters, namely, the
nodal delivery probability and the message fault tolerance,
which are employed to address the issues discussed above.
Then, we introduce the queue management and data transmis-
sion schemes.

A. DFT-MSN Parameters

The proposed data delivery scheme for DFT-MSN is based
on the nodal delivery probability and the message fault toler-
ance, as discussed below separately.

1) Nodal Delivery Probability: The decision on data trans-
mission is made based on delivery probability, which indicates
the likelihood that a sensor can deliver data messages to the
sink. Let ξi denote the delivery probability of a sensor i. ξi is
initialized with zero and updated upon an event of either mes-
sage transmission or timer expiration. More specifically, the
sensor maintains a timer. If there is no message transmission
within an interval of ∆, the timer expires, generating a timeout
event. The timer expiration indicates that the sensor couldn’t
transmit any data messages during ∆, and thus its delivery
probability should be reduced. Whenever sensor i transmits a
data message to another node k, ξi should be updated to reflect
its current ability in delivering data messages to the sinks.
Note that since end-to-end acknowledgement is not employed
in DFT-MSN due to its low connectivity, sensor i doesn’t know
whether the message transmitted to node k will eventually
reach the sink or not. Therefore, it estimates the probability of
delivering the message to the sink by the delivery probability
of node k, i.e., ξk. More specifically, ξi is updated as follows,

ξi =




(1−α)[ξi]+αξk, Transmission

(1−α)[ξi], Timeout,
(22)

where [ξi] is the delivery probability of sensor i before it is
updated, and 0 ≤ α ≤ 1 is a constant employed to keep partial
memory of historic status. If k is the sink, ξk = 1, because
the message is already delivered to the sink successfully.
Otherwise, ξk < 1. Clearly, ξi is always between 0 and 1.

2) Message Fault Tolerance: DFT-MSN is a store-and-
forward network. However, unlike other typical store-and-
forward networks where the packets are deleted from the
buffer after they are transmitted to the next hop successfully,
the sensor in DFT-MSN may still keep a copy of the message
after its transmission to other sensors. Therefore, multiple
copies of the message may be created and maintained by
different sensors in the network, resulting in redundancy.
The fault tolerance is introduced to represent the amount of
redundancy and to indicate the importance of a given message.
We assume that each message carries a field that keeps its fault

tolerance. Let F j
i denote the fault tolerance of message j in

the queue of sensor i. Here, we discuss two approaches to
define the fault tolerance of a message.

Delivery Probability-Based Approach. We may define the
fault tolerance of a message to be the probability that at least
one copy of the message is delivered to the sink by other
sensors in the network. When a message is generated, its fault
tolerance is initialized to be zero. Let’s consider a sensor i,
which is multicasting a data message j to Z nearby sensors,
denoted by Ξ = {ψz | 1 ≤ z ≤ Z}. The multicast transmission
essentially creates totally Z + 1 copies. An appropriate fault
tolerance value needs to be assigned to each of them. More
specifically, the message transmitted to sensor ψz is associated
with a fault tolerance of F j

ψz ,

F j
ψz = 1− (1− [F j

i ])(1−ξi)
Z

∏
m=1, m�=z

(1−ξψm), (23)

and the fault tolerance of the message at sensor i is updated
as

F j
i = 1− (1− [F j

i ])
Z

∏
m=1

(1−ξψm), (24)

where [F j
i ] is the fault tolerance of message j at sensor i

before multicasting. The above process repeats at each time
when message j is transmitted to another sensor node. In
general, the more times a message has been forwarded, the
more copies of the message are created, thus increasing its
delivery probability. As a result, it is associated with larger
fault tolerance.

Message Hop Count-Based Approach. The fault tolerance
can also be defined according to the hop count of the message.
Denote h j to be the number of times that the message j has
been forwarded. A message with larger h j usually has more
copies in the network. More specifically, the number of copies
of the message j is proportional to h2

j . Thus, we may let

F j
i = h2

j/H2, where H is the maximum hop count. For a new

message, F j
i = 0 since h j = 0. If a message has just been

sent to the sink, F j
i = 1. The approach based on the message

hop count is simpler but, at the same time, less accurate when
compared with the delivery probability-based approach. Their
performance outcomes will be compared in Sec. IV-C.

B. DFT-MSN Data Delivery

The proposed DFT-MSN data delivery scheme consists
of two key components for queue management and data
transmission, discussed below.

1) Queue Management: Each sensor has a data queue
that contains data messages ready for transmission. The data
messages of a sensor come from three sources. (1) After the
sensor acquires data from its sensing unit, it creates a data
message, which is inserted into its data queue; (2) When the
sensor receives a data message from other sensors, it inserts
the message into its data queue; (3) After the sensor sends
out a data message to a non-sink sensor node, it may also
insert the message into its own data queue again, because the
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message is not guaranteed to be delivered to the sink. The
queue management is to appropriately sort the data messages
in the queue, to determine which data message to be sent when
the sensor meets another sensor, and to determine which data
message to be dropped when the queue is full.

Our proposed queue management scheme is based on the
fault tolerance, which signifies how important the messages
are. The message with smaller fault tolerance is more impor-
tant and should be transmitted with a higher priority. This is
done by sorting the messages in the queue with an increasing
order of their fault tolerance. Message with the smallest fault
tolerance is always at the top of the queue and transmitted
first. A message is dropped at the following two occasions.
First, if the queue is full when a message arrives, its fault
tolerance is compared with the message at the end of the
queue. If the new message has a larger fault tolerance, it is
dropped. Otherwise, the message at the end of the queue is
dropped, and the new message is inserted into the queue at
appropriate position according to its fault tolerance. Second,
if the fault tolerance of a message is larger than a threshold,
the message is dropped, even if the queue is not full. This is to
reduce transmission overhead, given that the message will be
delivered to the sinks with a high probability by other sensors
in the network. A special example is the message which has
been transmitted to the sink. It will be dropped immediately
because it has the highest fault tolerance of 1.

With the above queue management scheme, a sensor can
determine the available buffer space in its queue for future
arrival messages with a given fault tolerance. Assume a sensor
has a total queue space for at most K messages. Let km

i
denote the number of messages with a fault tolerance level
of m in the queue of Sensor i. Then, the available buffer
space at Sensor i for new messages with fault tolerance x
is Bi(x) = K − ∑x

m=0 km
i . If Bi(x) = 0, any arrival message

with a fault tolerance of x or higher will be dropped. Note
that, however, even when the queue is filled by K messages
and becomes full, Bi(x) may still be larger than 0, for a
small x (i.e., for messages with a low fault tolerance). Buffer
space information is important to make decision on data
transmission, as discussed next.

2) Data Transmission: Data transmission decision is made
based on the delivery probability. Without loss of generality,
we consider a sensor i, which has a message j at the top
of its data queue ready for transmission and is moving into
the communication range of a set of Z′ sensors. Sensor i first
learns their delivery probabilities and available buffer spaces
via simple handshaking messages. Let Ξ′ = {ψz | 1 ≤ z ≤ Z′}
denote the Z′ sensors, sorted by a decreasing order of their
delivery probabilities. Sensor i multicasts its message j to a
subset of the Z′ sensors, denoted by Φ, which is determined
by the following algorithm, where γ is a threshold, F j

i is the
fault tolerance of the message j at Sensor i, and Bψz(F

j
i ) is

the number of available buffer slots at Node ψz for messages
with fault tolerance F j

i .
By following Algorithm 1, Sensor i sends Message j to a set

of neighbors with higher delivery probabilities (i.e., ξi < ξψz ),

Algorithm 1 Identification of receiving sensors.
Φ = /0.
for z = 1 : Z′ do

if ξi < ξψz AND Bψz(F
j

i ) > 0 then
Φ = Φ∪ψz.

end if
if 1− (1−F j

i )∏m∈Φ(1−ξm) > γ then
Break.

end if
end for

and at the same time, controls the total delivery probability
of Message j (i.e., 1−(1−F j

i )∏m∈Φ(1−ξm)) just enough to
reach γ in order to reduce unnecessary transmission overhead.
In order to avoid unnecessary message drops due to buffer
overflow at the receiver, Sensor i checks the available buffer
space of its neighboring nodes for Message j (i.e., Bψz(F

j
i ))

before data transmission.
Clearly, this message transmission scheme is equivalent to

direct transmission when the network is just deployed, because
the delivery probability is initialized with zero and thus the
sensors transmit to the sink nodes only. As the delivery prob-
ability is gradually updated with none zero values, multihop
relaying will take place.

C. Simulation Results

Extensive simulation has been carried out to evaluate
the performance of the proposed DFT-MSN data delivery
schemes. In our simulation, 3 sink nodes and 100 sensor nodes
are randomly deployed in an area of 200×200 m2. The whole
area is divided into 25 non-overlapped zones, each with an area
of 40×40 m2. A sensor node is initially resided in its home
zone. It moves with a speed randomly chosen between 0 and
5 m/s. Whenever a node reaches the boundary of its zone, it
moves out with a probability of 20%, and bounces back with
a probability of 80%. After entering a new zone, the sensor
repeats the above process. However, if it reaches the boundary
to its home zone, it returns to its home zone with a probability
of 100%. Each sensor has a maximum transmission range of
10 m and a maximum queue size of 200 messages. The data
generation of each sensor follows a Poisson process with an
average arrival interval of 100 s. Each data message has 50
bits. The channel bandwidth is 2500 bps. The fault tolerance
threshold is set to be γ = 0.8. The above default simulation
parameters are summarized in Table I.

The sensor node transmits its data messages according to
our proposed DFT-MSN data delivery schemes. We first study
the effectiveness of delivery probability updating. For clarity,
we set the delivery probability of the sensor into 5 discrete
levels. Level i (1 ≤ i ≤ 5) represents the successful delivery
probability between (i−1)×0.2 and i×0.2. Fig. 5(a) shows
DFT-MSN at the initial stage, where each sensor node has a
delivery probability of 0. With the proposed protocol running,
each node updates its delivery probability. The results after
1000 seconds are illustrated in Fig. 5(b), where the nodes
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TABLE I

DEFAULT SIMULATION PARAMETERS

Maximum sensor transmission range 10 m
Number of sensor nodes 100
Number of sink nodes 3
Size of network area 200×200 m2

Size of a zone 40×40 m2

Probability to move out of a zone 20%
Probability to move back to home zone 100%
Maximum queue length 200
Message generation rate 0.01/s
Message length 50 bits
Bandwidth 2500 bps
Nodal moving speed 0−5m/s
γ 0.8

closer to the sinks usually have higher delivery probabilities
as expected.

We vary several parameters to observe their impacts on
the performance. Fig. 6 compares the performance of the
simple flooding approach, the direct transmission approach,
the hop count-based approach, and the delivery probability-
based approach, by varying the number of sink nodes in
DFT-MSN. As shown in Fig. 6(a), the proposed delivery
probability-based approach always has a higher delivery ratio
than other approaches, especially when a small number of
sinks are deployed. With a large number of sinks, the delivery
probability-based approach, the hop count-based approach,
and the direct transmission approach yield similar results. This
is reasonable because the sensors then have high probabilities
to reach the sink nodes, thus resulting in high delivery ratio
close to 100%. As expected, the flooding approach has a
much lower delivery ratio than other approaches because it
generates too many message copies, which leads to excessive
buffer overflow and message dropping. Fig. 6(b) demonstrates
that the average delay of every approach decreases quickly
with more sink nodes deployed in the network. Although the
flooding approach has the smallest message delivery delay, its
delivery ratio is very low. In addition, because the hop count-
based approach generates more copies for each message, it
has a slightly lower delay than the delivery probability-based
approach. Clearly, the direct transmission approach suffers the
longest delay since messages can then be delivered only when
the source node meets the sink.

Energy consumption of the sensor is due mainly to data
transmission. Thus, the more duplicated copies generated, the
higher the energy consumption. As depicted in Fig. 6(c), the
number of message copies in direct transmission is always
1, since a sensor always transmits data messages to the sink
directly. The results of flooding is not shown here, because
it generates excessive copies which are several orders of
magnitude higher than those of other approaches. The delivery
probability-based approach makes around 10 copies for each
message, and the number of copies decreases slightly with
an increase in the number of sink nodes. The results of the
hop count-based approach first increases and then decreases.
This is explained below. At first, with more sink nodes
deployed, the sensor nodes’ delivery probabilities increase.
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(a) Initial deployment.
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(b) 1000 seconds later.

Fig. 5. Update of delivery probability.

As a result, the nodes farther away from the sinks may have
more neighbors with larger delivery probabilities. More copies
are thus generated for each message. Then, with a continuous
increase in the number of sink nodes, more and more sensors
can reach the sinks within small numbers of hops. Therefore,
the number of message copies eventually decreases.

We also vary the maximum queue length of each sensor
in our simulations, with results presented in Fig. 7. With an
increase in maximum queue length, the delivery ratio increases
slowly for all approaches, as expected (see Fig. 7(a)). As
shown in Fig. 7(b), the queue length doesn’t have a significant
impact on the delay of the simple flooding approach, the
hop count-based approach, and the delivery probability-based
approach. The delay of the direct transmission approach,
however, increases sharply with the longer queue length,
because more data messages will then reside in the queue for
a longer time before being delivered. It is also noticed that
the delivery probability-based approach can well control its
transmission overhead (i.e., the number of copies generated)
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Fig. 6. Impact of the number of sink nodes.
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Fig. 7. Impact of maximum queue length.

even when the available queue size is large. On the other hand,
far more duplicated copies are generated under the hop count-
based approach (see Fig. 7(c)) as a result of of increasing the
maximum queue size .

Fig. 8 depicts the impact of nodal moving speed. As the
speed increases, the delivery ratios of all approaches but
the simple flooding rise, while the delivery delays of all
approaches decrease. This is because the node with a higher
speed has a better opportunity to meet other nodes and also
with higher probabilities to reach the sink nodes. Thus, the
messages have a better chance to be delivered before they
are dropped. It is also noticed that the transmission overhead
of the proposed delivery probability-based approach is almost
constant with the increase of nodal speed (as shown in
Fig. 8(c)), making it most suitable for the network with varying
nodal speeds.

γ is crucial to the performance of our proposed delivery
probability-based approach. With a larger γ, the message
propagation becomes more aggressive. In other words, a sensor
has higher probabilities to transmit data messages to other
nodes. As a result, both the delivery ratio and the transmission
overhead become higher (see Fig. 9(a) and Fig. 9(c)). Besides,
we notice that the delay of the successfully delivered message
also increases with a larger γ. This is explained as follows.
When γ is low, most successfully delivered messages are those
generated by nodes close to the sinks, causing the delay to be

low. When γ rises, the messages produced by nodes farther
away from the sink nodes can also be successfully delivered,
but with a longer delay.

V. CONCLUSION

This paper deals with the Delay/Fault-Tolerant Mobile
Sensor Network (DFT-MSN) for pervasive information gath-
ering. DFT-MSN has several unique characteristics such as
sensor mobility, loose connectivity, fault tolerability, delay
tolerability, and buffer limit. We have first studied two basic
approaches, namely, direct transmission and flooding, using
queuing theory and statistics. Based on the analytic results that
show the tradeoff between data delivery delay/ratio and trans-
mission overhead, we have introduced an optimized flooding
scheme that minimizes the transmission overhead of flooding.
Then, we have proposed a simple and effective DFT-MSN
data delivery scheme, which consists of two key components
respectively for data transmission and queue management. The
former makes decision on when and where to transmit data
messages based on the nodal delivery probability, while the
latter decides which messages to transmit or drop based on
the fault tolerance. Extensive simulations have been carried
out for performance evaluation. Our results show that the
proposed DFT-MSN data delivery scheme achieves the highest
message delivery ratio with acceptable delay and transmission
overhead.
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Fig. 8. Impact of nodal speed (m/s).
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