VTSC 1.00

How the hell to use it...

	VTSC is a Video TachistoSCope program designed to run on a PC/AT with a VESA compatible video card that supports version 1.2 or later of the VESA Video BIOS Extensions and that has at least 2 megabytes of video memory (realistically 4 meg). Currently it only displays TIFF files, one at a time and it only uses 64k colors, 5 bits of Red, 6 of Green and 5 of Blue (VESA mode 111). It is feasible to change VTSC (a certain amount of work to be sure) to use 256 colors making it usable on a card with only 1 meg of video memory, it could also use the more extravagant modes like 800x600 as well.

	VTSC works by loading the various images into video memory ahead of time and then switching the display start address through the memory, which means there are no speed versus size of image constraints provided there is sufficient time to read the files off disk before the commencement of the display -- this time can be considerable as RGB files can be enormous. The catch is that only three screens (or ‘display frames’ in VTSC terminology) can be buffered in 2 megs using 64k colors and given that one of those three must be the last display frame of the previous sequence (‘item’ in VTSC speak) each item can only have two display frames. Therefore 4 megabytes of video memory becomes a practical requirement for most studies, alternatively if the number of scan lines is reduced (usually to increase the refresh rate) more display frames per item are available.

	The TIFF files it displays can be of almost any type -- provided compression is NOT used. Types handled so far are B&W (TIFF photometric interpretations 0 and 1), 16 and 256 colormap and grayscale (TIFF photometric interpretation 3) and RGB 8:8:8 (TIFF photometric interpretation 2). The files when displayed are reduced to 5:6:5 so there is some degradation of color information. An interesting thing is that although it is probably possible to represent a 64k color image in a TIFF file, nobody does, or at least the programs I have don’t -- GWS for instance writes to at least 20 different file formats and none of it’s options anywhere even mention 16 bit or 64k color (the same thing) images. It’s faintly possible that a BMP file (the native windows file format) can hold a 16 bit file, but it is not necessary if you set your windows display color depth to 16 bits (HiColor is the buzz word used, I think) as then any display program that handles your TIFF 24 bit, 16 million color files will do the same color reduction when it displays the file as VTSC does, the only cost is the file is 50% larger and therefore takes longer to load.

	VTSC has two command line switches -f and -v. When VTSC is invoked with -f it turns a feature off that automatically goes and finds all the TIFF image files before VTSC presents any of them. Having it check is handy, because a missed image in the middle of a run is going to cause VTSC to abort, however if you have images on removable media and intend to swap media as VTSC runs then this is bad. When invoked with a -v a feature called verbosity is turned off, the verbosity makes VTSC tell you interesting things as it runs. For example: C:>VTSC -F SLIDE invokes VTSC without checking the existence of images and using the SLIDE script.

	The script that VTSC is controlled by is a DOS text file with the extension .SLI and is called an item file. The item file is designed to control one session of data gathering with a subject. This item file is broken up into items, each item is delimited from the previous item by a semi-colon. The purpose of an item is to present one complete stimulus to a subject and record one response. Currently VTSC does no reaction time recording, however it does have a rating gathering ability, if this is not used it just waits for a space bar to be pressed at the end of each item.

	Each item must either begin with an item number and group number (separated by a comma) or it must begin with a shriek (!), if it begins with a shriek it is a comment and everything is ignored till the next semi-colon. The item number is used to uniquely identify each presentation sequence and datum gathered, the group number is used to control the randomization of item order for presentation (‘scrambling’). An item number of zero won’t write data to a data file, even if a response is gathered. All item numbers and group numbers must be positive and less than 32768 and can occur in any order, an item file can contain any number of repetitions of the same item number, although if branching is used only the first occurance of an item number will ever be branched too. Currently there cannot be more than 16 different groups or more than 500 individual items (these limits are easily changeable). Scrambling rules are that the positions of groups are maintained, all items in a group (except those of group zero) are randomized with no pairing of items together. Group number zero is special, items with this group number do not move.

	Each item is broken up into frames, each frame is delimited from the previous by a forward slash (/). Each frame contains some instruction, either to display a given TIFF file for a number of tics (a tic being a retrace interval, usually 1/60th of a second) or to modify some other behavior of VTSC. The default construction of a frame consists of some name of a TIFF file (which does not need the .TIF extension and may contain path information as well, however the .. construct should be avoided) and some decimal number that is that frame’s duration. It should be noted that either of these are optional, if the name is omitted a blank screen is displayed, if the duration is omitted it is displayed for the default duration which is 180 tics. All names are case insensitive and any amount of white space can occur between fields, including new lines.

	A simple item file might then be:

!example VTSC item file;

0,0 instruct;

100,1 cow / dog 1 / milk;

101,1 cat / catnip 1 / fireplac /;

0,0 done;

	The first line is a comment for our later edification, the second line displays the file INSTRUCT.TIF and waits for the space bar to be pressed -- this item and the last will not move with scrambling as they are in group zero, items 100 and 101 would move (although with only two of them there is a 50% chance that they would not move) as they are in group 1. Item 100 would display the file COW.TIF for 180 tics (or 3 seconds if that display card used a 60 Hz refresh rate, some use 70 or 72 Hz, see the info printed after VTSC has run) and then DOG.TIF for 1 tic, then MILK.TIF and wait for a space bar, leaving MILK.TIF on the screen. Item 101 would do much the same only FIREPLAC.TIF would be displayed for 3 seconds and then a blank screen is left at the end.

	Functionally equivalent would be:

0,0 instruct;100,1 cow/dog 1/milk;

101	, 1

		cat	/

		catnip 1 /

		fireplac /

		;

0	, 0

		done;

	The first line contains as little white space as possible, note that it is necessary to leave space between a number and a name. Filenames with forward slashes (/, not the path backslash which is OK), semi-colons and commas are not allowed.

	The functionality of a frame is modified by adding a keyword to it. Keywords always begin with the left angle bracket and end with the right angle bracket, like <continue>. The presence of some keywords in a frame render that frame null and void as far as the display goes -- it does not use one of the limited number of display screens and it takes no time to process, this is why I used the term ‘display frame’ above that denotes a frame that generates a display, be it either blank or some image. These ‘exceptional frames’ use the duration field or the filename field to specify something else.

	Frames like <rating> that cause responses to be recorded cause an output file to be generated, itemfilename.VRD (Vtsc Raw Data), this file is a DOS text file that automatically appends to any previous file of the same name and it contains all responses gathered plus a record of which item was executed even if it generated no output. Things to note are:

	(VTSC will not generate this file unless there is at least one occurrence of a frame gathering data.

	(The Escape key will always cause VTSC to stop so it should not be used for input at any time.

	(Items with an item number of zero will never generate any output at all.

	VTSC frame keywords that are not exceptional and may be included in a frame that contains a filename and duration are:

<clockon>

<continue>

<rating>

	Those which are exceptional and should be used by themselves (ie, not with a filename) are:

<timeout>

<duration>

<seed>

<background>

<lines>

<multiwaybranch>

<branch>

Regular Keywords

<clockon>

	The <clockon> keyword would signal that responses should be timed from the commencement of the frame that the keyword appears in -- as no responses are recorded yet this does nothing.

<continue>

	The <continue> keyword stops VTSC from waiting for a space bar press at the end of the current item, this does not affect following items. It will also stop VTSC from gathering a <rating> or performing <multiwaybranch> should those occur in the same item.

<rating>

	The <rating> keyword stops VTSC from waiting for a space bar press at the end of the current item and instead causes it to wait for any keypress which it then records in an output file. It does not affect following items. The keystoke entered for the rating is enclosed in angle brackets <> in the output file.

Exceptional Keywords

<timeout>

	The <timeout> keyword changes the timeout for a response, once again, there is no timed recording of responses yet, so this does nothing.

<duration>

	The <duration> keyword uses the duration value of the frame to change the default duration of a frame. This can occur more than once in a given item and the change affects all frames following in all following items. For example:

101,1 cat / <duration> 5 / catnip / fireplac /

		 <duration> 50 / dog / 1 / cow;

	Assuming the default duration had not been changed from 180 tics, CAT.TIF would be displayed for 180 tics, then CATNIP.TIF for 5 (nothing intervening), FIREPLAC.TIF for 5, DOG.TIF for 50, a blank frame for 1 tic and COW.TIF would be left on the screen till the spacebar is hit.

<seed>

	The <seed> keyword uses the duration to specify a seed for scrambling. Usually the scramble order is based on the time, i.e. unpredictable, this overrides the use of the time and give you repeatable random orders. This keyword should only be used once in an item file.

<background>

	The <background> keyword is used to change the value used when clearing a screen and thus the border around tiff files. This may be used more than once in an item and effects all following frames in all following items. The duration is interpreted to set the color as a RGB triplet, for each gun the value ranges from 0 to 255. The least most significant three digits change the Blue gun (the thousand range), the middle three change the Green gun (the million range) and the three most significant digits change the Red gun (billions). For example: / <background> 100050000 / would set the red gun to 100, the green to 50 and the blue to 0.

<lines>

	The <lines> keyword reprograms the number of scan lines on the screen and thus reduces the refresh rate. This keyword is best used in an item all by itself with just one frame and the keyword <continue> in it as it changes the dimensions of the screen and all sorts of things. Typically there are 480 scan lines on the screen (assuming we haven’t changed VTSC) yielding a refresh duration of 14.2 to 16.7 milliseconds depending on whether your video card uses 70 or 60 Hz, you can determine this by the message VTSC prints when an item file is finished if verbosity is on. If you want a faster refresh rate and thereby a smaller minimum exposure you lower the number of scan lines on the screen, for instance on my machine that uses a 60 Hz display reprogramming the scan lines like this:

 0,0 <lines> 240 <continue>;

yields a refresh interval of 9.02 milliseconds, it is not half because there is a certain amount of overhead that can never be removed. On some monitors (notably the older ones) the aspect ratio is modified when the scan line count is reduced and unless the vertical height is adjusted to suit circles will become ellipses. Obviously you are not going to be able to present a 640x480 image anymore as <lines> sets the maximum Y dimension. The cute side effect of this is that with only 240 lines per display page there are now twice the number of available display frames available.

<multiwaybranch>

	The <multiwaybranch> keyword causes VTSC to gather a keystroke at the end of the item and use it as a key into a table of item numbers provided in the frame and to commence execution at that item number. VTSC searches for the item number from the beginning of the scrambled item file and does not consult the group numbers. Due to the wildly different nature of the syntax of this keyword the keyword must be the first thing in the frame otherwise the filename code will get a hold of the table and cause no end of troubles. Keystrokes cannot be part of the regular syntax of an item file and are also case insensitive, so you can’t use a slash or a semi-colon and ‘A’ is equivalent to ‘a’. The keystrokes and their item number destinations are entered as comma separated pairs like this:

1000,0 someprompt / <multiwaybranch> a,100 1,500;

where an ‘a’ keystroke would cause a branch to item 100, and ‘1’ would go to 500. If a keystroke was entered not in the list the next item will be executed as if the <mutilwaybranch> was not there. The keystoke is enclosed in round brackets () in the output file (should one be being generated by the use of a <rating> keyword elsewhere).

<branch>

	The <branch> keyword is similar to the <multiwaybranch> in that a branch table must be supplied and that it executes a branch. However instead of getting a keystoke from the user at the end of the item the keys to <branch> are codes. Codes defined are:

=	Causes an unconditional branch,

+	Causes a branch if the response was correct, not implemented yet,

- 	Causes a branch if the response was incorrect, not implemented yet.

	If + and - were implemented you could use both those codes in one item.

�PAGE �

�PAGE �3�

