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Analytic, Simulation, and Empirical Evaluation of
Delay/Fault-Tolerant Mobile Sensor Networks
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Abstract— The Delay/Fault-Tolerant Mobile Sensor Network
(DFT-MSN) has been proposed recently for pervasive information
gathering. DFT-MSN distinguishes itself from conventional sen-
sor networks by several unique characteristics such as sensor
mobility, loose connectivity, and delay/fault tolerability. This
paper focuses on the performance evaluation of DFT-MSN.
We first introduce a queuing model by using Jackson network
theory. While the queuing model is based on a few simplification
assumptions for analytic tractability, it provides insights into the
queuing behavior of the mobile sensors in DFT-MSN. Extensive
simulations are performed under realistic environment and
assumptions. Our simulation results show that the dynamic DFT-
MSN data delivery scheme achieves the highest message delivery
ratio with acceptable delay and transmission overhead, compared
with simple schemes such as flooding and direct transmission or
other approaches in the literature such as Zebranet. We have also
implemented a DFT-MSN testbed by deploying Crossbow motes
for noise level monitoring in our university library. Though in a
small scale, the testbed demonstrates the feasibility of DFT-MSN
and provides guidance for future large scale deployment.

Index Terms— Delay fault tolerant mobile sensor network, de-
livery delay, delivery probability, DFT-MSN, pervasive informa-
tion gathering, analysis, queuing theory, transmission overhead.

I. INTRODUCTION

THE recent developments in sensor technology has made
it possible to gather massive information through a low-

cost distributed embedded sensor system. The mainstream
approach is to densely deploy a large number of small and
inexpensive sensor nodes with low power, short range radio
to form a connected wireless mesh network. The sensors in
the network collaborate together to acquire the target data and
transmit them to the sink nodes [1]. This approach, however,
may not work effectively in certain application scenarios, such
as flu virus tracking, where the goal is to collect data of
flu virus in the area with high human activities in order to
monitor and prevent the explosion of devastating flu, or air
quality monitoring for tracking the average toxic gas taken
by people everyday. These applications share several unique
characteristics. First, the data gathering is human-oriented.
More specifically, while samples can be collected at strategic
locations for flu virus tracking or air quality monitoring, the
most accurate and effective measurement shall be taken at
the people, making it a natural approach to deploy wearable
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sensing units that closely adapt to human activities. Second,
we observe that delay and faults are usually tolerable in such
applications, which aim at gathering massive information from
a statistic perspective and to update the information base
periodically. In addition, this information gathering should be
transparent, without any interference on people’s daily lives.
For instance, a person should not be asked to take special
actions (e.g., to move to a specific location) to facilitate
information acquisition and delivery.

A Delay/Fault-Tolerant Mobile Sensor Network (DFT-MSN)
has been proposed in [2], [3] for pervasive information
gathering in the aforementioned applications. The DFT-MSN
consists of two types of nodes, i.e., the wearable sensor nodes
and the high-end sink nodes. The former are attached to
people, gathering target information and forming a loosely
connected mobile sensor network for information delivery (see
Fig. 1 for mobile sensors S1 to S10 scattered in the field,
where only S1 and S2, S7 and S8, and S5 and HES2 can
communicate with each other at this moment). In addition, a
number of high-end nodes (e.g., mobile phones or personal
digital assistants with sensor interfaces) are either deployed at
strategic locations with high visiting probability or carried by
a subset of people, serving as the sinks to receive data from
wearable sensors and forward them to access points of the
backbone network (see HES1 and HES2 in Fig. 1).

Since the connectivity between the mobile sensors in DFT-
MSN is poor, it is difficult to form a well connected mesh
network for data transmission. Consequently, the data delivery
protocols for conventional sensor network relying on end-to-
end connections simply fail in DFT-MSN. In an opportunistic
network like DFT-MSN, replication is necessary for data
delivery in order to achieve certain success ratio [3]. Clearly,
replication also increases the transmission overhead. Thus an
effective data delivery scheme for DFT-MSN must deal with
the trade-off between data delivery ratio/delay and overhead.
With this consideration in mind, a dynamic DFT-MSN data
delivery scheme has been proposed in [3], whose basic idea
is to dynamically tune the message redundance level with the
objective of achieving the desired delivery ratio with minimum
overhead. As to be discussed in Sec. II-A, it consists of two
key components for data transmission and queue management,
respectively. The former makes decision on when and where
to transmit data messages based on the delivery probability,
which signifies the likelihood that a sensor can deliver data
messages to the sink. The latter decides which messages to
transmit or drop based on fault tolerance, which indicates the
importance of the messages. In this paper we carry out a thor-
ough performance evaluation of this DFT-MSN data delivery

1536-1276/07$25.00 c© 2007 IEEE



3288 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 9, SEPTEMBER 2007

4

3S

2

1

2

5

S

S
S

S
S

7

6

AP

AP AP

AP

AP

AP1

6
10

S 7

9AP

3AP 8AP9S

2

1HES

HES

8

S

S

5

4

Fig. 1. An overview of the delay/fault-tolerant mobile sensor network. S1-S10: sensors; HES1-HES2: high end sensors (sinks); AP1-AP9: access points
of backbone network.

scheme, via analysis, simulations, and testbed experiments. In
Sec. II we give an overview of the DFT-MSN data delivery
scheme and discuss related work in the literature. In Sec. III,
we introduce a queuing model for DFT-MSN by using Jackson
network theory. While the queuing model is based on a few
simplification assumptions for analytic tractability, it provides
insights into the queuing behavior of the mobile sensors in
DFT-MSN. Extensive simulations are performed under real-
istic environment and accurate assumptions. The simulations
are discussed in Sec. IV. Our simulation results show that the
dynamic DFT-MSN data delivery scheme achieves the highest
message delivery ratio with acceptable delay and transmission
overhead, compared with simple schemes such as flooding and
direct transmission or other approaches in the literature such as
Zebranet. We have also implemented a DFT-MSN testbed by
deploying Crossbow motes for noise level monitoring in our
university library. We present our testbed implementation and
experimental results in Sec. V. Though in a small scale, the
testbed demonstrates the feasibility of DFT-MSN and provides
guidance for future large scale deployment. Finally, Sec. VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section we first give an overview of the dynamic
DFT-MSN data delivery scheme. Then we discuss related
work in the literature.

A. An Overview of The Dynamic DFT-MSN Data Delivery
Scheme

The dynamic DFT-MSN data delivery scheme is elaborated
below. We first discuss two important parameters, namely, the
nodal delivery probability and the message fault tolerance,
which are keys to enable our proposed approach for data deliv-
ery in DFT-MSN. Then, we introduce the queue management
and data transmission schemes.

1) DFT-MSN Parameters.: The proposed data delivery
scheme for DFT-MSN is based on the nodal delivery prob-
ability and the message fault tolerance, as discussed below
separately.

(1) Nodal Delivery Probability. The decision on data trans-
mission is made based on delivery probability, which indicates

the likelihood that a sensor can deliver data messages to the
sink. Let ξi denote the delivery probability of a sensor i. ξi is
initialized with zero and updated upon an event of either mes-
sage transmission or timer expiration. More specifically, the
sensor maintains a timer. If there is no message transmission
within an interval of Δ, the timer expires, generating a timeout
event. The timer expiration indicates that the sensor couldn’t
transmit any data messages during Δ, and thus its delivery
probability should be reduced. Whenever sensor i transmits a
data message to another node k, ξi should be updated to reflect
its current ability in delivering data messages to the sinks. Note
that since end-to-end acknowledgement is not employed in
DFT-MSN due to its low connectivity, sensor i doesn’t know
whether the message transmitted to node k will eventually
reach the sink or not. Therefore, it estimates the probability of
delivering the message to the sink by the delivery probability
of node k, i.e., ξk. More specifically, ξi is updated as follows,

ξi =

⎧⎨
⎩

(1 − α)[ξi] + αξk, T ransmission

(1 − α)[ξi], T imeout,
(1)

where [ξi] is the delivery probability of sensor i before it is
updated, and 0 ≤ α ≤ 1 is a constant employed to keep partial
memory of historic status. If k is the sink, ξk = 1, because
the message is already delivered to the sink successfully.
Otherwise, ξk < 1. Clearly, ξi is always between 0 and 1.

(2) Message Fault Tolerance. DFT-MSN is a store-and-
forward network. In a typical store-and-forward network, the
packets are deleted from the buffer after they are transmitted
to the next hop successfully. By using the proposed dynamic
data delivery scheme, however, the sensor in DFT-MSN may
still keep a copy of the message after its transmission to other
sensors. Therefore, multiple copies of the message may be
created and maintained by different sensors in the network,
resulting in redundancy. The fault tolerance is introduced
to represent the amount of redundancy and to indicate the
importance of a given message. We assume that each message
carries a field that keeps its fault tolerance. Let F j

i denote the
fault tolerance of message j in the queue of sensor i.

Here the fault tolerance of a message is defined to be the
probability that at least one copy of the message is delivered
to the sink by other sensors in the network. When a message
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is generated, its fault tolerance is initialized to be zero. Let’s
consider a sensor i, which is multicasting a data message j to
Z nearby sensors, denoted by Ξ = {ψz | 1 ≤ z ≤ Z}. The
multicast transmission essentially creates totally Z+1 copies.
An appropriate fault tolerance value needs to be assigned to
each of them. More specifically, the message transmitted to
sensor ψz is associated with a fault tolerance of F j

ψz
,

F j
ψz

= 1 − (1 − [F j
i ])(1 − ξi)

Z∏
m=1, m �=z

(1 − ξψm), (2)

and the fault tolerance of the message at sensor i is updated
as

F j
i = 1 − (1 − [F j

i ])
Z∏

m=1

(1 − ξψm), (3)

where [F j
i ] is the fault tolerance of message j at sensor i

before multicasting. The above process repeats at each time
when message j is transmitted to another sensor node. In
general, the more times a message has been forwarded, the
more copies of the message are created, thus increasing its
delivery probability. As a result, it is associated with a larger
fault tolerance.

2) DFT-MSN Data Delivery.: The proposed DFT-MSN
data delivery scheme consists of two key components for
queue management and data transmission, discussed below.

(1) Queue Management. Each sensor has a data queue that
contains data messages ready for transmission. The data
messages of a sensor come from three sources. (a) After the
sensor acquires data from its sensing unit, it creates a data
message, which is inserted into its data queue; (b) When the
sensor receives a data message from other sensors, it inserts
the message into its data queue; (c) After the sensor sends
out a data message to a non-sink sensor node, it may also
insert the message into its own data queue again, because the
message is not guaranteed to be delivered to the sink. The
queue management is to appropriately sort the data messages
in the queue, to determine which data message to be sent when
the sensor meets another sensor, and to determine which data
message to be dropped when the queue is full.

Our proposed queue management scheme is based on the
fault tolerance, which signifies how important the messages
are. The message with smaller fault tolerance is more impor-
tant and should be transmitted with a higher priority. This is
done by sorting the messages in the queue with an increasing
order of their fault tolerance. Message with the smallest fault
tolerance is always at the top of the queue and transmitted
first. A message is dropped at the following two occasions.
First, if the queue is full when a message arrives, its fault
tolerance is compared with the message at the end of the
queue. If the new message has a larger fault tolerance, it is
dropped. Otherwise, the message at the end of the queue is
dropped, and the new message is inserted into the queue at
appropriate position according to its fault tolerance. Second, if
the fault tolerance of a message is larger than a threshold, the
message is dropped, even if the queue is not full. This is to
reduce transmission overhead, given that the message will be
delivered to the sinks with a high probability by other sensors
in the network. A special example is the message which has

been transmitted to the sink. It will be dropped immediately
because it has the highest fault tolerance of 1.

With the above queue management scheme, a sensor can
determine the available buffer space in its queue for future
arrival messages with a given fault tolerance. Assume a sensor
has a total queue space for at most K messages. Let kmi
denote the number of messages with a fault tolerance level
of m in the queue of sensor i. Then, the available buffer
space at sensor i for new messages with fault tolerance x
is Bi(x) = K−

∫ x
0 k

m
i dm. If Bi(x) = 0, any arrival message

with a fault tolerance of x or higher will be dropped. Note
that, however, even when the queue is filled by K messages
and becomes full, Bi(x) may still be larger than 0, for a
small x (i.e., for messages with a low fault tolerance). Buffer
space information is important to make decision on data
transmission, as discussed next.

(2) Data Transmission. Data transmission decision is made
based on the delivery probability. Without loss of generality,
we consider a sensor i, which has a message j at the top of
its data queue ready for transmission and is moving into the
communication range of a set of Z ′ sensors. Sensor i first
learns their delivery probabilities and available buffer spaces
via simple handshaking messages. Let Ξ′ = {ψz | 1 ≤ z ≤
Z ′} designate the Z ′ sensors, sorted by a decreasing order
of their delivery probabilities. Sensor i multicasts its message
j to a subset of the Z ′ sensors, denoted by Φ, which have
higher delivery probabilities (i.e., ξi < ξψz ), so that the total
delivery probability of Message j (i.e., 1−(1−F j

i )
∏
m∈Φ(1−

ξm)) is just enough to reach a given threshold γ. In order to
avoid unnecessary message drops due to buffer overflow at
the receiver, sensor i checks the available buffer space of its
neighboring nodes for message j (i.e., Bψz (F j

i )) before data
transmission.

B. Related Work

The Delay-Tolerant Network (DTN) is an occasionally
connected network that may suffer from frequent partitions
and that may be composed of more than one divergent set
of protocol families [4]. DTN originally aimed to provide
communication for the Interplanetary Internet, which focused
primarily on the deep space communication in high-delay
environments and the inter-operability between different net-
works deployed in extreme environments lacking continuous
connectivity [4], [5]. An overall architecture of DTN has been
proposed in [5], and it operates as an overlay above the
transport layer to provide services such as in-network data
storage and retransmission, interoperable naming, authenti-
cated forwarding, and a coarse-grained class of service. In
[6], Burleigh et al. identify several fundamental principles that
would underlie a DTN architecture and propose a new end-
to-end overlay network protocol called Bundling. In [7], Fall
et al. investigate the custody transfer mechanism to ensure
reliable hop-by-hop data transmission, thus enhancing the
reliability of DTN.

DTN technology has been recently introduced into wireless
sensor networks. Its pertinent work can be classified into the
following three categories, according to their differences in
nodal mobility. (1) Network with Static Sensors. The first
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type of DTN-based sensor networks are static. Due to a
limited transmission range and battery power, the sensors are
loosely connected to each other and may be isolated from
the network frequently. For example, the Ad hoc Seismic
Array developed at the Center for Embedded Networked
Sensing (CENS) employs seismic stations (i.e., sensors) with
large storage space and enables store and forward of bundles
with custody transfer between intermediate hops [8]. In [9],
wireless sensor networks are deployed for habitat monitoring,
where the sensor network is accessible and controllable by the
users through the Internet. The SeNDT (Sensor Networking
with Delay Tolerance) project targets at developing a proof-
of-concept sensor network for lake water quality monitoring,
where the radio connecting sensors are mostly turned off to
save power, thus forming a loosely connected DTN network
[10]. DTN/SN focuses on the deployment of sensor networks
that are inter-operable with the Internet protocols [11]. [12]
proposes to employ the DTN architecture to mitigate commu-
nication interruptions and provide reliable data communication
across heterogeneous, failure-prone networks. (2) Network
with Managed Mobile Nodes. In the second category, mobility
is introduced to a few special nodes to improve network con-
nectivity. For example, the Data Mule approach is proposed in
[13] to collect sensor data in sparse sensor networks, where a
mobile entity called data mule receives data from the nearby
sensors, temporarily store them, and drops off the data to the
access points. This approach can substantially save the energy
consumption of the sensors as they only transmit over a short
range, and at the same time enhance the serving range of the
sensor network. (3) Network with Mobile Sensors. While all of
the above delay-tolerant sensor networks center at static sensor
nodes, there are two examples in the literature that are based
on mobile sensors. ZebraNet [14] employs the mobile sensors
to support wildlife tracking for biology research. The ZebraNet
project targets at building a position-aware and power-aware
wireless communication system. A history-based approach is
proposed for routing, which is in fact a special case of the
dynamic DFT-MSN data delivery scheme. More specifically,
each node maintains its past success rate of transmitting data
packets to the base station directly. When a sensor meets
another sensor, the former transmits data packets to the latter
if the latter has a higher success rate. This simple approach,
however, doesn’t guarantee any desired data delivery ratio.
The Shared Wireless Info-Station (SWIM) system is proposed
in [15], [16] for gathering biological information of radio-
tagged whales. It is assumed in SWIM that the sensor nodes
move randomly and thus every node has the same chance to
meet the sink. A sensor node distributes a number of copies
of a data packet to other nodes so as to reach the desired
data delivery probability. This approach is equivalent to the
optimal flooding scheme discussed in [3]. In many practical
applications, however, different nodes may have different
probabilities to reach the sink, and thus SWIM may not work
efficiently. Worst yet, some nodes may never meet the sink,
resulting in failure of data delivery in SWIM. The pioneering
work of ZebraNet and SWIM has motivated our research on
mobile sensor networks. At the same time, we observe that the
data transmission schemes employed in ZebraNet and SWIM
are based on direct contact probability between sensor and

sink, and thus inefficient. In addition, several erasure coding
based data forwarding schemes have been proposed in [17],
[18], where the erasure coding parameters are tuned based on
the nodal delivery probability.

DTN technology has also been employed in mobile ad
hoc networks. A Context-Aware Routing (CAR) algorithm
is proposed in [19] to provide asynchronous communication
in partially-connected mobile ad hoc networks. In [20], the
authors consider highly mobile nodes that are interconnected
via wireless links. Such a network can be used as a transit
network to connect other disjoint ad-hoc networks. Five oppor-
tunistic forwarding schemes are studied and compared therein.
[21] proposes a routing protocol for intermittently-connected
mobile ad hoc networks, based on direct contact probability
between mobile nodes. A Message Ferrying (MF) approach
is proposed in [22] for sparse mobile ad hoc networks, where
network partitions can last for a significant period. The basic
idea is to introduce deterministic nodal movement and exploit
such non-randomness to help data delivery.

III. A QUEUING ANALYTIC MODEL

In this section we analyze the performance of DFT-MSN
by using a queuing model based on Jackson network. While
it is desirable to accurately analyze the data delivery scheme
discussed in Sec. II-A, this is not practical, given its complex-
ity in data transmission and queue management. Thus, for
analytic tractability, we employ a simplified network model
in this section. More specifically, we make two simplification
assumptions in delivery probability and messages fault toler-
ance, respectively. First, the delivery probability (i.e., ξi of
sensor i) is assumed to be the probability that sensor i meets
the sink nodes. Second, after sensor i sends a message, the
fault tolerance of the message copy at sensor i is set to be 1
(i.e., it will be removed from the data queue of sensor i).

We consider a cell partitioned network as described in [23].
Herein, the sensing area is divided into C non-overlapping
cells and time is slotted so that a sensor remains in its
current cell for a time slot and potentially moves to a new
cell at the end of that slot. During a time slot, a sensor can
transmit at most one data packet to another sensor in the same
cell. If there are more than two sensors in a cell, multiple
messages may be transmitted. But only the sensor with the
highest delivery probability will receive data messages from
other sensors. Each sensor has a data queue that can contain
maximum K messages. A sensor i generates data and inserts
data messages into the queue at a rate of ri.

Total N sensors and S sink nodes are uniformly distributed
in the C cells initially. Each sensor is associated with a home
cell and moves randomly according to power law distribu-
tion [24]. More specifically, the probability that a sensor visits
a cell x is

Pi(x) = ki(
1

di(x)
)β , (4)

where ki and β are the constant and the exponent of the power-
law distribution, respectively. di(x) denotes the distance from
cell x to the home cell of sensor i. Noting that, the probability
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to find sensor i in the entire sensing area is 1, i.e.,

C∑
x=1

Pi(x) = 1. (5)

Thus we have
ki =

1∑C
x=1(

1
di(x)

)β
. (6)

We first discuss the queueing behavior of each individual
sensor. Assume that the data processing time is negligible.
Then the service time of a sensor equals the time to transmit
a data message. A message transmission occurs in two situa-
tions. First, the sensor sends a data message directly to a sink
if they collocate in the same cell. Denote Φs to be the set
of cells, where each cell contains at least one sink node. The
probability that sensor i will meet a sink is:

Pi(Φs) =
∑
S∈Φs

ki(
1

di(S)
)β . (7)

Under the assumptions given above, ξi = Pi(Φs). Second,
the sensor will forward a data message to another sensor
if they are in the same cell and the latter has the highest
delivery probability in the cell. Consider sensor i in cell x,
the probability that there is at least another sensor with higher
delivery probability in that cell is 1 −

∏Pj(Φs)>Pi(Φs)
∀j (1 −

Pj(x)). Thus the average probability that sensor i will transmit
a data message in a cell is

pi = Pi(Φs)+
C∑

x=1
x �∈Φs

[1−
Pj(Φs)>Pi(Φs)∏

∀j
(1−Pj(x))]Pi(x). (8)

Let X denote a random variable representing the number
of moves required for sensor i to successfully send out a
data message. X thus is geometrically distributed with the
parameter pi. Its mass distribution function is

fX{x = n} = (1 − pi)n−1pi, (9)

and its cumulative probability distributed function is given by

FX{x ≤ n} =
n∑
i=1

(1 − pi)n−1pi. (10)

Note that geometric distribution is the discrete case of ex-
ponential distribution. Hence, the service time of sensor i
can be approximated as an exponential random variable with
parameter μi = −ln(1 − pi), i.e.,

FX{x ≤ n} = 1 − e−μin. (11)

We now discuss how to obtain the arrival rate for each
individual queue. As mentioned earlier, the arrival rate is
the combination of the self-generated message rate and the
data rate coming from other sensors. Suppose that the self-
generated messages at sensor i follow Poisson distribution
with parameter ri. When sensor i meets k other sensors in
a particular cell, sensor i will receive data message(s) if it
has the highest delivery probability among all sensors in the
cell and there is no sink in the cell. Suppose that sensor i
is currently in cell x. Let Ωi denote the set of sensors in the
network, which have lower delivery probabilities than sensor i,

and |Ωi| denote the total number of sensors in Ωi. Let Ωki (j)
denote a subset of Ωi with total k sensors, where j is an
index ranging from 1 to

(|Ωi|
k

)
. Ωki (j) = ∅ if k > |Ωi|. The

probability that there are exactly k other sensors with lower
delivery probability than that of sensor i and no additional
sensors in cell x is

Aki (x) =
(|Ωi|

k )∑
j=1

[
∏

m∈Ωk
i
(j)

Pm(x)][
∏

n�=i,n�∈Ωk
i
(j)

(1 − Pn(x))].

(12)
Given sensor i is in cell x and there is no sink in cell x, the
average number of data messages that sensor i receives from
other sensors in cell x is

Bi(x) =
|Ωi|∑
k=1

k ×Aki (x). (13)

Since a sensor will not receive any message from other sensors
if it is in the range of a sink, the average number of messages
that sensor i will receive in a cell is

li =
C∑

x=1
x �∈Φs

Bi(x)Pi(x). (14)

Applying the Kleinrock’s approximation [25], the combined
message arrival at sensor i is Poisson with an average arrival
rate of

λi = li + ri. (15)

Therefore, each individual queue in the network is an
M/M/1/K queue. Assume a message will be dropped if the
queue of the receiver is already full. In the equilibrium state,
the probability that there are exactly q ≤ K data messages in
queue i is

℘qi = (
λi
μi

)q
1 − (λi

μi
)

1 − (λi

μi
)q+1

, (16)

and the average number of data messages in the queue of
sensor i is given by:

Li =
λi[1 +K(λi

μi
)K+1 − (K + 1)(λi

μi
)K ]

(μi − λi)(1 − (λi

μi
)K+1)

. (17)

By seeing our system as a network of queues and applying the
theorem of Jackson network, we arrive at the average number
of data messages in the system

L =
N∑
i=1

Li. (18)

To estimate the average time a message spending in the
system, we need to calculate the self-generating rate that
actually enter the queues. Note that when queue i is already
full, it no longer accepts any data messages. Hence, the
effective self-generating rate (of the messages that actually
enter queue i) is ri(1 − ℘Ki ). Therefore, the average delay
that a data message stays in the system is

T =
L∑N

i=1 ri(1 − ℘Ki )
. (19)
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Since a sensor sends one message only in a time slot and a
message is delivered successfully only when it is received by
the sink, the network-wide message delivery ratio is

D =
∑N
i=1 Pi(Φs)∑N

i=1 ri
. (20)

To validate the analytic model, we have also performed
simple stand-alone simulations based on the simplified as-
sumptions discussed above. In the simulation, we divide
the sensing area into 10 × 10 cells with the number of
mobile sensors ranging from 2 to 20. Initially the sensors
are randomly and uniformly distributed over the sensing area.
Each sensor is assigned a home cell that is the first cell it
lands on. These sensors roam around the sensing area within
the simulation time of 50000 time units. The movement of
the sensors follows power law distribution with the exponent
α = 1.5. We assume all sensors have the same queue size
K = 200 and the same self-generating message rate r = 0.03.
For each simulation setup, we run the simulation 40 times and
average the collected results. The results of average queue
size, queuing delay, and message delivery ratio are shown
in Figs. 2. As can be seen from the figures, the simulation
and analytic results are close and show the same trend. With
more sensors being deployed, a node has better chance to
meet other sensors for data transmission, resulting in smaller
average queue size and faster delivery, as depicted in Fig.
2(a) and Fig. 2(b), respectively. Meanwhile, both analytic and
simulation results show that delivery ratio keeps constant with
the increase of node density, as shown in Fig. 2(c). This is
reasonable because the bottleneck is now at the sink nodes.
More specifically, although a higher node density increases
the chance that a node transmits to other nodes, it also fills
the queue of the receiver faster, incurring higher message
dropping rate at the receiver, especially at the nodes near the
sinks. This observation can be also explained by Equation (20),
where delivery ratio is approximated as the total sink service
rate divided by the total message generating rate. Apparently,
changing sensor node density only will not affect this ratio
from a statistic perspective. The difference between simulation
and analysis is mainly due to the approximation of message
arrival and service rates for analytic tractability.

IV. SIMULATION RESULTS

The above analytic model is based on a few simplification
assumptions for analytic tractability. To evaluate DFT-MSN
under realistic environment, we have nullified those simplifi-
cation assumptions and carried out extensive simulations. The
simulation environment and default parameters are described
below. Three sink nodes and 100 sensor nodes are randomly
deployed in an area of 200 × 200 m2. The whole area is
divided into 25 non-overlapped cells, each with an area of
40 × 40 m2. A sensor node initially resides in its home cell,
which is random chosen among the 25 cells in our simulation.
It moves within the simulated area according to the following
pattern: it continuously moves for a random period of time tm
(between 0 and 60 seconds), and then stays there for another
random period of time ts (between 0 and 120 seconds) before
moving again. The nodal speed is randomly chosen between

TABLE I

SIMULATION RESULTS WITH DEFAULT PARAMETERS.

DFT-MSN ZebraNet Direct
Transmis-
sion

Flooding

Delivery
ratio (%)

89 55.6 42.6 20.6

Average
copies
for each
message

9.8 2.7 1 1292

Average
delay (s)

2811 1700 3307 1180

0 and 5 m/s. Whenever a node reaches the boundary of its
cell, it moves out with a probability of 20%, and bounces back
with a probability of 80%. After entering a new cell, the sensor
repeats the above process. However, if it reaches the boundary
to its home cell, it returns to its home cell with a probability
of 100%. Each sensor has a maximum transmission range of
10 m and a maximum queue size of 200 messages. The data
generation of each sensor follows a Poisson process with an
average arrival interval of 100 s. Each data message has 200
bits. The channel bandwidth is 10 kbps. The fault tolerance
threshold is set to be γ = 0.8.

We have implemented four schemes, i.e., the direct trans-
mission (where the sensor only transmits its own generated
data to the sink directly), the simple flooding, the ZebraNet ap-
proach (based on historic information) [14], and the proposed
DFT-MSN dynamic data delivery approach. Note that results
of SWIM are not included here for comparison, because it
is under the assumption that all mobile nodes have the same
probability to meet the sink nodes. As a result, its performance
is much lower than other schemes in our simulated envi-
ronment. A simple acknowledgement is incorporated in the
ZebraNet and DFT-MSN, according to the delete-list scheme
discussed in [14]. We first compare the performance of the
four schemes under the default parameters. The results are
presented in Table I. As we can see, the DFT-MSN approach
has the highest delivery ratio of 89%. The flooding approach
performs worst in terms of delivery ratio, because it generates
too many message copies and thus results in frequent buffer
overflow. We also observe that the ZebraNet approach can
only deliver messages generated by the nodes close to the
sinks, while the messages generated by the nodes far away
from the sinks are likely to be dropped, as shown in Fig. 3.
This problem stems from its hierarchy level updating policy
where a node’s hierarchy level is calculated according to
the probability that it can reach the sinks directly. For those
sensors never reachable to the sink nodes, their data messages
are just randomly transmitted around, resulting in very low
delivery probability. In contrast, the DFT-MSN approach can
deliver most of the messages even if they are far away from
the sink nodes. In addition to the delivery ratio, we are also
interested in data delivery delay and overhead. As shown
in Table I, the direct transmission approach has the lowest
overhead (i.e., the average number of transmissions for each
message) but longest delay, since a sensor always transmits
data messages to the sink directly. On the other hand, the
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(c) Average message delivery ratio.

Fig. 2. Comparison between analytic and simulation results.

Fig. 3. The comparison of generating possitions of the successfully delivered
messages.

flooding approach has highest overhead but shortest delay. In
DFT-MSN, the messages generated far away from the sinks
need to be relayed many times before they reach the sink
nodes, and thus resulting in higher average overhead and
longer average delay than the ZebraNet, which can only de-
liver the messages generated near the sink nodes as discussed
above.

We also vary several parameters to observe their impacts on
the performance. Fig. 4 compares the performance of different
approaches by varying the number of sink nodes. As expected,
the proposed DFT-MSN approach always has a higher delivery
ratio than other approaches, especially when a small number
of sinks are deployed (see Fig. 4(a)). With a large number of
sinks, the DFT-MSN approach, the ZebraNet approach, and
the direct transmission approach all yield good results. This
is reasonable because the sensors then have high probabilities
to reach the sink nodes, thus resulting in high delivery ratio
close to 100%. Fig. 4(b) demonstrates that the average delay
of every approach decreases with more sink nodes deployed in
the network. Although the flooding approach has the smallest
message delivery delay, its delivery ratio is very low. In
addition, as discussed above, since the ZebraNet scheme can
only deliver the messages generated by nodes near the sinks, it
has a shorter average delivery delay than DFT-MSN approach.

Clearly, the direct transmission approach suffers from the
longest delay since messages can be delivered only when the
source node meets the sink. Energy consumption of the sensor
is due mainly to data transmission. Thus, the more duplicated
copies generated, the higher the energy consumption. As
depicted in Fig. 4(c), the number of message copies in direct
transmission is always 1, since a sensor always transmits data
messages to the sink directly. The results of flooding are not
shown here, because it generates excessive copies which are
several orders of magnitude higher than those of other ap-
proaches. The duplicated message number decreases in DFT-
MSN schemes with the increase of sink node number, largely
due to its effective overhead control. Meanwhile, because
DFT-MSN delivers many messages generated by nodes far
away from the sink nodes, it has a longer average delivery
delay than ZebraNet.

The impact of the maximum queue length is shown in
Fig. 5(a). With an increase in maximum queue length, the de-
livery ratio increases for all approaches because the messages
can then stay in the memory for a longer time before they
are dropped. It is also noticed that the DFT-MSN approach
achieves higher gain than other approaches with the increase of
queue size. Fig. 5(b) depicts the impact of nodal moving speed.
As the speed increases, the delivery ratios of all approaches
rise, except the flooding approach. This is reasonable since
the node with a higher speed has a better opportunity to meet
other nodes and also has higher probabilities to reach the sink
nodes. In the flooding approach, however, the nodes may make
more copies for each message, resulting in much more buffer
overflows and, consequently, lower delivery ratio. Fig. 5(c)
illustrates the impact of node density by varying the total
number of sensor nodes in the network. As we can see, the
delivery ratio increases slightly in DFT-MSN and ZebraNet
because more nodes can help relaying the messages. The node
density doesn’t have significant impact on direct transmission,
because the probability that a sensor meets the sinks remains
the same. The delivery ratio of flooding decreases because
much more copies are generated for each message and thus
more overflows may happen, especially for those nodes close
to the sinks.

Though the results are not shown here, we have also ana-
lyzed the impacts of the aforementioned parameters on average
delay and overhead. With the increase of maximum queue
length, the average overhead and delay in the proposed DFT-
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Fig. 4. Impact of the number of sink nodes.
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(b) Impact of the nodal speed.
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Fig. 5. Performance comparison by varying other parameters.

MSN scheme increase, since more messages can reside in the
queue before being dropped. Similarly, the average delivery
delay in ZebraNet also increases due to the same reason. When
increasing the nodal speed, we notice that the transmission
overhead decreases in DFT-MSN, but increases in ZebraNet.
This is reasonable since in the DFT-MSN approach, the
messages can be delivered with fewer hops and duplications
when nodal speed is high. However, in the ZebraNet approach,
more copies are generated because the source node meets
more neighbors before the message is delivered to the sink.
With higher nodal density, the ZebraNet approach delivers the
messages more aggressively, thus producing more overhead. In
contrast, the DFT-MSN scheme has very steady performance,
exhibiting desirable scalability.

V. TESTBED IMPLEMENTATION AND EXPERIMENTS

In order to demonstrate DFT-MSN, we have built a testbed
by using Xbow MICA2 sensors [26] for monitoring the noise
level in the library.

A. Testbed Implementation

A MICA2 sensor node has a 4-MHz, 8-bit Atmel micro-
processor and 512 KB of non-volatile flash memory that can
be used for data logging. Its radio bandwidth is 38.4 Kbuad.
The testbed runs TinyOS 1.1.0 operating system. There are
two types of nodes in our testbed, namely mobile sensors and
sink node. Their functions and implementations are discussed
below.

/** Define the message header. **/
typedef struct{

unit16 t source address;
unit16 t seqence number;
unit16 t counter;
float fault tolerance;

}Message Header;

/** Define the message. **/
typedef struct{

Message Header message header;
unit8 t data [ MAX DATA SIZE ] ;

}Message;

Fig. 6. Message Format.

a) Mobile Sensor.: A mobile sensor has three functions:
collecting information and generating data messages, trans-
mitting or relaying data messages, and recording necessary
information for performance evaluation. In order to reduce
energy consumption, a sensor only wakes up periodically for
data acquisition and transmission. We employ two timers,
namely sensing-timer and transmission-timer, to control sen-
sor’s activities. The former controls the sensor’s sensing ac-
tivity. When sensing-timer expires, the mobile sensor samples
the current noise level and generates a data message. The
format of the data message is illustrated in Fig. 6. When a
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new message is generated, it is assigned a sequence number,
which is used, along with source address, to uniquely identify
the message. Each message also contains a counter field to
record its delivery delay. Once a data message is generated,
it is inserted into the data queue, sorted by the fault tolerance
of the messages.

The transmission timer controls the data transmission of the
sensor. When the transmission timer expires, the sensor con-
tacts its neighboring nodes if there are any. More specifically,
it initiates a beacon message, which contains its address, its
current delivery probability, and the minimal fault tolerance of
its messages, to its neighbor nodes. Upon receiving a beacon
message, the neighboring node decides whether to reply or not,
based on deliver probability and buffer status. Then a message
may be transmitted (depending on the reply) as we have
discussed in Sec. II-A. After transmission, the data queues
of the sender and receiver are updated accordingly.

For performance evaluation, the sensors also record some
parameters, such as the total number of generated data mes-
sages, the total number of transmitted messages, and the
number of dropped messages due to buffer overflow. These
parameters are stored in the EEPROM and refreshed peri-
odically. After experiment is finished, we collect all mobile
sensors and place them in the transmission range of the sink
node, which will in turn retrieve the logged data for calculating
the delivery ratio and overhead.

b) Sink Node.: The sink node consists of one MICA2
sensor connected to a laptop via UART. The MICA2 at the
sink is very similar to other sensors. The only difference is
that it has no data queue. Upon receiving a data message, it
will store the message in a text file on the laptop.

B. Experiment Setup

We have carried out a small scale experiment with six
MICA2 nodes attached to students who move in the Dupré
Library of our university. As shown in Fig. 7, the mobile
sensor nodes are initially scattered in three different areas,
i.e., the reading area, the bookshelf area, and the computer
service area. Each area has two boundaries, namely movement
boundary and communication boundary. The former limits
the nodal mobility in each area. The latter indicates the
maximum radio transmission range of sensors in each area.
The communication boundaries of any two areas partially
overlap with each other. Note that, the nodes within trans-
mission range may not always be able to communicate with
each other because of the lack of line-of-sight (due to the
bookshelves, computers, walls, etc.). Generally, a node only
moves within the movement boundary of the area where it
is currently located, while periodically it may move out to
another area with certain probability. The moving speed of the
mobile nodes is around 0-3 m/s. Each sensor has a maximum
data queue size of 50 messages. The sensing-timer is set to
be 60,000 binary milliseconds (1 binary millisecond equals
1/1024 second), while the transmission-timer is set as 10,000
binary milliseconds. In addition, we set α = 0.02 and γ = 0.9
in this experiment.

Fig. 7. Experimental Scenario. (The circular boundary is for illustration
only. Actual boundary is irregular.)

TABLE II

EXPERIMENTAL RESULTS.

During T During t Total
Generated messages 120 0 120
Transmitted messages 347 288 635
Received messages 87 29 116
Delivery ratio (%) / / 96.67
Average delay (minutes) / / 5.8

C. Experimental Results

We run the experiment for a period of T . Note that, due
to the long delay of data delivery, many newly generated data
messages are still stored at the intermediate nodes by the end
of T . Since the sink node doesn’t receive these data messages,
we may falsely assume they are lost, resulting in a low delivery
ratio. This problem will become negligible when T → ∞. But
a large T is not practical for our experiment that relies on the
student volunteers to carry sensors. Alternatively, we choose a
small T (e.g., T = 20 min). After T , we do not terminate the
experiment immediately, but instead, continue it for another
period t (e.g., t = 10 min), during which the sensors do not
generate new data messages.

The experimental results are summarized in Table II, where
“generated messages” refer to the number of new messages
generated by the mobile sensors; “transmitted messages” refer
to the total number of message copies transmitted (i.e., in-
cluding duplicate messages); “received messages” refer to the
number of unique message copies received by the sink (i.e.,
excluding duplicate messages). As we have observed from our
experiments, the proposed DFT-MSN data delivery scheme
is efficient, with a total delivery ratio higher than 96% and
average delay around 5.8 minutes. These results have been
verified by multiple similar experiments with running time
from 30 minutes to 2 hours. The high overhead is reasonable,
given the very low network connectivity and nodal delivery
probability. In addition, we observe a few messages (including
duplicate message copies) dropped during the experiments due
to buffer overflow (e.g., about 10 messages dropped during
a 30-minute period). Based on the small-scale testbed, a
university-wide large-scale experiment will be carried out in
the future.
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VI. CONCLUSION

This paper focuses on the performance evaluation of the
Delay/Fault-Tolerant Mobile Sensor Network (DFT-MSN) pro-
posed for pervasive information gathering. DFT-MSN has
several unique characteristics such as sensor mobility, loose
connectivity, fault tolerability, delay tolerability, and buffer
limit. We have established a queuing model for DFT-MSN
by using Jackson network theory. While the queuing model
is based on a few simplification assumptions for analytic
tractability, it provides insights into the queuing behavior of
the mobile sensors in DFT-MSN. Under realistic environment
and assumptions, we have carried out extensive simulations.
Our simulation results show that DFT-MSN achieves the
higher message delivery ratio with acceptable delay and
transmission overhead, compared with simple schemes such
as flooding and direct transmission or other approaches in
the literature such as Zebranet. We have also implemented
a DFT-MSN testbed by deploying Crossbow motes for noise
level monitoring in our university library. Though in a small
scale, the testbed demonstrates the feasibility of DFT-MSN
and provides guidance for future large scale deployment.
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