No books, notes, or friends. **Show your work.** You may use the attached equation sheet, R, and a calculator. No other materials. If you choose to use R, write what you typed on the test. Using any other program or having any other documents open on the computer will constitute cheating.

You have until the end of class to finish the exam, manage your time wisely. If something is unclear quietly come up and ask me. If the question is legitimate I will inform the whole class.

Express all final answers to 3 significant digits. Probabilities should be given as a decimal number unless a percent is requested. Circle final answers, ambiguous or multiple answers will not be accepted. Show steps where appropriate.

The exam consists of 21 questions for a total of 71 points on 9 pages.

This Exam is being given under the guidelines of our institution’s **Code of Academic Ethics.** You are expected to respect those guidelines.

Points Earned: __________ out of 71 total points

Exam Score: __________
1. The following is a partial list of statistical methods that we have discussed:

 1. mean
 2. median
 3. mode
 4. standard deviation
 5. z-score
 6. percentile
 7. coefficient of variation
 8. scatter plot
 9. histogram
 10. pareto chart
 11. box plot
 12. normal-quantile plot
 13. confidence interval for a mean
 14. confidence interval for difference in means
 15. confidence interval for a proportion
 16. confidence interval for difference in proportions
 17. one sample mean test
 18. two independent sample mean test
 19. one sample proportion test
 20. two sample proportion test
 21. test of homogeneity
 22. test of independence
 23. linear correlation coefficient & test
 24. regression
 25. 1-way ANOVA

For each situation below, which method is most applicable?

- If it’s a hypothesis test, also state what the null and alternative hypothesis are.
- If it’s a graphical method, also describe what you would be looking for.
- If it’s a statistic, how susceptible to outliers is it?

(a) (2 points) A student needs to conduct a t-test on a small set of data. Before conducting the test, the student needs determine if the data appears to have a normal distribution.

(b) (2 points) A department of labor researcher wants to determine if there is a dependence between an individual’s ethnicity and the type of industry they work in.

(c) (2 points) A drug research would like to test the claim that the mean absorption of 1 gram of vitamin E is the same for four methods of delivery: topical, intravenous, oral, and nasal spray.
(d) (2 points) A researcher would like to estimate the proportion of people who are dyslexic.

(e) (2 points) A fertility researcher wants to determine if a new drug can decrease the proportion of infertile mice. Twenty mice are randomly divided into two groups, a treatment group and a control group.

2. (1 point) The test of homogeneity can be thought of as a generalization of what two sample test?

3. (1 point) If the mean, median, and mode for a data set are all the same, what can you conclude about the data's distribution?

4. (2 points) Under what conditions can we approximate a binomial distribution as a normal distribution?

5. (1 point) What percent of data lies within three standard deviations of the mean as stated by the Empirical Rule?

6. (1 point) Why is it important to use random sampling?

7. For the following statements, determine if the calculation requires the use of a population distribution or a sampling distribution.

 (a) (1 point) Computing a confidence interval for a mean.

 (b) (1 point) Computing an interval that contain 95% of individual's weights.
8. (1 point) If the normal approximation to the binomial is valid, write what the following binomial probability statement is approximately equal to in terms of the normal distribution.

\[P_{\text{binom}}(x = 8) \approx \]

9. (1 point) For the test of homogeneity, what is the distribution of the test statistic? (Give the specific name.)

10. (2 points) A hypothesis test was conducted for \(H_0 : p = 0.5 \) and \(H_a : p > 0.5 \). The test statistic is \(z = 1.3 \). Find the p-value.

11. Provide short succinct written answers to the following conceptual questions.

(a) (1 point) Would temperature measured in Kelvin be classified as a nominal, ordinal, interval, or ratio level of measurement?

(b) (1 point) Which of the following measures of variation is most susceptible to outliers:

\text{standard deviation, inter-quartile range, range}

(c) (1 point) What percent of data is greater than \(Q_2 \)?

(d) (1 point) What does the standard deviation represent conceptually in words? (Be concise but don’t simply state the equation in words verbatim.)

(e) (2 points) A histogram is a useful tool that can quickly communicate many traits about a set of data. List 4 useful pieces of information that an observer can easily assess using a histogram.

(f) (1 point) Why would a SAT percentile be preferred over a raw SAT score for college admissions committees?
12. (2 points) When doing blood testing for HIV infections, the procedure can be made more efficient and less expensive by combining samples of blood specimens. If samples from five people are combined and the mixture tests negative, we know that all five individual samples are negative. Find the probability of a positive result for five samples combined into one mixture, assuming the probability of an individual blood sample testing positive is 10%. (Based on data from the NY State Health Department)

13. (2 points) You would like to conduct a study to estimate (at the 95% confidence level) the proportion of households that own one or more encyclopedias. What sample size do you need to estimate the proportion with a margin of error of 2%.
14. (2 points) If a class consists of 20 males and 8 females, what is the probability of drawing 4 females without replacement?

15. The following questions regard hypothesis testing in general.
 (a) (1 point) When we conduct a hypothesis test, we assume something is true and calculate the probability of observing the sample data under this assumption. What do we assume is true?

 (b) (1 point) If you reject H_0 but H_0 is true, what type of error has occurred? (Type I or Type II)

 (c) (1 point) What variable represents the actual Type I error?

 (d) (1 point) What does the power of a hypothesis test represent?

16. Eighteen students were randomly selected to take the SAT after having either no breakfast or a complete breakfast. A researcher would like to test the claim that students who eat breakfast score higher than students who do not.

 Group without breakfast: SAT Score 480 510 530 540 550 560 600 620 660
 Group with breakfast: SAT Score 460 500 530 520 580 580 560 640 690

 (a) (1 point) What type of hypothesis test will you use?

 (b) (2 points) What are the test’s requirements?

 (c) (2 points) What are the hypothesis H_0 and H_a?

 (d) (1 point) What α will you use?
(e) (2 points) Conduct the hypothesis test. What is the p-value?

(f) (1 point) What is your formal decision?

(g) (2 points) State your final conclusion in words.

17. Samples of head breadths were obtained by measuring skulls of Egyptian males from three different epochs, and the measurements are listed below (based on data from *Ancient Races of the Tebaid*, by Thomas and Randall-Maciver). Changes in head shape over time suggest that interbreeding occurred with immigrant populations. Test the claim that the different epochs do not all have the same mean head breadth.

A box plot of the data is shown below.

(a) (1 point) What type of hypothesis test (of those discussed in class) should you use?

(b) (1 point) What is the alternative hypothesis for this test?

(c) (1 point) What alpha will you use?

(d) (1 point) What is the response variable for this study?
(e) (1 point) What is the factor variable for this study?

(f) (1 point) The analysis of the data was run and the output is shown below: What is your final conclusion (not the formal decision)?

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>epoch</td>
<td>2</td>
<td>138.74</td>
<td>69.37</td>
<td>4.05</td>
<td>0.0305</td>
</tr>
<tr>
<td>Residuals</td>
<td>24</td>
<td>411.11</td>
<td>17.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(g) (1 point) Assuming the researcher rejected the null hypothesis, what is the probability of a Type I error for this study?

18. The following table lists midterm and final exam grades for eight statistics students.

<table>
<thead>
<tr>
<th>Midterm</th>
<th>75.00</th>
<th>49.00</th>
<th>95.00</th>
<th>82.00</th>
<th>83.00</th>
<th>43.00</th>
<th>95.00</th>
<th>98.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td>44.00</td>
<td>35.00</td>
<td>82.00</td>
<td>89.00</td>
<td>73.00</td>
<td>43.00</td>
<td>85.00</td>
<td>71.00</td>
</tr>
</tbody>
</table>

(a) (2 points) Upon looking at the scatter plot of the data, the relationship of midterm score and final exam score appears linear. Is the linear relationship statistically significant? (Justify your answer by conducting an analysis, state the p-value and the conclusion.)

(b) (1 point) What percent of a student’s final exam score can be explained by their midterm score?

(c) (2 points) You want to model a student’s final exam score as linearly related to their midterm grade. Write the equation for fitted model (with the actual values of the coefficients). (Assume the linear correlation is significant.)
(d) (1 point) What range of midterm scores is the model valid for making predictions about final exam scores?

(e) (1 point) What is the best predicted final exam score for a student who gets a 75 on the midterm? (Assume the linear correlation is significant.)

(f) (1 point) If the linear relationship had not been statistically significant, what is the best predicted final exam score for a student who gets a 75 on the midterm?

19. (2 points) A researcher is trying to determine the ideal temperature to brew coffee. A random sample of 8 of the top 100 coffee shops in New York city had their brewer temperatures (in Celsius) measured. The data is shown below.

88.6, 91.2, 87.5, 90.5, 85.4, 90.6, 93.5, 94.6

Construct a 90% confidence interval for the true population mean temperature using the above data. (Assume σ is unknown.)
20. (2 points) A ski resort is designing a new super tram to carry 40 people. If the mean weight of humans is approximately 165 lbs with a standard deviation of 25 lbs, what should the tram’s maximum weight limit be so that it can carry the desired capacity 95% of the time?

21. (2 points) Given $y = \{a, -2a, 4a\}$, completely simplify the following expression. Assume a is an unknown constant.

$$\left(\sum (y_i - 2a)\right)^2$$

End of exam. Reference sheets follow.
2.3 VISUAL
All plots have optional arguments:
- main="" title
- xlab="" ylab="" sets x/y-axis label
- type=""o"" for point plot
- type=""l"" for Line plot
- type=""b"" for both points and lines
Ex: plot(x, y, type=""b", main="My Plot")

Plot Types:
hist(x, y) histogram
stem(x) stem & leaf
boxplot(x) box plot
plot(x) bar plot, T=table(x)
plot(x, y) scatter plot, x, y ordered vectors
plot(t, y) time series plot, t, y are ordered vectors
curve(expr, xmin, xmax) plot expr involving x

3. Probability
Number of successes x with n possible outcomes.
(Don’t double count!)

\[P(A) = \frac{x_A}{n} \]
(17)

\[P(\bar{A}) = 1 - P(A) \]
(18)

\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]
(19)

\[P(A \text{ or } B) = P(A) + P(B) \text{ if } A, B \text{ mutually excl.} \]
(20)

\[P(A \text{ and } B) = P(A) \times P(B) \text{ if } A, B \text{ independent} \]
(22)

\[n! = n(n - 1) \cdots 1 = \text{factorial}(n) \]
(23)

\[P(k) = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \text{ Perm. no elem. alike} \]
(24)

\[P(k) = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \text{ Perm. n. 1 alike...} \]
(25)

\[C_k = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \text{ choose (n, k)} \]
(26)

4. Continuous Random Variables
CDF F(x) gives area to the left of x, F^{-1}(p) expects p is area to the left.

\[f(x) \text{: probability density} \]
(34)

\[E = \mu = \int_{-\infty}^{\infty} x \cdot f(x) \, dx \]
(35)

\[\sigma = \sqrt{\int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) \, dx} \]
(36)

\[F(x) \text{: cumulative prob. density (CDF)} \]
(37)

\[F^{-1}(x) \text{: inv. cumulative prob. density} \]
(38)

\[F(x) = \int_{-\infty}^{x} f(x) \, dx \]
(39)

\[p = P(x < x') = F(x') \]
(40)

\[x' = F^{-1}(p) \]
(41)

\[p = P(x > a) = 1 - F(a) \]
(42)

\[p = P(a < x < b) = F(b) - F(a) \]
(43)

5. Uniform Distribution
\[p = P(a < u') = F(u') \]
(44)

\[u' = F^{-1}(p) = \text{qunif}(p, \text{min}=0, \text{max}=1) \]
(45)

5. Normal Distribution
\[f(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
(46)

\[p = P(z < z') = F(z') = \text{pnorm}(z') \]
(47)

\[z' = F^{-1}(p) = \text{qnorm}(p) \]
(48)

\[p = P(x < x') = F(x') \]
(49)

\[x' = F^{-1}(p) \]
(50)

6. Sampling distributions
\[\mu_i = \mu \]
(57)

\[\sigma_i = \frac{\sigma_i}{\sqrt{n}} \]
(58)

7. Estimation
7.1 Confidence Intervals
\[\hat{\mu} \pm E \]
(59)

\[\text{mean (sample known): } \hat{x} \pm E \]
(60)

\[\text{mean (sample unknown, use s): } \hat{x} \pm E \]
(61)

\[df = n - 1 \]
(62)

\[\text{variance: } (n-1)s^2 \leq \sigma^2 \leq \frac{(n-1)s^2}{x_k^2} \]
(62)

\[df = n - 1 \]
(63)

\[\text{2 proportions: } \hat{\theta} \pm \hat{z}_{alpha/2} \sqrt{\frac{p\hat{q}}{n_1} + \frac{p\hat{q}}{n_2}} \]
(64)

\[df = \text{min}(n_1 - 1, n_2 - 1) \]
(65)

\[\text{paired samples: } \hat{d} \pm \hat{z}_{alpha/2} \sqrt{\frac{s^2}{n_1}} \]
(66)

\[df = n - 1 \]
(67)

7.2 CI Critical Values (Two Sided)
\[z_{alpha/2} = F^{-1}(1 - \alpha/2) = \text{qnorm}(1 - alpha/2) \]
(66)

\[t_{alpha/2} = F^{-1}(1 - \alpha/2) = \text{qt}(1 - alpha/2, \text{df}) \]
(67)

\[x_k = F^{-1/2}(\alpha/2) = \text{qchisq}(alpha/2, df) \]
(68)

\[x_k = F^{-1/2}(1 - \alpha/2) = \text{qchisq}(1 - alpha/2, df) \]
(69)

7.3 Required Sample Size
\[\alpha \]
(70)

\[\text{mean: } n = \left(\frac{z_{alpha/2} \cdot \hat{\sigma}}{E} \right)^2 \]
(71)
8 Hypothesis Tests

Test statistic and R function (when available) are listed for each.
Optional arguments for the test function:
- \texttt{alternative="two.sided"} can be: "two.sided", "less", or "greater"
- \texttt{conf.level=0.95} constructs a 95% confidence interval. Standard CI when \texttt{alternative="two.sided"}

Optional arguments for power calculations & Type II error:
- \texttt{alternative="two.sided"} can be: "two.sided" or "one.sided"
- \texttt{sig.level=0.05} sets the significance level \(\alpha \).

8.1 1-SAMPLE PROPORTION

\(H_0 : \pi = \pi_0 \)

\[\hat{\pi} = \frac{x}{n} \]

where \(x \) is the number of successes in a sample of size \(n \).

8.2 1-SAMPLE MEAN (\(\sigma \) KNOWN)

\(H_0 : \mu = \mu_0 \)

\[\bar{x} = \frac{x - \mu_0}{\sigma / \sqrt{n}} \]

\(t = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \) \(df = n - 1 \) \hspace{1cm} (74)

Required Sample size:
\[
\text{Sample size} = \left(\frac{z_{\alpha/2} \sigma}{\delta} \right)^2
\]

where \(z_{\alpha/2} \) is the critical value from the standard normal distribution.

8.3 1-SAMPLE MEAN (\(\sigma \) UNKNOWN)

\[\bar{x} = \frac{x - \mu_0}{s / \sqrt{n}} \]

\[t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \] \(df = n - 1 \) \hspace{1cm} (75)

Required Sample size:
\[
\text{Sample size} = \left(\frac{t_{\alpha/2} \sigma}{\delta} \right)^2
\]

8.4 2-SAMPLE PROPORTION TEST

\(H_0 : \pi_1 = \pi_2 \) or equivalently \(H_0 : \Delta \pi = 0 \)

\[
\hat{\pi}_1 = \frac{x_1}{n_1}, \hat{\pi}_2 = \frac{x_2}{n_2}
\]

\[z = \frac{\hat{\pi}_1 - \hat{\pi}_2}{\sqrt{\hat{\pi}(1-\hat{\pi})(\frac{1}{n_1} + \frac{1}{n_2})}} \]

\(\Delta \hat{\pi} = \hat{\pi}_1 - \hat{\pi}_2 \) \hspace{1cm} (76)

Required Sample size:
\[
\text{Sample size} = \left(\frac{z_{\alpha/2} \sqrt{\hat{\pi}(1-\hat{\pi})}}{\delta} \right)^2
\]

8.5 2-SAMPLE MEAN TEST

\(H_0 : \mu_1 = \mu_2 \) or equivalently \(H_0 : \Delta \mu = 0 \)

\[t = \frac{\bar{x}_1 - \bar{x}_2}{s_0 \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]

\(\Delta \mu = \bar{x}_1 - \bar{x}_2 \) \hspace{1cm} (77)

Required Sample size:
\[
\text{Sample size} = \left(\frac{z_{\alpha/2} \sigma}{\delta} \right)^2
\]

8.6 2-SAMPLE MATCHED PAIRS TEST

\(H_0 : \mu_d = 0 \)

\[
t = \frac{\bar{d} - \mu_0}{s_d / \sqrt{n}} \]

\(df = n - 1 \) \hspace{1cm} (78)

Required Sample size:
\[
\text{Sample size} = \left(\frac{z_{\alpha/2} \sigma_d}{\delta} \right)^2
\]

8.7 TEST OF HOMOGENEITY, TEST OF INDEPENDENCE

\(H_0 : \pi_1 = \pi_2 = \cdots = \pi_n \) (homogeneity)

\(H_0 : X \) and \(Y \) are independent (independence)

\[\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \]

\(df = (\text{rows} - 1) \times (\text{cols} - 1) \) \hspace{1cm} (79)

\[E_i = \frac{\text{(row total)} \times \text{(column total)}}{\text{(grand total)}} \]

\(\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i} \) \hspace{1cm} (80)

8.8 LINEAR REGRESSION

9.1 SIMPLE LINEAR CORRELATION

\[\text{cor.test}(x, y) \]

where \(x \) and \(y \) are ordered vectors.

\[r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n \sigma_x \sigma_y} \]

\(t = \frac{r}{\sqrt{1 - r^2}} \) \hspace{1cm} (81)

9.2 MODELS IN R

\[\text{lm}(...) \]

\[\text{predict}(...) \]

9.3 REGRESSION

Simple linear regression steps:
1. Make sure there is a significant linear correlation.
2. \texttt{results=lm(y~x)} Linear regression of \(y \) on \(x \) vectors
3. \texttt{results} View the results
4. \texttt{plot(x, y)} Plot regression line on data
5. \texttt{plot(x, results$residuals)} Plot residuals

\[y = b_0 + b_1 x \]

\[b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \]

\[b_0 = \bar{y} - b_1 \bar{x} \]

8.4 PREDICTION INTERVALS

To predict \(y \) when \(x = 5 \) and show the 95% prediction interval with regression model in \texttt{results}:

\[\text{predict(results, newdata=data.frame(x=5), interval="pred")} \]

10 ANOVA

10.1 ONE WAY ANOVA

\[\text{aov(depVarColName~indepVarColName, data=tableName)} \]

11 Loading and using external data and tables

11.1 LOADING EXCEL DATA

11.2 LOADING AN .RDATA FILE

You can either double-click on the .RData file or use the menu:
- Windows: File→Load Workspace...
- Mac: Workspace→Load Workspace File...

11.3 USING TABLES OF DATA

1. To see all the available variables type: \texttt{ls()}\texttt{

2. To see what’s inside a variable, type its name.

3. If the variable \texttt{tableName} is a table, you can also type \texttt{head(tableName)} to see the column names or type \texttt{names(tableName)} to see the column names by \texttt{head(tableName)} to see the first few rows of data.

4. To access a column of data type \texttt{tableName$columnName}