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Abstract

This manuscript collects proofs and other material omitted from Dy-

namic Psychological Games, mimeo, November 2007 (DPG). To make it

more self-contained, key de�nitions and results of the main paper are in-

cluded. For the convenience of readers of DPG, the numbers of equations

and statements coincide with DPG.



1 Extensive forms with observable actions

Here we provide a more complete de�nition of �nite extensive forms with observ-

able actions and related concepts used in results and proofs below.

Fix a �nite player set N and �nite action sets Ai (i 2 N). Let A =
Q
i2N Ai.

A history of length ` is a �nite sequence of action pro�les h = (a1; :::; a`) 2 A`.
History h = (a1; :::; ak) precedes h = (a1; :::; a`), written h � h, if h is a pre�x

of h, i.e. k < ` and (a1; :::; ak) = (a1; :::; ak). In this case, we also write h =

(h; ak+1; :::; a`). The empty sequence (the history with zero length) is denoted

h0. By convention h0 precedes every proper history. A �nite extensive form with

observable actions is a structure hN;Hi where H � fh0g [
�SL

`=1A
`
�
is a �nite

set of histories with the following properties:1

� h0 2 H:

� 8h 2 H, if h � h then h 2 H.

� 8h 2 H, fa 2 A : (h; a) 2 Hg =
Q
i2N Ai(h) where

Ai(h) =

(
ai 2 Ai : 9a�i 2

Y
j 6=i

Aj; (h; (ai; a�i)) 2 H
)

is the set of possible actions of player i at history h.

Note that hH;�i is a tree with distinguished root h0; the symmetric closure
of � is denoted by �.2 We let Z = fh 2 H :

Q
i2N Ai(h) = ;g denote the set of

terminal (or complete) histories.

We can now de�ne the following derived elements:

� Si = fsi = (si;h)h2H 2 (Ai)
H : 8h 2 HnZ; si;h 2 Ai(h)g is the set of

strategies of player i, S =
Qn
i=1 Si, S�i =

Q
j2Nnfig Sj.

� � : S ! Z is the path function, that is, z = (a1; :::; aK) = �(s) i¤ a1 =

(si;h0)i2N ,8t 2 f1; :::K � 1g, at+1 = (si;(a1;:::;at))i2N .

� For any h 2 H, S(h) is the set of strategy pro�les consistent with h, i.e.,
S(h) = fs 2 S : h � �(s)g. Since past actions are observed, it follows that
S(h) =

Qn
i=1 Si(h), where Si(h) is the projection of S(h) on Si.

1Cf. Osborne & Rubinstein (1994, Chapter 6).
2Thus, h � h0 i¤ either h � h0 or h = h0.
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2 In�nite hierarchies of conditional beliefs

Here we just collect de�nitions and results about in�nite hierarchies of condi-

tional probability systems. This section is included to make the manuscript self-

contained, but its content is also contained in DPG.

Fix a compact Polish space X, B is the Borel sigma algebra, C is a countable
collection of clopen conditioning events.

De�nition 1 A conditional probability system (cps) on (X;B; C) is a function
�(�j�) : B � C ! [0; 1] such that for all E 2 B, F; F 0 2 C
(1) �(�jF ) 2 �(X),
(2) �(F jF ) = 1,
(3) E � F 0 � F implies �(EjF ) = �(EjF 0)�(F 0jF ).

We regard the set �C(X) of cps�on (X;B; C) as a subset of the topological
space [�(X)]C, where �(X) is endowed with the topology of weak convergence of

measures and [�(X)]C is endowed with the product topology.

From now on DM is a player i, and (X;B; C) is speci�ed as follows: either X =

S�i (a �nite set), orX = S�i�Y , where Y is some compact Polish parameter space
typically representing a set of opponents�beliefs; the Borel sigma-algebra B is im-
plicitly understood, and conditioning events corresponds to histories, that is, C =
fF � S�i � Y : F = S�i(h)� Y; h 2 Hg (or C = fF � S�i : F = S�i(h); h 2 Hg
if X = S�i). The set of cps�is denoted �H(S�i � Y ) a subset of [�(S�i � Y )]H .
If conditioning event F corresponds to history h, then we abbreviate and write

�(�jF ) = �(�jh).

Lemma 2 �H(S�i) is a compact Polish space. Furthermore, if Y is a compact

Polish space, also �H(S�i � Y ) is a compact Polish space.

Hierarchies of cps�are de�ned recursively as follows:

� X0
�i = S�i (i 2 N),

� Xk
�i = X

k�1
�i �

Q
j 6=i�

H(Xk�1
�j ) (i 2 N ; k = 1; 2; :::).

By repeated applications of Lemma 2, each Xk
�i is a cross-product of compact

Polish spaces, hence compact Polish itself.3 A cps �ki 2 �H(Xk�1
�i ) is called k-

order cps. For k > 1, �ki is a joint cps on the opponents�strategies and (k � 1)-
order cps�. A hierarchy of cps� is a countably in�nite sequence of cps��i =

3The cross-product of countably many compact Polish spaces is also compact Polish.
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(�1i ; �
2
i ; :::) 2

Q
k>0�

H(Xk�1
�i ). �i is coherent if the cps�of distinct orders assign

the same conditional probabilities to lower-order events:

�ki (�jh) = margXk�1
�i
�k+1i (�jh) (k = 1; 2; :::; h 2 H).

It can be shown that a coherent hierarchy �i induces a cps �i on the cross-product

of S�i with the sets of hierarchies of cps�of i�s opponents, a compact Polish space.

A coherent hierarchy �i satis�es belief in coherency of order 1 if the induced

cps �i is such that each �i(�jh) (h 2 H) assigns probability one to the opponents�
coherency; �i satis�es belief in coherency of order k if it satis�es belief in coherency

of order k � 1 and the induced cps �i is such that each �i(�jh) (h 2 H) assigns
probability one the opponents�coherency of order k� 1; �i is collectively coherent
if it satis�es belief in coherency of order k for each positive integer k. The set

of collectively coherent hierarchies of player i is a compact Polish space, denoted

by Mi. We let Mk
i denote the set of k-order beliefs consistent with collective

coherency, that is, the projection of Mi on �H(Xk�1
�i ), and let M

k
�i =

Q
j 6=iM

k
j ,

M�i =
Q
j 6=iMj, M =

Q
j2NMj.

Lemma 3 For each i 2 N there is a 1-to-1 and onto continuous function

fi = (fi;h)h2H :Mi ! �H(S�i �M�i)

whose inverse is also continuous. Furthermore, each coordinate function fi;h is

such that for all �i = (�
1
i ; �

2
i :::) 2Mi, k � 1

�ki (�jh) = margS�i�M1
�i�:::�M

k�1
�i
fi;h(�i):

De�nition 4 A psychological game based on extensive form hN;Hi is a structure
� = hN;H; (ui)i2Ni where ui : Z �M� S�i ! R is i�s (measurable and bounded)
psychological payo¤ function.

3 Dynamic Programing on Beliefs-Induced De-

cision Trees

Fix a hierarchy of cps��i a non terminal history h and a strategy si consistent

with h. The expectation of ui conditional on h, given si and �i is

Esi;�i [uijh] :=
Z
S�i�M�i

ui(�(si; s�i);�i;��i; s�i)fi;h(�i)(ds�i; d��i): (EU)
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We want to relate the problemmaxsi2Si(h) Esi;�i [uijh] to dynamic programming
on a decision tree induced by �i. (Note that in this problem we allow for changing

the strategy also at histories not weakly follow h. But by own-strategy indepen-

dence of ui this is irrelevant. We write the problem like this only to simplify the

notation.)

For any �xed hierarchy of cps��i, we obtain a well de�ned decision tree that

can be solved by backward induction. De�ne value functions V�i : H ! R and
V �i : (HnZ)� Ai ! R as follows:

� For terminal histories z 2 Z, let

V�i(z) =

Z
S�i�M�i

ui(z;�i;��i; s�i)fi;z(�i)(ds�i; d��i):

� Assuming that V�i(h; a) has been de�ned for all the immediate successors
(h; a) of history h, let

V �i(h; ai) =
X

a�i2A�i(h)

�1i (S�i(h; a�i)jh)V�i(h; (ai; a�i));

for each ai 2 Ai(h); then V�i(h) is de�ned as

V�i(h) = max
ai2Ai(h)

V �i(h; ai).

For any given strategy si and history h 2 HnZ, we use the following notation:

� For each k with 0 � k < `(h) (recall that `(h) denotes the length of history
h), aki (h) is action taken by i in h at the pre�x of h of length k. Thus, by

de�nition h = (a0(h); a1(h); :::; a`(h)�1(h)), where ak(h) = (ak1(h); :::; a
k
n(h)).

� (sijh) denotes the strategy that takes all the actions of player i in history h
and behaves as si otherwise:

(sijh)h0 =
(
si;h0 if h0 � h;
a
`(h0)
i (h) if h0 � h:

� (sijh; ai) denote the strategy obtained from (sijh) by replacing si;h with
ai 2 Ai(h):

(sijh; ai)h0 =
(
(sijh)h0 if h0 6= h;
ai if h0 = h:
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� Finally, let d(h) = maxh�z[`(z)� `(h)] denote the depth of the subtree with
root h.

Lemma A (Dynamic Programming A). Suppose that

8h 2 HnZ, s�i;h 2 arg max
ai2Ai(h)

V �i(h; ai):

Then

8h 2 HnZ,E(s�i jh);�i [uijh] = V�i(h) = max
si2Si(h)

Esi;�i [uijh]: (DP)

Proof. The proof is by induction on d(h).
Basis step. Obviously (DP) holds for all h such that d(h) = 1.

Inductive step. Suppose (DP) holds for all h such that 1 � d(h) � k. Let

d(h) = k + 1. By the law of iterated expectations for all ai 2 Ai(h)

E(s�i jh;ai);�i [uijh] =
X

a�i2A�i(h)

�1i (S�i(h; a�i)jh)E(s�i jh;ai);�i [uijh; (ai; a�i)]:

By the inductive hypothesis, for all ai 2 Ai(h), a�i 2 A�i(h)

E(s�i jh;ai);�i [uijh; (ai; a�i)] = V�i(h; (ai; a�i)) = max
si2Si(h;(ai;a�i))

Esi;�i [uijh; (ai; a�i)]:

Taking expectatons w.r.t. a�i:

E(s�i jh;ai);�i [uijh] = V �i(h; ai):

Therefore

E(s�i jh);�i [uijh] = V�i(h) = max
si2Si(h)

Esi;�i [uijh]

if and only if

s�i;h 2 arg max
ai2Ai(h)

E(s�i jh;ai);�i [uijh]

if and only if

s�i;h 2 argmax
ai
V �i(h; ai):

The latter condition holds by assumption; hence the inductive step is proved.�
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4 Sequential Equilibrium

We focus on behavior strategies �i = (�i(�jh))h2HnZ 2
Q
h2HnZ �(Ai(h)), inter-

preting �i as an array of common conditional �rst-order beliefs held by i�s op-

ponents. This interpretation is part of the notion of �consistency�of pro�les of

strategies and hierarchical beliefs de�ned below.

In our framework an assessment is a pro�le (�;�) =(�i;�i)i2N where � is a

behavioral strategy pro�le and � 2M. We extend the de�nition of consistency by
adding a requirement concerning the higher-order beliefs that need to be speci�ed

in psychological games.

Let Pr�j(�jĥ) 2 �(Sj(ĥ)) denote the probability measure over j�s strategies
conditional on ĥ derived from behavior strategy �j under the assumption of inde-

pendence across histories:

8sj 2 Sj(ĥ), Pr
�j
(sjjĥ) :=

Y
h2HnZ:h�ĥ

�j(sj;hjh)

(h � ĥ means that h is not a predecessor, or pre�x, of ĥ).4

De�nition 5 A pro�le of �rst-order cps� �1 = (�1i )i2N is derived from a behav-

ioral strategy pro�le � = (�i)i2N if for all i 2 N , s�i 2 S�i, ĥ 2 H,

�1i (s�ijĥ) =
Y
j 6=i

Pr
�j
(sjjĥ): (1)

Clearly, if �1 is derived from � then for any three players i, j, k, the beliefs of

i and j about k coincide:

8ĥ 2 H, margSk�
1
i (�jĥ) = Pr

�k
(�jĥ) = margSk�

1
j(�jĥ).

De�nition 6 Assessment (�;�) is consistent if
(a) �1 is derived from �,

(b) higher-order beliefs in � assign probability 1 to the lower-order beliefs:

8i 2 N , 8k > 1, 8h 2 H, �ki (�jh) = �k�1i (�jh)� ��k�1�i

where � denotes the product of measures and �x is the Dirac measure assigning

probability 1 to singleton fxg.
4Cf. Kuhn (1953).
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We now move to the main de�nition: a consistent assessment is a sequential

equilibrium if it satis�es sequential rationality. Recall that

Esi;�i [uijh] :=
Z
S�i�M�i

ui(�(si; s�i);�i;��i; s�i)fi;h(�i)(ds�i; d��i): (2)

De�nition 7 An assessment (�;�) is a sequential equilibrium (SE) if it is con-

sistent and for all i 2 N , h 2 HnZ, s�i 2 Si(h),

Pr
�i
(s�i jh) > 0 ) s�i 2 arg max

si2Si(h)
Esi;�i [uijh]: (3)

Note that, by consistency, �i represents the �rst-order beliefs of i�s opponents

about i, and furthermore there is common certainty of the true belief pro�le � at

every history; therefore the sequential rationality condition (3) can equivalently

be written as

8j 6= i, supp margSi�
1
j(�jh) � arg max

si2Si(h)

X
s�i2S�i(h)

�1i (s�ijh)ui(�(si; s�i);�; s�i):

(4)

This clari�es that SE is a notion of equilibrium in beliefs. Indeed we could have

given an equivalent de�nition of SE with no reference to behavioral strategies.

We can also take the point of view of an �agent� (i; h) of player i, in charge

of the move at history h, who seeks to maximize i�s conditional expected utility

given the consistent assessment (�;�). The expected utility of i conditional on h

and ai 2 Ai(h) given (�;�) can be expressed as

E�;�[uijh; ai] :=
X

s�i2S�i(h)

Y
j 6=i

Pr
�j
(sjjh)

X
si2Si(h;ai)

Pr
�i
(sijh; ai)ui(�(s);�; s�i); (5)

where Pr�i(sijh; ai) :=
Q
h02HnZ:h0�h �i(si;h0jh0) (h0 � h means that h0 is not h or a

predecessor of h). This speci�cation presumes that (i; h) assesses the probabilities

of actions by other agents of player i in the same way as each player j 6= i; that is
using the behavioral strategy �i.

Remark. Suppose that ui depends only on terminal histories and beliefs, not
on s�i. Then we obtain the more familiar formula

E�;�[uijh; ai] =
X
z

Pr
�
(zjh; ai)ui(z;�);

where Pr�(zjh; ai) is the probability of terminal history z conditional on (h; ai)
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determined by �.

Proposition 8 A consistent assessment (�;�) satis�es (3) and hence is an SE

if and only if for all i 2 N , h 2 HnZ,

supp(�i(�jh)) � arg max
ai2Ai(h)

E�;�[uijh; ai]: (6)

Proof. Let (�;�) be consistent. Then for each z 2 Z,

V�i(z) =
X

s�i2S�i(h)

�1i (s�ijz)ui(z;�i;��i; s�i);

and for all h with d(h) = 1 (recall that d(h) is the depth of the tree wtih root h)

we have

V�i(h) = max
ai2Ai(h)

E�;�[uijh; ai]: (BI)

We must show that (�;�) satis�es the sequential rationality condition (3) if

and only if the one-shot deviation condition (6) holds. The �if�part is obvious.

Now suppose that (�;�) satis�es (6). Then a straightforward induction argument

shows that (BI) holds for all h 2 HnZ. Therefore Lemma A implies that (3)

holds.�

We obtain the following existence theorem:

Theorem 9 If the psychological payo¤ functions are continuous, there exists at
least one sequential equilibrium assessment.

(The proof of the theorem is only sketched in DPG.)

Proof of Theorem 9. We �rst show how to associate a consistent assessment
(�; �(�)) with each behavioral strategy pro�le �. Let �1(�) = (�1i (�))i2N 2 M1

denote the pro�le of �rst-order beliefs derived from � according to Def. 5. The

pro�le of belief hierarchies � = �(�) is obtained by condition (b) in De�nition 6:

8i 2 N , �1i = �
1
i (�);

8i 2 N , 8k > 1, 8h 2 H, �ki (�jh) = �k�1i (�jh)� ��k�1�i
.

By construction, assessment (�; �(�)) is consistent. It is clear from the construc-

tion that �(�) is a continuous function.
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De�nition of "-equilibrium. Fix a strictly positive vector " = ("i;h(ai)ai2Ai(h))i2N;h2HnZ
s.t. 8h 2 HnZ,

P
ai2Ai(h) "(ai) < 1. An "-equilibrium is a behavioral strategy pro-

�le � s.t. 8i 2 N , 8h 2 H, 8ai 2 Ai(h),
(i) �i(aijh) � "i;h(ai),
(ii) ai =2 argmaxa0i2Ai(h) E�;�(�)[uijh; a

0
i] implies �i(aijh) = "i;h(ai).

Let �" denote the set of behavioral strategy pro�les satisfying condition (i)

of the de�nition above and let r" : �" � �" denote the �"-best response corre-

spondence� that assigns to each pro�le � the subset of pro�les in �" satisfying

condition (ii) of the de�nition, that is,

r";i(�)

= f�0i 2 �";i : 8h;8ai; ai =2 arg max
a0i2Ai(h)

E�;�(�)[uijh; a0i]) �i(aijh) = "i;h(ai)g;

r"(�) =
Y
i2N

r";i(�):

r";i(�) is a nonempty convex subset of �(Ai(h)). Since E�;�[uijh; ai] is continuous
in (�; �) and � = �(�) is a continuous function, E�;�(�)[uijh; ai] is continuous
in �. This implies that r";i(�) has a closed graph. Thus, r"(�) is a nonempty
convex valued correspondence with a closed graph from the compact and convex

set
Q
h2HnZ

Q
i2N �(Ai(h)) to itself. By the Kakutani theorem r"(�) has a �xed

point, which is an "-psychological equilibrium.

Fix a sequence "k ! 0 and a corresponding sequence of "k-psychological equi-

librium strategies �k. By compactness, the sequence (�k) has a limit point ��. We

prove that (��; �(��)) is a sequential equilibrium. Assessment (��; �(��)) is con-

sistent: to see this just note that, by continuity, �(��) is a limit point of �(�k), and

that the set of consistent assessments is closed. By continuity of E�;�(�)[uijh; ai]
in � (and �niteness of Ai(h)), for k su¢ ciently large

arg max
ai2Ai(h)

E��;�(��)[uijh; ai] = arg max
ai2Ai(h)

E�k;�(�k); [uijh; ai]:

This implies that

supp(��i (�jh)) � arg max
ai2Ai(h)

E��;�(��)[uijh; ai]:

By Proposition 8, this implies that (��; �(��)) is a sequential equilibrium.�
Suppose that psychological utilities depend only on terminal nodes and beliefs:

ui : Z �M! R. For any such game � = hN;H; (ui)i2Ni and any pro�le of hier-
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archies of cps�� = (�i)i2N , we can obtain a standard game �
� = hN;H; (v�i )i2Ni

with payo¤ functions v�i (z) = ui(z;�).

Remark 10 Suppose that psychological payo¤ functions have the form ui : Z �
M ! R. Then an assessment (�;�) is a sequential equilibrium if and only if

it is consistent and � is a subgame perfect (hence sequential) equilibrium of the

standard game ��:

Proof. Let (�;�) be a consistent assessment. Since i�s utility in � has the
form ui : Z �M! R, the de�nition of v�i implies that

E�;�[uijh; ai] =
X
z

Pr
�
(zjh; ai)ui(z;�) =

X
z

Pr
�
(zjh; ai)v�i (z):

where Pr�(zjh; ai) is the probability of terminal history z conditional on (h; ai)
determined by � (see the previous remark). It easily follows that behavior strategy

pro�le � is sequentially rational in � given �, if and only if it is a subgame perfect

equilibrium a subgame perfect equilibrium of ��.�

5 Interactive Epistemology

States. The state of a player is therefore given by his strategy and his hierarchy
of cps�, (si;�i). The set of states for player i is 
i = Si�Mi, and the set of states

of the world is 
 =
Qn
i=1
i. We let 
�i =

Q
j 6=i
j and with a slight abuse of

notation we also write ! = (!i; !�i) 2 
 = 
i � 
�i.

Events. An event is a Borel subset E � 
; an event about i is any subset

E = Ei � 
�i, where Ei � 
i is a Borel set. Ei is the family of events about i.
E�i, the family of events about i�s opponents, is the collections of events of the
form E = 
i � E�i where E�i � 
�i is a Borel set.
Finally we let E denote the collection of events of the formE =

\
i2N

Ei withEi 2

Ei for all i 2 N . Equivalently E 2 E i¤ E is a Borel set and E =
Q
i2N proj
iE:

Conditional belief operators. 8h 2 H, Bi;h : E�i ! Ei is de�ned as follows:

8E = 
i � E�i 2 E�i, Bi;h(E) = f(si;�i; !�i) : fi;h(�i)(E�i) = 1g:

Conditional mutual belief. We de�ne mutual belief operators only on the
domain E of �product events�. The mutual belief operator Bh : E ! E is de�ned

10



as follows:

8E =
\
i2N

Ei 2 E , Bh(E) =
\
i2N

Bi;h

 \
j 6=i

Ej

!
.

Rationality. Recall the de�nition of Esi;�i [uijh] in eq. (EU). Let

Hi(s
�
i ) = fh 2 HnZ : s�i 2 Si(h)g

denote the set of non-terminal histories allowed by s�i ; the (weakly) sequential best

response corrspondence ri(�) is de�ned as follows:

8�i 2Mi, ri(�i) =
�
s�i : 8h 2 H(s�i ), s�i 2 arg max

si2Si(h)
Esi;�i [uijh]

�
(7)

The event �player i is rational�is

Ri = f(si;�i; !�i) : si 2 ri(�i)g:

We note in passing a result that is omitted in DPG:

Remark. If (��; ��) is an SE assessment, then there exists a strategy pro�le
s� such that (a) for all h 2 HnZ, i 2 N , si;h 2supp��i (�jh) and (b) for all h 2 HnZ,
Pr��(h) > 0 implies that there is rationality and common belief in rationality at

state ((s�jh); ��), that is, ((s�jh); ��) 2 R \
�T

k>0(Bh)
k(R)

�
:

This follow quite easily from the de�nition of sequential equilibrium: the se-

quential rationality condition implies that 8h 2 HnZ, Pr��(h) > 0) ((s�jh); ��) 2
R. By consistency there is common belief of �� conditional on h at each state

((s�jh); ��). It follows that ((s�jh); ��) 2 R \
�T

k>0(Bh)
k(R)

�
at such histories.

The following lemma is stated without proof in the Appendix of DPG (see

Lemma 17 of DPG):

Lemma B (Dynamic Programming B). The sequential best reply corre-
spondence ri :Mi � Si can be characterized as follows

ri(�i) =

�
si : 8h 2 H(si); si;h 2 arg max

ai2Ai(h)
V �i(h; ai)

�
:

Proof. Fix a strategy ŝi and let ŝ�i be the strategy obtained from ŝi as

follows: if h 2 Hi(ŝi)nZ then ŝ�i;h = ŝi;h; if h 2 Hn(Z [ Hi(ŝi)) then ŝ�i;h 2
argmaxai V �i(h; ai). By construction ŝi and ŝ

�
i are realization-equivalent: Hi(ŝi) =

11



Hi(ŝ
�
i ) and �(ŝi; s�i) = �(ŝ�i ; s�i) for all s�i. Therefore ui(�(ŝi; s�i);�; s�i) =

ui(�(ŝ
�
i ; s�i);�; s�i) for every (�; s�i). This implies that ŝi belongs to ri(�i) if

and only if ŝ�i does, and similarly

ŝi 2
�
si : 8h 2 H(si)nZ; si;h 2 argmax

ai
V �i(h; ai)

�
if and only if ŝ�i does.

Suppose that ŝi =2
�
si : 8h 2 H(si)nZ; si;h 2 argmaxai V �i(h; ai)

	
. Since H

is �nite there is some history ĥ 2 H(si)nZ such that ŝi;ĥ =2 argmaxai V �i(ĥ; ai)
and ŝi;h 2 argmaxai V �i(h; ai) for all h � ĥ in Hi(si)nZ. By the law of iterated
expectations, for any si and any h 2 Hi(si)

Esi;�i [uijh] =
X

a�i2A�i(h)

�1i (S�i(h; a�i)jh)Esi;�i [uijh; (si;h; a�i)]:

By assumption,

Eŝi;�i [uijĥ; (ŝi;ĥ; a�i)] = V�i(ĥ; (ŝi;ĥ; a�i)):

Therefore

Eŝi;�i [uijĥ] = V �i(ĥ; ŝi;ĥ):

Pick an action ai 2 argmaxai V �i(ĥ; ai). Let si denote the strategy obtained from
ŝ�i by replacing ŝ

�
i;ĥ
with ai. By construction si 2 Si(ĥ) and

Esi;�i [uijh] = V�i(h) > V �i(h; ŝi;ĥ):

Therefore there is a history ĥ 2 Hi(ŝi) and a strategy si 2 Si(ĥ) such that

Esi;�i [uijĥ] > Eŝi;�i [uijĥ], which implies that ŝi =2 ri(�i).
Now suppose that ŝi 2

�
si : 8h 2 H(si)nZ; si;h 2 argmaxai V �i(h; ai)

	
. Then

ŝ�i;h 2 argmaxai V �i(h; ai) for all h 2 HnZ, and Lemma A implies that ŝ�i 2 ri(�i).
Hence ŝi 2 ri(�i).�

Extensive form rationalizability. First de�ne a �strong belief operator�SBi
as follows: SBi(;) = ; and

8E 2 E�inf;g, SBi(E) =
\

[h]\E 6=;

Bi;h(E):

For each E =
\
i2N

Ei 2 E , the event �there is mutual strong belief in E�is de�ned

12



by SB(E) =
\
i2N

SBi

 \
j 6=i

Ej

!
: Note that SB(E) 2 E . Finally, we introduce an

auxiliary �correct strong belief�operator:

8E 2 E , CSB(E) = E \ SB(E):

De�nition 11 A state of the world ! is rationalizable if ! 2
T
k�0CSB

k(R).

To illustrate the full power of De�nition 11, we analyze a Generalized Trust

Game with guilt aversion, reminiscent of Ben-Porath & Dekel�s (1992) money-

burning game: A1 = fD;Trust1; :::T rustLg (Ann), A2 = fGrab; Shareg (Bob).
Ann moves �rst, actionD terminates the game, action Trust` (` = 1; :::L) gives the

move to Bob. Let �`(�1) = �
1
1(Share`jh0) and �`(�2) =

R
�`(�

1
1)�

2
2(d�`(�

1
1)jTrust`).

As before we assume that Ann�s utility is her material payo¤, whereas Bob is averse

to guilt. Applying the guilt formula of subsection 3.3 in DPG, the players�utilities

are given by

ui(D) = 1; i = 1; 2;

ui(Trust`; Share) =

�
1 +

`

L

�
; i = 1; 2;

u1(Trust`; Grab) = 0;

u2(Trust`; Grab) = 2

�
1 +

`

L

�
� �2�`

�
1 +

`

L

�
;

where �2 is Bob�s sensitivity to guilt. Bob (strictly) prefers to share the yield of

project ` if and only if �2�` > 1.

For L = 1 and �2 = 5
2
we obtain �3 (of DPG), and the forward induction

argument used to solve �3 (captured by 2 iterations of the CSB operator) works

if and only if �2 > 2. By contrast, when L > 1 rationalizability yields the e¢ -

cient sharing outcome also for much lower values of �2, as shown in the following

proposition, the proof of which is omitted in DPG:

Proposition 12 In the Generalized Trust Game with guilt aversion, if �2 > 1+ 1
L

then, for every rationalizable state (s1;�1; s2;�2), s1 = TrustL, s2 = (Share`)
L
`=1,

�`(�1) = �`(�2) = 1 (` = 1; :::; L).

Proof. For every even number 2k and event CSB2k(R) we characterize the
�largest�project ` s.t., according to CSB2k(R), action Trust` induces Bob to share.

13



Let ^̀(�) be de�ned by:

^̀(0) = 0, and ^̀(2k) = max

(
` 2 f1; :::; Lg : �2

L+ ^̀(2k � 2)
L+ `

> 1

)
, (k � 1).

Note that for each k � 1, �2 L+^̀(2k�2)
L+1+^̀(2k�2) � �2

L
L+1

> 1 , where the latter inequality

holds by assumption. Therefore function ^̀(2k) is well-de�ned and strictly increas-

ing in k until it attains its maximum, L. We claim that for each k � 1, event

CSB2k(R) implies that �` �
L+^̀(2k�2)

L+`
for each ` > ^̀(2k � 2), s2;` = Share` and

�` = 1 for each ` = 1; :::; ^̀(2k), and s1 = Trust` for some ` � ^̀(2k). This implies

the thesis.

If Ann chooses project ` she signals that �` � L
L+`
, because she can obtain $1 by

not investing. By forward induction and rationality [event CSB(R)], �` � L
L+`

and

Bob shares if �2
L+^̀(0)
L+`

:= �2
L
L+`

> 1, that is s2;` = Share` for each ` = 1; :::; ^̀(2).

Therefore event CSB2(R) implies that �` = 1 for each ` = 1; :::^̀(2), hence (by

rationality) s1 = Trust` for some ` � ^̀(2). This shows that the claim holds for

k = 1.

Suppose by way of induction that the claim holds for some k. If ^̀(2k) = L,

we are done. Let ^̀(2k) < L. Event CSB2k+1(R) implies that Bob interprets

any project ` > ^̀(2k) as a signal that �` � L+^̀(2k)
L+`

, hence it implies that �` �
L+^̀(2k)
L+`

and that Bob shares if �2
L+^̀(2k)
L+`

> 1, that is s2;` = Share` for each ` =

1; :::; ^̀(2(k + 1)). Event CSB2k+2(R) = CSB2(k+1)(R) implies that �` = 1 for each

` = 1; :::; ^̀(2(k + 1)), hence s1 = Trust` for some ` � ^̀(2(k + 1)). Therefore the

claim holds for k + 1.�

6 Multi-self players and sequential reciprocity

We show how Dufwenberg & Kirchsteiger�s reciprocity theory can be represented

within an extended framework where players have �local�utility functions (ui;h :

Z �M � S ! R)h2HnZ . We have already seen how our basic framework could
reproduce their reciprocity theory in an example (�6 of DPG), but to handle

general games one needs a multi-selves approach.5 We consider two-player games

for simplicity. Recall that player i is inclined to be kind toward j if she believes j

is kind toward her. Kindness depends on intentions. In particular, the kindness of

j toward i, Kji, given j�s �rst-order belief � 2 �(Si) and strategy sj is increasing
5This is not to suggest that one could not conceive of a di¤erent sort of reciprocity theory,

which would not require a multi-selves approach.
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in the di¤erence between the expected material payo¤ of i and a belief-dependent

�equitable payo¤��eji(�) that j ascribes to i:

Kji(sj; �) =
X
s0i

�(s0i)�i(�(s
0
i; sj))� �eji(�):

A player�s kindness toward the co-player depends on his current �rst-order belief,

which depends on the observed history. Therefore, for any �xed hierarchy of

cps��j = (((�1j(�jh))h2H ; (�2j(�jh))h2H ; :::), the kindness of j toward i at history
h is Kji(sj; �

1
j(�jh)), where sj 2 Si(h). Assume that at each history h player i

maximizes the expected value of a linear combination of her material payo¤ and

the product between her kindness at h toward the opponent and the opponent�s

kindness at h toward her, i.e., i at h maximizesZ
Sj(h)��(Si(h))

�
�i(�(si; sj)) + �iKij(si; �

1
i (�jh))Kji(sj; �

1
j(�jh))

�
�2i (dsj; d�

1
j(�jh)jh):

At history h, i�s preferences are represented by the payo¤ function

ui;h(z;�; s) = �i(z) + �iKij(si; �
1
i (�jh))Kji(sj; �

1
j(�jh));

or equivalently by

�i(z) + �iKij(si; �
1
i (�jh))K̂iji(�

2
i (�jh));

where K̂iji(�
2
i (�jh)) =

R
Sj(h)��(Si(h))Kji(sj; �

1
j(�jh))�2i (dsj; d�1j(�jh)jh) is i�s belief

in j�s kindness toward i. What we have here is, essentially, a reformulation of

Dufwenberg & Kirchsteiger�s model.
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