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Abstract

This manuscript collects proofs and other material omitted from Dy-
namic Psychological Games, mimeo, November 2007 (DPG). To make it
more self-contained, key definitions and results of the main paper are in-
cluded. For the convenience of readers of DPG, the numbers of equations

and statements coincide with DPG.



1 Extensive forms with observable actions

Here we provide a more complete definition of finite extensive forms with observ-
able actions and related concepts used in results and proofs below.

Fix a finite player set N and finite action sets A; (i € N). Let A = [[..y Ai.
A history of length / is a finite sequence of action profiles h = (a', ..., a%) € A’.
History h = (a',...,a*) precedes h = (a@,...,a"), written h < h, if h is a prefix
of h, i.e. k < £ and (a',...,a*) = (a',...,@"). In this case, we also write h =
(h,a**1,...,a"). The empty sequence (the history with zero length) is denoted
h°. By convention h° precedes every proper history. A finite extensive form with
observable actions is a structure (N, H) where H C {h°} U (Uf:1 A£> is a finite

set of histories with the following properties:!

e W0 e H.
o Vhe H,if h<hthen h € H.

e Vhe H, {ac A: (h,a) € H} = [],cn Ai(h) where

Al(h) = {(li €A :da_; € HAj’ (h, (ai,a_i)) S H}

i
is the set of possible actions of player ¢ at history h.

Note that (H, <) is a tree with distinguished root h°; the symmetric closure
of < is denoted by <.> We let Z = {h € H : [[,.y Ai(h) = 0} denote the set of
terminal (or complete) histories.

We can now define the following derived elements:

e S = {s; = (sin)hen € (A)? : Vh € H\Z,s;5, € Ai(h)} is the set of

strategies of player 4, S = [[}_, S;, S_; = [Tieng Si-

e ( : S — Z is the path function, that is, z = (a!,...,a®) = ((s) iff a* =
(Si,h())ieNv\V/t € {1, LK — 1}, altlt = (Si,(al ..... at))iGN'
e For any h € H, S(h) is the set of strategy profiles consistent with h, i.e.,

S(h) ={s €S :h =((s)}. Since past actions are observed, it follows that
S(h) =TI}, Si(h), where S;(h) is the projection of S(h) on S;.

ICf. Osborne & Rubinstein (1994, Chapter 6).
2Thus, h < I’ iff either h < K/ or h = h/.



2 Infinite hierarchies of conditional beliefs

Here we just collect definitions and results about infinite hierarchies of condi-
tional probability systems. This section is included to make the manuscript self-
contained, but its content is also contained in DPG.

Fix a compact Polish space X, B is the Borel sigma algebra, C is a countable

collection of clopen conditioning events.

Definition 1 A conditional probability system (eps) on (X,B,C) is a function
wu(-|) : B x C — [0,1] such that for oll E € B, F,F' € C

(1) u(-1F) € AX),

(2) w(FIF) = 1,

(8) EC F' C F implies u(E|F) = u(E|F')u(F'|F).

We regard the set AC(X) of cps’ on (X,B,C) as a subset of the topological
space [A(X)]¢, where A(X) is endowed with the topology of weak convergence of
measures and [A(X)]¢ is endowed with the product topology.

From now on DM is a player i, and (X, B3, C) is specified as follows: either X =
S_; (afinite set), or X = S_; XY, where Y is some compact Polish parameter space
typically representing a set of opponents’ beliefs; the Borel sigma-algebra B is im-
plicitly understood, and conditioning events corresponds to histories, that is, C =
{FCS i xY:F=S,;h)xY,heH} (or C={FCS ;:F=S,h),he H}
if X = S_;). The set of cps’ is denoted A#(S_; x Y) a subset of [A(S_; x Y)]H.
If conditioning event F' corresponds to history h, then we abbreviate and write
u(|F7) = p(-[h).

Lemma 2 AY(S_;) is a compact Polish space. Furthermore, if Y is a compact

Polish space, also A*(S_; x Y) is a compact Polish space.
Hierarchies of cps’ are defined recursively as follows:
o X0 =S5, (i € N),

o XF = XU L AT(X ) (e Nk =1,2,..).

JF#i
By repeated applications of Lemma 2, each X*, is a cross-product of compact
Polish spaces, hence compact Polish itself.®> A cps u¥ € A# (Xf;l) is called k-

order cps. For k > 1, u¥ is a joint cps on the opponents’ strategies and (k — 1)-

order cps’. A hierarchy of cps’ is a countably infinite sequence of cps’ u; =

3The cross-product of countably many compact Polish spaces is also compact Polish.
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(uh, p2, ) € Tlao AT(XEY). py; is coherent if the cps’ of distinct orders assign

the same conditional probabilities to lower-order events:
pi(-|h) = marg et (Jh) (k= 1,2,..; he H).

It can be shown that a coherent hierarchy p, induces a cps v; on the cross-product
of S_; with the sets of hierarchies of cps’ of i’s opponents, a compact Polish space.

A coherent hierarchy p, satisfies belief in coherency of order 1 if the induced
cps v; is such that each v;(-|h) (h € H) assigns probability one to the opponents’
coherency; p, satisfies belief in coherency of order k if it satisfies belief in coherency
of order k — 1 and the induced cps v; is such that each v;(-|h) (h € H) assigns
probability one the opponents’ coherency of order k — 1; u, is collectively coherent
if it satisfies belief in coherency of order k for each positive integer k. The set
of collectively coherent hierarchies of player i is a compact Polish space, denoted
by M;. We let M} denote the set of k-order beliefs consistent with collective
coherency, that is, the projection of M; on A7 (X*71) and let M*, = H#i MJ’-“,
M_; = Hj;éi M;, M = HjeN M.

Lemma 3 For each i € N there is a 1-to-1 and onto continuous function
fi= (fin)nem : My — AH(S_; x M)

whose inverse is also continuous. Furthermore, each coordinate function f;; is
such that for all p, = (u},p?...) € M, k> 1

IU/7’,€<.|h) = margsiiXMiix_._XMlefi,h(l’l’i)'

Definition 4 A psychological game based on extensive form (N, H) is a structure
I'=(N,H, (u;)ien) where u; : Z x M x S_; — R isi’s (measurable and bounded)
psychological payoff function.

3 Dynamic Programing on Beliefs-Induced De-

cision Trees

Fix a hierarchy of cps’ u; a non terminal history h and a strategy s; consistent

with h. The expectation of u; conditional on h, given s; and p; is
Eq, u,[uil ] 3_/ wi(C(Siy 5-i)s Bis B—is S—i) fin (i) (ds—i, dp_;). (EU)
S_iXM_i
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We want to relate the problem maxg,cs,r) Es, ., [1i| 1] to dynamic programming
on a decision tree induced by u,;. (Note that in this problem we allow for changing
the strategy also at histories not weakly follow h. But by own-strategy indepen-
dence of u; this is irrelevant. We write the problem like this only to simplify the
notation.)

For any fixed hierarchy of cps’ u;, we obtain a well defined decision tree that
can be solved by backward induction. Define value functions V), : H — R and
Vo, (H\Z) x A; — R as follows:

e For terminal histories z € Z, let

VM(Z):/S u ui(zal'l’z’nu’—iaSfi)fi,z(ll’»(dsfiad/l'—i)'
—i X —i

e Assuming that V), (h,a) has been defined for all the immediate successors
(h,a) of history h, let

Vi(hoai) = Y pl(S=i(h,azi)[h)Vu, (h, (ai,a_:));
a_;€A_;(h)

for each a; € A;(h); then V,, (h) is defined as

V., (h) = max V, (h,a).

aiEAi(h)

For any given strategy s; and history h € H\Z, we use the following notation:

e For each k with 0 < k < ¢(h) (recall that ¢(h) denotes the length of history
h), a¥(h) is action taken by i in h at the prefix of h of length k. Thus, by

7

definition h = (a®(R),a'(h), ...,a"™~1(h)), where a*(h) = (a¥(h), ..., a®(R)).

ceey Wy

e (s;]h) denotes the strategy that takes all the actions of player i in history h

and behaves as s; otherwise:

(S|h) - Si,h! if 74 h,
e a"(h) i W < h.

o (s;|h,a;) denote the strategy obtained from (s;|h) by replacing s;, with
a; € A;i(h):
(silhyw iE W £,

ih7 i)h —
(54|, a;)n {a@- o



e Finally, let d(h) = maxy<.[¢(z) — ¢(h)] denote the depth of the subtree with

root h.

Lemma A (Dynamic Programming A). Suppose that

Vh € H\Z, s, € arg max V, (h, a;).

ai€A;(h)
Then
Vh € H\Z Bty [ualh] = Vi () = macx By ol (DP)
S; €55

Proof. The proof is by induction on d(h).

Basis step. Obviously (DP) holds for all & such that d(h) = 1.

Inductive step. Suppose (DP) holds for all h such that 1 < d(h) < k. Let
d(h) = k + 1. By the law of iterated expectations for all a; € A;(h)

et an g [wilh] = >t (S=ilh, a i) 0B (e hag) o, [wil B, (0, a)].
a_;€A_;(h)

By the inductive hypothesis, for all a; € A;(h), a_; € A_;(h)

ES% a:).ws | Wi h, Ay Ay =V, h, i, A_j;)) = max Esi Uy h, a;,a_;)|.
itma s [l (@,0-0] = Vi (b (araz)) = max o fulh (05,020

Taking expectatons w.r.t. a_;:

E(sthar)p; [wilh] = Vo, (R, a;).
Therefore

E(S;|h)’m[ui|h] = V,,(h) = max Eg , [u;|h]

Siesi(h)
if and only if
¥ E(sth.a).p (Wil R
S'L,h e arg afGIlAAaZ}((h) ( z|h7 l)vy‘z [u ’ ]
if and only if

s;p, € arg Hbaxvui (h,a;).

The latter condition holds by assumption; hence the inductive step is proved.l



4 Sequential Equilibrium

We focus on behavior strategies o; = (0i(-|h))rerm\z € [Ihemm 2 A(Ai(R)), inter-
preting o; as an array of common conditional first-order beliefs held by ’s op-
ponents. This interpretation is part of the notion of ‘consistency’ of profiles of
strategies and hierarchical beliefs defined below.

In our framework an assessment is a profile (o, u) =(0y, u;)ien where o is a
behavioral strategy profile and p € M. We extend the definition of consistency by
adding a requirement concerning the higher-order beliefs that need to be specified
in psychological games.

Let Prg].('|iAL) € A(S;(h)) denote the probability measure over j’s strategies
conditional on & derived from behavior strategy o; under the assumption of inde-

pendence across histories:

Vs; € S;(h), Poj_r(sjm) =[] oisinlh)
! he H\Z:h £h

(h £ h means that h is not a predecessor, or prefix, of ﬁ).4

Definition 5 A profile of first-order cps’ u' = (u})ien is derived from a behav-
ioral strategy profile o = (0;)ien if for alli € N, s_; € S_;, heH,

pt(silh) = [T Pr(s;lh). (1)
j#i

Clearly, if p' is derived from o then for any three players i, j, k, the beliefs of

7 and j about k coincide:

~

Vh € H, margg, ! (-|h) = 1;3(.113) = margg, i} (-|h).

Definition 6 Assessment (o, p) is consistent if
(a) p' is derived from o,

(b) higher-order beliefs in p assign probability 1 to the lower-order beliefs:
Vi€ N,Vk>1,Vhe H, uf(:|h) = uF1(-|h) x 0, k-1

where X denotes the product of measures and d, is the Dirac measure assigning

probability 1 to singleton {x}.

4Cf. Kuhn (1953).



We now move to the main definition: a consistent assessment is a sequential

equilibrium if it satisfies sequential rationality. Recall that
Es,-,ui [ul|h] = / ui(C(SZ’ —2) /J’zvI‘l’—bs—i)fi,h(/-l’ixds—iadl-l’fi)' (2)
S_iXM_i

Definition 7 An assessment (o, ) is a sequential equilibrium (SE) if it is con-
sistent and for alli € N, h € H\Z, sf € S;(h),

( ‘lh) >0 = si €arg max E, , [ulh]. (3)
SzESz( ) ‘

Note that, by consistency, o; represents the first-order beliefs of i’s opponents

about 7, and furthermore there is common certainty of the true belief profile p at

every history; therefore the sequential rationality condition (3) can equivalently

be written as

Vj # i, supp margsiu}(-lh) - argsrggﬁ) Z i (s-ilh)ui(C(siy 5-0), s 5-3)-
(4)

s_i€S_i(h)
This clarifies that SE is a notion of equilibrium in beliefs. Indeed we could have
given an equivalent definition of SE with no reference to behavioral strategies.
We can also take the point of view of an ‘agent’ (i, h) of player i, in charge
of the move at history A, who seeks to maximize 7’s conditional expected utility
given the consistent assessment (o, u). The expected utility of ¢ conditional on h

and a; € A;(h) given (o, u) can be expressed as

Bppluilhyali= 3 J[Pr(siln) > Prisilhadui(C(s), mys-), - (5)

s_,€S5_;(h) j#i si€Si(h,a;)

where Pro, (silh, ai) == [Tyem g pn 0i(si00 [B) (B £ h means that i’ is not h or a
predecessor of h). This specification presumes that (7, h) assesses the probabilities
of actions by other agents of player 7 in the same way as each player j # i; that is

using the behavioral strategy o;.

Remark. Suppose that u; depends only on terminal histories and beliefs, not

on s_;. Then we obtain the more familiar formula
E; pluilh, a;] ZPr z|h, a;)ui(z, @),

where Pr,(z|h,a;) is the probability of terminal history z conditional on (h,a;)



determined by o.

Proposition 8 A consistent assessment (o, ) satisfies (3) and hence is an SE
if and only if for alli € N, h € H\Z,

(. C . 1.
supp(c;(-|h)) € arg Jnax E; uluilh, a;] (6)

Proof. Let (o, p) be consistent. Then for each z € Z,

Vﬂz(z) = Z luz'1<8—i|z)ui<z7y’ivl"’—ias—i)v
SfiES,i(h)

and for all h with d(h) = 1 (recall that d(h) is the depth of the tree wtih root h)
we have

Vi, (h) = aireng}(ch) Eo i, a;]. (BI)

We must show that (o, ) satisfies the sequential rationality condition (3) if
and only if the one-shot deviation condition (6) holds. The “if” part is obvious.
Now suppose that (o, p) satisfies (6). Then a straightforward induction argument
shows that (BI) holds for all h € H\Z. Therefore Lemma A implies that (3)
holds.H

We obtain the following existence theorem:

Theorem 9 If the psychological payoff functions are continuous, there exists at

least one sequential equilibrium assessment.

(The proof of the theorem is only sketched in DPG.)
Proof of Theorem 9. We first show how to associate a consistent assessment
(o, 8(0)) with each behavioral strategy profile 0. Let 3'(c) = (8;(0))ieny € M?

i

denote the profile of first-order beliefs derived from o according to Def. 5. The
profile of belief hierarchies g = (o) is obtained by condition (b) in Definition 6:

Vi € N,u=pi(0),
Vi € N,Vk>1,YheH, u(-h)=pu =" (Jh) x 8,51 .

By construction, assessment (o, 5(0)) is consistent. It is clear from the construc-

tion that (-) is a continuous function.



Definition of c-equilibrium. Fix a strictly positive vector ¢ = (€; 4(;)a,c,(n))ieN hem\z
st. Vhe H\Z, Y, . Ai(h) e(a;) < 1. An e-equilibrium is a behavioral strategy pro-
file o s.t. Vi € N, Vh € H, Va,; € A;(h),
(i) oi(ailh) = €inlas),

(ii) a; ¢ argmaxyca,n) Bo,p(o) [wilh, a;] implies o;(a;|h) = &;n(a;).

Let Y. denote the set of behavioral strategy profiles satisfying condition (i)
of the definition above and let r. : 3. — Y. denote the “c-best response corre-
spondence” that assigns to each profile ¢ the subset of profiles in X, satisfying

condition (ii) of the definition, that is,

rei(0)

= {0} € X.;:Vh,Va,;,a; ¢ arg mji(h) Eo (o) [uilh, a;) = o5(as|h) = €;n(a;)},
al€A;

re(o) = H rei(0).
iEN
r.i(0) is a nonempty convex subset of A(A4;(h)). Since E, ,[u;|h, a;] is continuous
in (o,p) and g = B(o) is a continuous function, E, gi)[ui|h, a;] is continuous
in 0. This implies that r.;(0) has a closed graph. Thus, 7.(-) is a nonempty
convex valued correspondence with a closed graph from the compact and convex
set [ [,cm 7z [Lien A(Ai(h)) to itself. By the Kakutani theorem r.(-) has a fixed
point, which is an e-psychological equilibrium.

Fix a sequence € — 0 and a corresponding sequence of e*-psychological equi-
librium strategies o*. By compactness, the sequence (o*) has a limit point o*. We
prove that (o, 3(c*)) is a sequential equilibrium. Assessment (o*, 3(c*)) is con-
sistent: to see this just note that, by continuity, 3(c*) is a limit point of 5(c*), and
that the set of consistent assessments is closed. By continuity of E, g0 [ui|h, a;]

in o (and finiteness of A;(h)), for k sufficiently large

Ea* o* ih7 i = EO’ of)s iha 7.
argagi?h) Blon[uilh, a;l argairenji)((h) k 3(ok) [wilh, a;]

This implies that

S (-lh)) C a ax Eg« g |uilh, a;).
upp(o (1)) C arg max B il

By Proposition 8, this implies that (o*, 5(c*)) is a sequential equilibrium.Hl
Suppose that psychological utilities depend only on terminal nodes and beliefs:

u; : Z X M — R. For any such game I' = (N, H, (u;);en) and any profile of hier-
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archies of cps’ p = (i;)ien, We can obtain a standard game T* = (N, H, (v});en)

with payoff functions v!*(z) = w;(z, p).

Remark 10 Suppose that psychological payoff functions have the form w; : Z X
M — R. Then an assessment (o, p) is a sequential equilibrium if and only if
it is consistent and o is a subgame perfect (hence sequential) equilibrium of the

standard game T'P.

Proof. Let (o, ) be a consistent assessment. Since ¢’s utility in I' has the

form u; : Z x M — R, the definition of v implies that
Eq plui|h, ;] ZPr z|h, a;)u;(z, p) ZPr z|h, a;)vl(2).

where Pr,(z|h,a;) is the probability of terminal history z conditional on (h,a;)
determined by o (see the previous remark). It easily follows that behavior strategy
profile ¢ is sequentially rational in I' given pu, if and only if it is a subgame perfect

equilibrium a subgame perfect equilibrium of I'*. Il

5 Interactive Epistemology

States. The state of a player is therefore given by his strategy and his hierarchy
of cps’, (s, ;). The set of states for player i is {2; = S; x M;, and the set of states
of the world is Q = [[;_, Q. Welet Q_; = [[,,,Q; and with a slight abuse of

notation we also write w = (w;,w_;) € Q@ = Q; x Q_,.

Events. An event is a Borel subset £ C 2; an event about 7 is any subset
E = FE; xQ_;, where E; C €); is a Borel set. &; is the family of events about 1.
E_;, the family of events about i’s opponents, is the collections of events of the
form FF = ; x E_; where E_; C Q)_; is a Borel set.

Finally we let £ denote the collection of events of the form F = ﬂ E; with E; €
iEN
& for all i € N. Equivalently £ € £ iff E' is a Borel set and £ =[],y projg, E.

Conditional belief operators. Vh € H, B, : £_; — &; is defined as follows:
VE =Q; x E_; € £, Bin(E) = {(si i, w—i) © fin(ps)(E=;) = 1}

Conditional mutual belief. We define mutual belief operators only on the

domain £ of ‘product events’. The mutual belief operator B, : £ — &£ is defined

10



as follows:

VE = () Ei €& Bu(E)=[)Bin (ﬂ E]) :

ieN ieN G

Rationality. Recall the definition of E,, ,, [u;]|h] in eq. (EU). Let
Hi(s}) ={h € H\Z : s} € S;(h)}

denote the set of non-terminal histories allowed by s7; the (weakly) sequential best

response corrspondence 7;(-) is defined as follows:

Y, € My, ri(p;) = {3;‘ :Vh € H(s}), si € arg msm()%) Esm[uz|h]} (7)
5;€05;

The event “player ¢ is rational” is

Ry = {(si s, w-i) = 85 € mi(p;) }-
We note in passing a result that is omitted in DPG:

Remark. If (%, u*) is an SE assessment, then there exists a strategy profile
s* such that (a) for allh € H\Z,i € N, s, €suppo;(:|h) and (b) for all h € H\Z,
Pr,«(h) > 0 implies that there is rationality and common belief in rationality at
state ((s*|h), u*), that is, ((s*|h), p*) € RN (Npo(Br)F(R)) -

This follow quite easily from the definition of sequential equilibrium: the se-
quential rationality condition implies that Yh € H\Z, Pry«(h) > 0= ((s*|h), u*) €
R. By consistency there is common belief of u* conditional on h at each state

((s*|h), u*). It follows that ((s*|h), u*) € RN (N=o(Br)¥(R)) at such histories.

The following lemma is stated without proof in the Appendix of DPG (see
Lemma 17 of DPG):

Lemma B (Dynamic Programming B). The sequential best reply corre-

spondence r; : M; — S; can be characterized as follows

() =< s;: Vh € H(s;),s; Vi (h,a)y.
Tz(y’z) {Sl Vh € (Sz)asz,h € argairenf;}({h) Vﬂl( y @ )}

Proof. Fix a strategy S; and let s be the strategy obtained from s; as
follows: if h € Hz(gz)\Z then ‘§Zh = éi,h; if h € H\(Z U Hl(gz)) then é;ih €

argmax,, V. (h,a;). By construction 3; and 5} are realization-equivalent: H;(3;) =

11



H;(8F) and ((8;,s-) = ¢(§F,s_;) for all s_;. Therefore u;({(8;,5 ), ,5_i) =
w;(C(8%,8-4), by s—;) for every (p,s_;). This implies that $; belongs to r;(p,;) if
and only if 57 does, and similarly

i

5; € {si :Vh € H(s;)\Z, si € arg maxvu (h,ai)}

if and only if s} does.

Suppose that §; ¢ {si :Vh € H(s;)\Z, s;, € argmax,, V”i(h,ai)}. Since H
is finite there is some history h € H(s;)\Z such that 8;j, ¢ argmax,, Vui(i% a;)
and §;, € argmax,, V. (h,a;) for all h > h in Hi(s;)\Z. By the law of iterated

expectations, for any s; and any h € H;(s;)

ES@',M [u%|h] = Z :uil(s—i(h’ a’_i)lh)ESivl"i [ul|hv (Sl}hv a—i)]'
afiEA,i(h)

By assumption,
E§i7ﬂi [Ullha (‘§i,fz’ a—i)] = Vﬂi(hv (§i,ﬁ7 a—i))'

Therefore
Eéi#i [ul|h] = V“i(h7 ézﬁ)

Pick an action @; € arg max,, Vm (fL, a;). Let 5; denote the strategy obtained from

~

87 by replacing 87, with @;. By construction 5; € S;(h) and
Es, p, [uilh] =V, (h) > Vui(h, §zh>

Therefore there is a history h € H;(3;) and a strategy 5; € S;(h) such that
Es, u, ;| h] > Es, u, [u;]h], which implies that & ¢ r;(ps;).
Now suppose that §; € {si :Vh € H(s;)\Z, s;, € argmax,, V“i(h, ai)}. Then

8;, € argmax,, V. (h, ;) for all h € H\Z, and Lemma A implies that 57 € r;(u,;).
Hence 3, € r;(p,;).1

Extensive form rationalizability. First define a ‘strong belief operator’ SB;
as follows: SB;(0) = 0 and

VE € £_\{0}, SBy(E) = ﬂ Bin(E).
[hNE#£0

For each F = ﬂ E; € £, the event “there is mutual strong belief in £” is defined
ieN

12



by SB(E ﬂ SB; (ﬂE) . Note that SB(F) € £. Finally, we introduce an

i€EN J#i
auxiliary ‘correct strong belief’ operator:

VE € £, CSB(E) = ENSB(E).
Definition 11 A state of the world w is rationalizable if w € (-, CSB*(R).

To illustrate the full power of Definition 11, we analyze a Generalized Trust
Game with guilt aversion, reminiscent of Ben-Porath & Dekel’s (1992) money-
burning game: A; = {D,Trusty,.. Trusty} (Ann), Ay = {Grab, Share} (Bob).
Ann moves first, action D terminates the game, action Trust, (¢ = 1,...L) gives the
move to Bob. Let ay(pty) = pi(Share,|h®) and 3,(py) = [ co(pey) g3 (dove(pe)| Trusty).
As before we assume that Ann’s utility is her material payoff, whereas Bob is averse
to guilt. Applying the guilt formula of subsection 3.3 in DPG, the players’ utilities

are given by

w(D) = 1,i=1,2,
wi(Trusty, Share) = |1+ %) ,i=1,2,
uy(Trusty, Grab) = 0,
ug(Trusty, Grab) = 2 <1 + %) — Oy (1 + %) ,

where 6, is Bob’s sensitivity to guilt. Bob (strictly) prefers to share the yield of
project £ if and only if 9265 > 1.

For L = 1 and 6, = 5 we obtain I'; (of DPG), and the forward induction
argument used to solve F3 (captured by 2 iterations of the CSB operator) works
if and only if 65 > 2. By contrast, when L > 1 rationalizability yields the effi-
cient sharing outcome also for much lower values of 65, as shown in the following

proposition, the proof of which is omitted in DPG:

Proposition 12 In the Generalized Trust Game with guilt aversion, if 0 > 1—1—%

then, for every rationalizable state (s1, py, S, ty), 51 = Trusty, so = (Share,)L |,
af(l"’l) = 66(”’2) =1 (£ - 17 7L)

Proof. For every even number 2k and event CSB®*(R) we characterize the

‘largest’ project ¢ s.t., according to CSB?*(R), action Trust, induces Bob to share.
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Let {(-) be defined by:

(0) = 0, and /(2k) = max {e e{1,...L}: @%ﬁ[z) > 1} (k> 1).

Note that for each k > 1, 92% 02725

holds by assumption. Therefore function ¢ (2k) is well-defined and strictly increas-

> 1, where the latter inequality

ing in k£ until it attains its maximum, L. We claim that for each &k > 1, event
CSB?*(R) implies that B‘i %ﬂ?) for each ¢ > 0(2k — 2), so, = Share, and
ay =1 for each £ = 1,...,0(2k), and s, = Trust, for some ¢ > ¢(2k). This implies
the thesis.

If Ann chooses project ¢ she signals that o, > because she can obta,ln $1 by

T
not investing. By forward induction and 1"ati0nauht;fr levent CSB(R)], 8, > 1% -
Bob shares if 6, LZ_’S = Gy 77 > 1, that is sp, = Share, for each ¢ = 1, ...,2(2).
Therefore event CSB2(R) implies that oy, = 1 for each ¢ = 1,...((2), hence (by
rationality) s, = Trust, for some ¢ > £(2). This shows that the claim holds for
k=1.

Suppose by way of induction that the claim holds for some k. If é(Zk) =L,
we are done. Let /(2k) < L. Event CSB**!(R) implies that Bob interprets

i and

any project ¢ > @(2/@) as a signal that o, > Lﬁgk), hence it implies that 5, >
Lilk) and that Bob shares if 0,=——"* L(2k) > 1, that is sy, = Share, for each ¢ =

L+ L+
1,...¢(2(k +1)). Event CSB**%(R) = CSB***Y(R) implies that a, = 1 for each

¢ =1,...002(k + 1)), hence s; = Trust, for some ¢ > ((2(k +1)). Therefore the
claim holds for £ + 1.1

6 Multi-self players and sequential reciprocity

We show how Dufwenberg & Kirchsteiger’s reciprocity theory can be represented
within an extended framework where players have ‘local’ utility functions (u;, :
ZXxMx S — R)e m\z- We have already seen how our basic framework could
reproduce their reciprocity theory in an example (I's of DPG), but to handle
general games one needs a multi-selves approach.” We consider two-player games
for simplicity. Recall that player ¢ is inclined to be kind toward j if she believes j
is kind toward her. Kindness depends on intentions. In particular, the kindness of

J toward i, Kj;, given j’s first-order belief v € A(S;) and strategy s; is increasing

jis

5This is not to suggest that one could not conceive of a different sort of reciprocity theory,
which would not require a multi-selves approach.
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in the difference between the expected material payoff of 7 and a belief-dependent

‘equitable payoff” 7%, () that j ascribes to i:

Kji(sj,v) = Y _v(shmi(C(s), 55)) — 75 (v).

!
Si

A player’s kindness toward the co-player depends on his current first-order belief,
which depends on the observed history. Therefore, for any fixed hierarchy of
cps’ p; = (((j(-|P))ner, (13(-|h))hem, --.), the kindness of j toward i at history
his Kji(sj, ptj(-|h)), where s; € Si(h). Assume that at each history h player
maximizes the expected value of a linear combination of her material payoff and
the product between her kindness at h toward the opponent and the opponent’s

kindness at h toward her, i.e., 7 at h maximizes
/ [7i(C(54,85)) + 0uFis (i, i C1R)) Ki(sj, 15(-|)] g3 (ds, dp (- ) | ).
S (h)xA(S;(R))

At history h, i’s preferences are represented by the payoff function

Ui,h(zalia s) = mi(2) + 0; KZJ(S'“/"LZ( |h)) JZ(SJaNg( |h)),

or equivalently by

mi(2) + 0:K (i, i (1)) K (),

where Kyji(12(-|h)) fs myxacs ) i (85, 15 C L)) g (dsj, dpg ([R)[R) is i7s Delief
in j’s kindness toward ¢. What we have here is, essentially, a reformulation of

Dufwenberg & Kirchsteiger’s model.

References

[1] BATTIGALLI, P. AND M. DUFWENBERG (2007): “Dynamic Psychological

Games”, mimeo, (November 2007).

[2] BATTIGALLI, P. AND M. SINISCALCHI (1999): “Hierarchies of Conditional Be-
liefs and Interactive Epistemology in Dynamic Games,” Journal of Economic
Theory, 88, 188-230.

[3] BEN-PORATH, E. AND E. DEKEL (1992): “Signaling Future Actions and the
Potential for Sacrifice, ” Journal of Economic Theory, 57, 36-51.

15



[4] DUFWENBERG, M. AND G. KIRCHSTEIGER (2004): “A Theory of Sequential
Reciprocity,” Games and Economic Behavior, 47, 268-298.

[5] KunN, HW. (1953): “Extensive Games and the Problem of Information,”
in Contributions to the Theory of Games I, ed. by H. W. Kuhn and A. W.
Tucker. Princeton: Princeton University Press, pp. 193-216.

[6] OSBORNE, M. AND A. RUBINSTEIN (1994): A Course in Game Theory. Cam-
bridge MA: MIT Press.

16



