Probabilistic Graphical Models

Variational Inference IV: Variational Principle II

Junming Yin
Lecture 17, March 21, 2012

Reading:
Recap: Variational Inference

- Variational formulation

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \theta^T \mu - A^*(\mu) \} \]

- \(\mathcal{M} \): the marginal polytope, difficult to characterize
- \(A^* \): the negative entropy function, no explicit form

- Mean field method: non-convex inner bound and exact form of entropy

- Bethe approximation and loopy belief propagation: polyhedral outer bound and non-convex Bethe approximation
Mean Field Approximation
Tractable Subgraphs

- Definition: A subgraph F of the graph G is *tractable* if it is feasible to perform exact inference.

- Example:

 \[\Omega := \{ \theta \in \mathbb{R}^d | A(\theta) < +\infty \} \]

\[\Omega(F_0) := \{ \theta \in \Omega | \theta_{(s,t)} = 0, \forall (s,t) \in E \} \]

\[\Omega(T) := \{ \theta \in \Omega | \theta_{(s,t)} = 0 \ \forall (s,t) \notin E(T) \} \]
Mean Field Methods

- For an exponential family with sufficient statistics ϕ defined on graph G, the set of realizable mean parameter set
 \[\mathcal{M}(G; \phi) := \{ \mu \in \mathbb{R}^d \mid \exists p \text{ s.t. } \mathbb{E}_p[\phi(X)] = \mu \} \]
- For a given tractable subgraph F, a subset of mean parameters of interest
 \[\mathcal{M}(F; \phi) := \{ \tau \in \mathbb{R}^d \mid \tau = \mathbb{E}_\theta[\phi(X)] \text{ for some } \theta \in \Omega(F) \} \]
- Inner approximation $\mathcal{M}(F; \phi)^o \subseteq \mathcal{M}(G; \phi)^o$
- Mean field solves the relaxed problem
 \[\max_{\tau \in \mathcal{M}_F(G)} \{ \langle \tau, \theta \rangle - A_F^*(\tau) \} \]
- $A_F^* = A^*|_{\mathcal{M}_F(G)}$ is the exact dual function restricted to $\mathcal{M}_F(G)$
Example: Naïve Mean Field for Ising Model

- Ising model in \{0,1\} representation

\[
p(x) \propto \exp \left\{ \sum_{s \in V} x_s \theta_s + \sum_{(s,t) \in E} x_s x_t \theta_{st} \right\}
\]

- Mean parameters

\[
\mu_s = \mathbb{E}_p[X_s] = \mathbb{P}[X_s = 1] \quad \text{for all } s \in V, \text{ and}
\]

\[
\mu_{st} = \mathbb{E}_p[X_s X_t] = \mathbb{P}[(X_s, X_t) = (1,1)] \quad \text{for all } (s,t) \in E.
\]

- For fully disconnected graph \(F \),

\[
\mathcal{M}_F(G) := \{ \tau \in \mathbb{R}^{|V|+|E|} \mid 0 \leq \tau_s \leq 1, \forall s \in V, \tau_{st} = \tau_s \tau_t, \forall (s,t) \in E \}
\]

- The dual decomposes into sum, one for each node

\[
A_F^*(\tau) = \sum_{s \in V} [\tau_s \log \tau_s + (1 - \tau_s) \log(1 - \tau_s)]
\]
Example: Naïve Mean Field for Ising Model

- Mean field problem

\[A(\theta) \geq \max_{(\tau_1, \ldots, \tau_m) \in [0,1]^m} \left\{ \sum_{s \in V} \theta_s \tau_s + \sum_{(s,t) \in E} \theta_{st} \tau_s \tau_t - A^*_F(\tau) \right\} \]

- The same objective function as in free energy based approach

- The naïve mean field update equations

\[\tau_s \leftarrow \sigma \left(\theta_s + \sum_{t \in N(s)} \theta_s \tau_t \right) \]

- Also yields lower bound on log partition function
Geometry of Mean Field

- Mean field optimization is always **non-convex** for any exponential family in which the state space \mathcal{X}^m is finite.

- Recall the marginal polytope is a convex hull
 \[\mathcal{M}(G) = \operatorname{conv}\{\phi(e); e \in \mathcal{X}^m\} \]

- $\mathcal{M}_F(G)$ contains all the extreme points
 - If it is a strict subset, then it must be non-convex.

- Example: two-node Ising model
 \[\mathcal{M}_F(G) = \{0 \leq \tau_1 \leq 1, 0 \leq \tau_2 \leq 1, \tau_{12} = \tau_1 \tau_2\} \]
 - It has a parabolic cross section along $\tau_1 = \tau_2$, hence non-convex.
Bethe Approximation and Sum-Product
Historical Information

- **Bethe (1935):** a physicist who first developed the ideas related to the loopy belief propagation in the Bethe approximation; not fully appreciated outside the physics community until recently.

- **Gallager (1963):** an electrical engineer who explored the loopy belief propagation in his work on LDPC (Low Density Parity Check) codes.

- **Yedidia (2001):** a physicist who made an explicit connection from the loopy belief propagation to the Bethe approximation and further developed generalized belief propagation algorithm.
Error Correcting Codes

- Graphical model for (7,4) Hamming code

\[\psi_{stu}(x_s, x_t, x_u) := \begin{cases} 1 & \text{if } x_s \oplus x_t \oplus x_u = 1 \\ 0 & \text{otherwise.} \end{cases} \]

- Potential functions with hard constraint

- Marginal probabilities = A posterior bit probabilities
Example of LDPC Decoding

parity bits
Example of LDPC Decoding

Figure 47.5. Iterative probabilistic decoding of a low-density parity-check code for a transmission received over a channel with noise level $f = 7.5\%$. The sequence of figures shows the best guess, bit by bit, given by the iterative decoder, after 0, 1, 2, 3, 10, 11, 12, and 13 iterations. The decoder halts after the 13th iteration when the best guess violates no parity checks. This final decoding is error free.

The probability of decoder error versus rate GV for the low-density parity-check code is shown in Figure 47.6, compared with algebraic codes. Squares: repetition codes and Hamming (7, 4) code; other points: Reed–Muller and BCH codes.
Sum-Product/Belief Propagation Algorithm

- **Message passing rule:**
 \[M_{ts}(x_s) \leftarrow \kappa \sum_{x'_t} \left\{ \psi_{st}(x_s, x'_t) \psi_t(x'_t) \prod_{u \in N(t)/s} M_{ut}(x'_t) \right\} \]

- **Marginals:**
 \[\mu_s(x_s) = \kappa \psi_s(x_s) \prod_{t \in N(s)} M_{ts}^*(x_s) \]

- **Exact** for trees, but **approximate** for loopy graphs (so called loopy belief propagation)

- **Question:**
 - How is the algorithm on trees related to variational principle?
 - What is the algorithm doing for graphs with cycles?
Tree Graphical Models

- Discrete variables $X_s \in \{0, 1, \ldots, m_s - 1\}$ on a tree $T = (V, E)$

 \[\mathbb{1}_j(x_s) \text{ for } s = 1, \ldots, n, \ j \in X_s \]

 \[\mathbb{1}_{jk}(x_s, x_t) \text{ for } (s, t) \in E, \ (j, k) \in X_s \times X_t \]

- Sufficient statistics:

 \[p(x; \theta) \propto \exp \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s, t) \in E} \theta_{st}(x_s, x_t) \right\} \]

 where $\theta_s(x_s) := \sum_{j \in X_s} \theta_{s;j} \mathbb{1}_j(x_s)$ (and similarly for $\theta_{st}(x_s, x_t)$)

- Mean parameters are marginal probabilities:

 \[\mu_{s;j} = \mathbb{E}_p[\mathbb{1}_j(X_s)] = \mathbb{P}[X_s = j] \quad \forall j \in X_s, \quad \mu_s(x_s) = \sum_{j \in X_s} \mu_{s;j} \mathbb{1}_j(x_s) = \mathbb{P}(X_s = x_s) \]

 \[\mu_{st;jk} = \mathbb{E}_p[\mathbb{1}_{st;jk}(X_s, X_t)] = \mathbb{P}[X_s = j, X_t = k] \quad \forall (j, k) \in X_s \times X_t, \]

 \[\mu_{st}(x_s, x_t) = \sum_{(j, k) \in X_s \times X_t} \mu_{st;jk} \mathbb{1}_{jk}(x_s, x_t) = \mathbb{P}(X_s = x_s, X_t = x_t) \]
Marginal Polytope for Trees

- Recall marginal polytope for general graphs

\[\mathcal{M}(G) = \{ \mu \in \mathbb{R}^d | \exists p \text{ with marginals } \mu_{s;j}, \mu_{st;jk} \} \]

- By junction tree theorem (see Prop. 2.1 & Prop. 4.1)

\[\mathcal{M}(T) = \left\{ \mu \geq 0 | \sum_{x_s} \mu_s(x_s) = 1, \sum_{x_t} \mu_{st}(x_s, x_t) = \mu_s(x_s) \right\} \]

- In particular, if \(\mu \in \mathcal{M}(T) \), then

\[
p_{\mu}(x) := \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)}. \]

has the corresponding marginals
Decomposition of Entropy for Trees

- For trees, the entropy decomposes as

\[
H(p(x; \mu)) = - \sum_x p(x; \mu) \log p(x; \mu)
\]

\[
= \sum_{s \in V} \left(- \sum_{x_s} \mu_s(x_s) \log \mu_s(x_s) \right) \quad - H_s(\mu_s)
\]

\[
- \sum_{(s,t) \in E} \left(\sum_{x_s, x_t} \mu_{st}(x_s, x_t) \log \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} \right) \quad - I_{st}(\mu_{st}), \text{KL-Divergence}
\]

\[
= \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st})
\]

- The dual function has an explicit form

\[
A^*(\mu) = -H(p(x; \mu))
\]
Exact Variational Principle for Trees

- Variational formulation

\[A(\theta) = \max_{\mu \in \mathcal{M}(T)} \left\{ \langle \theta, \mu \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) \right\} \]

- Assign Lagrange multiplier \(\lambda_{ss} \) for the normalization constraint \(C_{ss}(\mu) := 1 - \sum x_s \mu_s(x_s) = 0 \); and \(\lambda_{ts}(x_s) \) for each marginalization constraint \(C_{ts}(x_s; \mu) := \mu_s(x_s) - \sum_{x_t} \mu_{st}(x_s, x_t) = 0 \)

- The Lagrangian has the form

\[
\mathcal{L}(\mu, \lambda) = \langle \theta, \mu \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) + \sum_{s \in V} \lambda_{ss} C_{ss}(\mu) + \sum_{(s,t) \in E} \left[\sum_{x_t} \lambda_{st}(x_t) C_{st}(x_t) + \sum_{x_s} \lambda_{ts}(x_s) C_{ts}(x_s) \right]
\]
Lagrangian Derivation

- Taking the derivatives of the Lagrangian w.r.t. μ_s and μ_{st}

$$\frac{\partial L}{\partial \mu_s(x_s)} = \theta_s(x_s) - \log \mu_s(x_s) + \sum_{t \in \mathcal{N}(s)} \lambda_{ts}(x_s) + C'$$

$$\frac{\partial L}{\partial \mu_{st}(x_s, x_t)} = \theta_{st}(x_s, x_t) - \log \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s)\mu_t(x_t)} - \lambda_{ts}(x_s) - \lambda_{st}(x_t) + C''$$

- Setting them to zeros yields

$$\mu_s(x_s) \propto \exp\{\theta_s(x_s)\} \prod_{t \in \mathcal{N}(s)} \exp\{\lambda_{ts}(x_s)\} M_{ts}(x_s)$$

$$\mu_{st}(x_s, x_t) \propto \exp\{\theta_s(x_s) + \theta_t(x_t) + \theta_{st}(x_s, x_t)\} \times \prod_{u \in \mathcal{N}(s) \setminus t} \exp\{\lambda_{us}(x_s)\} \prod_{v \in \mathcal{N}(t) \setminus s} \exp\{\lambda_{vt}(x_t)\}$$
Lagrangian Derivation (continued)

- Adjusting the Lagrange multipliers or messages to enforce

\[C_{ts}(x_s; \mu) := \mu_s(x_s) - \sum_{x_t} \mu_{st}(x_s, x_t) = 0 \]

yields

\[M_{ts}(x_s) \leftarrow \sum_{x_t} \exp \{ \theta_t(x_t) + \theta_{st}(x_s, x_t) \} \prod_{u \in \mathcal{N}(t) \setminus s} M_{ut}(x_t) \]

- Conclusion: the message passing updates are a Lagrange method to solve the stationary condition of the variational formulation
BP on Arbitrary Graphs

- Two main difficulties of the variational formulation

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \theta^T \mu - A^*(\mu) \} \]

- The marginal polytope \(\mathcal{M} \) is hard to characterize, so let’s use the tree-based outer bound

\[\mathbb{L}(G') = \left\{ \tau \geq 0 \mid \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_t} \tau_{st}(x_s, x_t) = \tau_s(x_s) \right\} \]

These locally consistent vectors \(\tau \) are called pseudo-marginals.

- Exact entropy \(-A^*(\mu) \) lacks explicit form, so let’s approximate it by the exact expression for trees

\[-A^*(\tau) \approx H_{\text{Bethe}}(\tau) := \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}). \]
Bethe Variational Problem (BVP)

- Combining these two ingredient leads to the Bethe variational problem (BVP):

\[
\max_{\tau \in \mathbb{L}(G)} \left\{ \langle \theta, \tau \rangle + \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}) \right\}.
\]

- A simple structured problem (differentiable & constraint set is a simple convex polytope)

- Loopy BP can be derived as an iterative method for solving a Lagrangian formulation of the BVP (Theorem 4.2); similar proof as for tree graphs
Geometry of BP

- Consider the following assignment of pseudo-marginals:
 - Can easily verify $\tau \in \mathbb{L}(G)$
 - However, $\tau \not\in \mathcal{M}(G)$ (need a bit more work)

- Tree-based outer bound:
 - For any graph, $\mathbb{L}(G) \subseteq \mathcal{M}(G)$
 - Equality holds if and only if the graph is a tree

- Question: does solution to the BVP ever fall into the gap?
 - Yes, for any element of outer bound $\mathbb{L}(G)$, it is possible to construct a distribution with it as a BP fixed point (Wainwright et. al. 2003)
Inexactness of Bethe Entropy Approximation

- Consider a fully connected graph with

\[
\begin{align*}
\mu_s(x_s) &= \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \quad \text{for } s = 1, 2, 3, 4 \\
\mu_{st}(x_s, x_t) &= \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \quad \forall (s, t) \in E.
\end{align*}
\]

- It is globally valid: \(\tau \in \mathcal{M}(G) \); realized by the distribution that places mass 1/2 on each of configuration (0,0,0,0) and (1,1,1,1)

- \(H_{\text{Bethe}}(\mu) = 4\log 2 - 6\log 2 = -2\log 2 < 0 \),

- \(-A^*(\mu) = \log 2 > 0 \).
Discussions

- This connection provides a \textit{principled basis} for applying the sum-product algorithm for loopy graphs.

- However,
 - Although there is always a fixed point of loopy BP, there is no guarantees on the convergence of the algorithm on loopy graphs.
 - The Bethe variational problem is usually non-convex. Therefore, there are no guarantees on the global optimum.
 - Generally, no guarantees that $A_{\text{Bethe}}(\theta)$ is a lower bound of $A(\theta)$.

- Nevertheless,
 - The connection and understanding suggest a number of avenues for improving upon the ordinary sum-product algorithm, via progressively better approximations to the entropy function and outer bounds on the marginal polytope (Kikuchi clustering).
Summary

- Variational methods in general turn inference into an optimization problem via exponential families and convex duality.

- The exact variational principle is intractable to solve; there are two distinct components for approximations:
 - Either inner or outer bound to the marginal polytope
 - Various approximation to the entropy function

- **Mean field**: non-convex inner bound and exact form of entropy
- **BP**: polyhedral outer bound and non-convex Bethe approximation
- **Kikuchi and variants**: tighter polyhedral outer bounds and better entropy approximations (Yedidia et. al. 2002)
Summary

- “Off-the-Shelf” solution to inference problem?
 - **Mean field**: yields lower bound on the log partition function (likelihood function); widely used as an approximate E-step in EM algorithm
 - **Sum-product**: works well if the graph is locally tree-like and typically performs better than mean field; successfully used in error-correcting coding and low-level vision community