Articulation and Neutralization: Inherent and Derived Palatals in Korean

Jae-Hyun Sung
University of Arizona
jhsung@email.arizona.edu

The Issue

Lexical Palatalization

Alveolar stops (/t, ð/) become palatalized before a high front vowel [i] or a palatal glide [j], across a morphone boundary.

<table>
<thead>
<tr>
<th>Word</th>
<th>Effect</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/mat+i/ 'the eldest'</td>
<td>/i/ → [i]</td>
<td>inherent palatal</td>
</tr>
<tr>
<td>/kat+i/ 'together'</td>
<td>/t̚/ → [t̚]</td>
<td>derived palatal</td>
</tr>
<tr>
<td>/pat+i/ 'field + NOM'</td>
<td>/t̚/ → [t̚]</td>
<td>derived palatal</td>
</tr>
</tbody>
</table>

Neutralization

Lexical palatalization in Korean creates a sound merger in which the resulting sounds from the palatalization process are perceptually the same as the underlying palatals, in spite of orthographic differences.

<table>
<thead>
<tr>
<th>Word</th>
<th>Orthography</th>
<th>Effect</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>/pa+i/ 'pants'</td>
<td>[pA]</td>
<td>/i/ → [i]</td>
<td>inherent palatal</td>
</tr>
<tr>
<td>/mat+i/ 'the eldest'</td>
<td>[m]</td>
<td>/i/ → [i]</td>
<td>derived palatal</td>
</tr>
<tr>
<td>/kat+i/ 'value'</td>
<td>[kA]</td>
<td>/t̚/ → [t̚]</td>
<td>inherent palatal</td>
</tr>
<tr>
<td>/pat+i/ 'together'</td>
<td>[p]</td>
<td>/t̚/ → [t̚]</td>
<td>derived palatal</td>
</tr>
</tbody>
</table>

Questions

- Do perceptually neutralized palatals have neutralized articulation?
- If not, how are two types of palatals different in production?

Methods

Participants

12 native speakers of Korean recruited in Tucson, AZ (M1 excluded from analysis due to poor quality of images); 6 males & 6 females; age ranges from 25 to 37; lived in the U.S for 2 months to 10 years; use Korean on a daily basis and speak English as their L2

Stimuli

16 words × 3 repetitions across target consonants and conditions; presented in Korean orthography

Data Collection & Analysis

Ultrasound imaging; image frames of gestural peaks (1 frame just before stop release); SSANOVA used for statistical test (Gu (2002); Davidson (2006))

Results

Result 1: Inherent (red) vs. Derived (blue) [t]
(F = female; M = male; * = significant differences)

Result 2: Inherent (red) vs. Derived (blue) [t̚]

Discussion

Summary of the Results (* = significant differences)

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inherent vs. derived [t] (8/11 different (73%))</td>
<td>*</td>
</tr>
<tr>
<td>Inherent vs. derived [t̚] (4/11 different (36%))</td>
<td>*</td>
</tr>
</tbody>
</table>

- Inherent and derived palatals are not articulatorily neutralizing. Whether this is solely due to orthographic difference (Warner et al. (2004, 2006)) needs to be further examined.
- Some consistent patterns across speakers are observed:
 - Derived [t] made with a fronter, higher tongue contour than its inherent counterpart [Fig. 1].
 - Derived [t̚] made with a backer tongue contour than its inherent counterpart [Fig. 2].
- Aspirated palatals (i.e., inherent vs. derived [t̚]) result in more frequent neutralization. The role of aspiration in articulatory neutralization merits further investigation.
- Age, gender, and dialectal background do not seem to play a role in the patterns.

Conclusions

- Inherent and derived palatals in Korean exhibit another case of limited neutralization, indicating individual differences and potential sound changes in progress (Dinnsen and Charles-Luce (1984); Dinnsen (1985)).
- The findings need to be further tested with a larger population and greater dialectal variation, coupled with acoustic and perceptual data.

Acknowledgements

The author gratefully acknowledges support from the University of Arizona Social & Behavioral Sciences Research Institute. Thanks also go to Ms. Diana Archangeli and the members of Arizona Phonological Imaging Lab who provided helpful comments and technical help on this work.

Selected References

