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In the wake of George Boolos’s [1, 2] forceful defense of plural quantification,
philosophical orthodoxy has embraced the legitimacy of plural logic. This isn’t to
say there hasn’t been resistance [7, 5, 9], but the tide has largely turned. Orthodoxy,
however, hasn’t been so kind to second-order logic generally. Despite pockets of
acceptance [8, 10, 12], the general philosophical populace still seems to look at it
askance.

Why is this? It could be a number of things. Perhaps Quine’s old slogan about
bound variables has something to do with it. But one objection has it that second-
order logic isn’t kosher because it’s too bound up with set theory. That is to say,
second-order logic isn’t set-theoretically absolute: which of its formulas are valid de-
pends on what background set-theoretic universe its model theory is given in.

There is, for instance, a second-order formula CH that is true on every model if
and only if the continuum hypothesis is true. If the background set-theoretic universe
is one in which the hypothesis holds, CH has no countermodels; otherwise, it does.
But (goes the objection) this is bad. Perhaps it is bad because logic is supposed to be
topic-neutral. Or perhaps it is bad because logical truths should at least be in principle
a priori knowable to a strong enough reasoner, and even an ideal reasoner should be
agnostic about the truth of CH. Or perhaps it is bad for some other reason. (See [11],
section 4 for discussion.)

An orthodox acceptance of plural logic combined with a rejection of second-order
logic motivated by these sorts of concerns is, however, unstable. It has long been part
of the folklore about plural logic that, if supplemented with a theory of pairing, it can
recover the full expressive power of second-order logic. ([2], n. 3 and [6], p. 71; cf. also
[3] p. 150.) If that is right, then there ought to be a (satisfiable) theory of pairing P and
a translation of CH, PCH, such that PCH is true on every (plural) model of P if and
only if CH is true on every (second-order) model simpliciter. But if that’s right, then
P Ñ PCH will be true on every plural model if and only if the continuum hypothesis
is true. If that’s bad news for second-order logic, it’s bad news for plural logic, too.

Orthodoxy can tollens or ponens here, welcoming second-order logic or casting
out the plural. I’m not going to take a stand on which. But the argument above relies
on the folklore, and we might wonder: Is the folklore right? It certainly seems like
it ought to be true. But given that the folklore would make plural logic no more set-
theoretically absolute than second-order logic, we might fairly want to rely on more
than just folklore. We might, in fact, want something like a proof of it. Unfortunately,
I have been unable to find a published proof of this claim. So I offer one here.
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1 Model Theory

The mutual interpretability of plural logic and monadic second-order logic — that is,
second-order logic with only monadic predicate variables — is well-known. So it will
suffice to prove that monadic second-order logic in the presence of a pairing function
is expressively equivalent to full second-order logic.

A second-order language contains logical symbols — we will take them as ‘„’, ‘^’,
‘D’, and ‘=’ —, a stock of names and n-adic predicates, and a countable infinity of
first-order variables and of n-adic second-order variables for each n. (For simplicity
we treat all functions as reduced to predicates in the usual way.) A second-order
model is an ordered pair xD, Iy of a non-empty domain and an interpretation function
I, where if α is a name, I(α) P D, and if Πn is an n-adic predicate, I(Πn) Ď Dn.

If M is a model of a language L , a variable assignment a is any function from
the variables of L where, if x is a first-order variable, a(x) P D, and if Xn is an n-
adic predicate variable, a(Xn) Ď Dn. If a is a variable assignment and x any variable
(of any order), a[e/x] is the assignment where a[e/x](y) = a(y) when x , y and
a[e/x](x) = e.

For any model M, variable assignment a, and constant or variable σ, we define
~σ�M,a as I(σ) if it is a constant or a(σ) if it is a variable, and suppress the ‘M’
subscript when it is clear from context. Truth on a model relative to a variable as-
signment is defined as usual. We give the recursive clauses here for definiteness. To
reduce clutter, we abbreviate sequences ‘τ1, . . . , τn’ as ‘ #»τ ’:

Definition.

If M = xD, Iy is a model and a a variable assignment:

(TAP) M, a |ù Πn #»α iff x
#      »
~α�ay P ~Πn�a

(TA=) M, a |ù α = β iff ~α�a = ~β�a

(T„) M, a |ù „φ iff M, a 6|ù φ

(T^) M, a |ù φ^ ψ iff M, a |ù φ and M, a |ù ψ

(TD) M, a |ù Dxφ iff for some o P D, M, a[o/x] |ù φ

(TD2) M, a |ù DXnφ iff for some S Ď Dn, M, a[S/Xn] |ù φ

2 The Simple Theory of Pairing

If L is a second-order language, we let L ¶ be the expansion of that language by the
addition of a new triadic predicate ¶. If the theory to be given does its job right, ‘¶xyz’
will say that xx, yy = z. We have the following abbreviations.
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Definition.

Pr(z) := DxDy¶xyz
x ă1 z := Dy¶xyz
y ă2 z := Dx¶xyz
y ă0 z := y ă1 z_ y ă2 z
x ă˚i p := @X[(Xx^@y@z[(Xy^ y ăi z)Ñ Xz])Ñ Xp]
Ó(X, p) := Xp^@y((Xy^ p , y)Ñ y ă˚0 p)
Ó
˚(X, p) := Ó(X, p)^@x@y@z([Xx^ Xz^ x ă˚0 y^ y ă˚0 z]Ñ Xy)

Pth(X, p) := Ó
˚(X, p)^@x@y@z[(Xx^ Xy^ Xz^ x ă0 z^ y ă0 z)Ñ x = y]

Intuitively, Pr(z) says that z is a pair; x ă1 z says that x is the first member of z, and
x ă2 z says x is z’s second member. ă0 is the first-or-second member relation; and for
any ăi, ă˚i is its transitive closure.

The others are less straightforward. Roughly, Ó(X, p) says that p is in X and
everything else in X is a ‘descendant’ of p under the ă0 relation. Ó˚(X, p) says all this
plus, if two things are in X and there is a ă0-chain running between them, then every
link of that chain is in X. These two are used together to define Pth(X, p), which says
that X is a non-branching ‘path’ of descendants running down from p. Notice that a
path needn’t be a complete path; if p1 is in p2 and p2 is in p3, then X = tp3, p2u is a
path from p3 even though it doesn’t contain p1. Also notice that txu is a path from x,
and if x is a non-pair, then it is indeed the only such path.

The axioms of our theory of pairing are:

(P1) @x@yD!z(¶xyz)

(P2) @x1@x2@y1@y2@z([¶x1y1z^ ¶x2y2z]Ñ [x1 = x2 ^ y1 = y2])

(P3) @x„x ă˚0 x

(P4) @p@X(Pth(X, p)Ñ DY(Pth(Y, p)^ X Ď Y^ Dy[„Pr(y)^Yy)])

(P1) tells us that pairing is functional, and (P2) tells us that a given pair has a unique
decomposition into its first and second member. (P3) rules out ‘loops’ of membership,
and (P4) tells us that every path of descendants of a pair p can be extended to a path
that terminates in some non-pair. It’s essentially a well-foundedness axiom that tells
us that it can’t be pairs all the way down. We use P for the theory consisting of
(P1)–(P3) and P for the conjunction of P.

If M is a model and o1, o2 P D, we write o1 Ì
M
i o2 if o1 and o2 satisfy ăi, and

write ‘ÌM’ for ‘ÌM
0 ’. We drop the superscript when context makes it clear (which for

our purposes is always), and use asterisks for Ìi’s transitive closures. Note that, on a
model of P, Ì˚ will be a strict partial order. Now we can prove:
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Lemma 1.

If M |ù P, then the function rankÌ is well-defined on D.

Proof.

Since Ì˚ is a partial order it suffices to show that Ì is well-founded on D. First, let P
be any Ì-path in D. Note that an element of D is Ì-minimal iff it satisfies „P(z). Since
M |ù (PL4), P can be extended to a path P1 that terminates in a Ì-minimal element.
Since every point in the path is Ì˚-related to this element, the path must be finite. Now
let X be an arbitrary subset of D. If X had no Ì-minimal element it would contain an
infinite chain x1 Í

˚ x2 Í
˚ . . . which could be expanded to an infinite path, contrary to

what we have just seen. ∴

We want to verify that P really does count as a theory of pairing. To do that, we
show that its truth on a model gives a pair-like structure to that model’s domain. A
definition will help with this.

Definition.

If M = xD, Iy is a model, then M is

pair-saturated iff for every x, y P D, xx, yy P D;
pair-closed iff for every xx, yy P D, x, y P D;
pair-well-founded iff there is no infinite chain p1, p2, . . . of pairs

where each pi is in the domain and has pi+1 as a (first or
second) element; and

pair-faithful iff I(¶) = txx, y, zy : xx, yy = zu

If M meets all four conditions, then it is pair-normal.

Note the following.

Lemma 2.

If M is pair-closed and pair-well-founded, then every pair is decomposable into
a finite set of non-pairs.

Proof.

Let D be pair-closed and pair-well-founded and let p be a pair in P. Let P˚ be the
transitive closure of membership on pairs. By pair-well-foudnedness X = ty : y P˚ pu Ď
D contains no infinite chains. Thus every chain in D terminates; by pair-closure, any
terminal node of such a chain is a non-pair. Furthermore, X is a binary tree under P and
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contains no infinite paths, so by König’s lemma, X is finite. ∴

Now we’re ready to show:

Theorem 3.

M is a model of P iff M is isomorphic to some pair-normal model.

Proof.

For the right-to-left direction we show that, if a model M1 is pair-normal, then it is a
model of P. For (P1)–(P2) it is secured by the fact that ¶ expresses the pairing function
on a pair-faithful model. In the case of (P4) this is secured by lemma 2; in (P3), by the
fact that P˚ (the transitive closure of the membership relation on pairs) is a partial order.

For the left-to-right direction, let M = xD, Iy be a model of P. Since it is a model of
(P4), there must be some o P D where M, a[o/x] |ù „Pr(x). Let N be the set of such
o P D, and let N1 be a set of non-pairs and f´ a one-to-one correspondence between N
and N1. Finally, let D1 be the closure of N1 under pairing; that is, let D1 be the smallest
(under Ď) set X such that N1 Ď X and x, y P X imply xx, yy P X. Now we extend f´ to a
one-to-one correspondence between D and D1 by:

f (o) =
"

f´(o) if o P N, and otherwise
x f (o1), f (o2)y where M, a[o1/x][o2/y][o/z] |ù ¶xyz.

First, we show that f is well-defined as a function by induction on the Ì-rank of
o. When rankÌ(o) = 0, o P N and so f (o) = f´(o). If rankÌ(o) ą 0, then there
must be some e where e Ì o, which means that M, a[e/x][o/y] |ù Dx ă1 y _ x ă2 y.
Whichever it is, there must be some e1 where either M, a[e/x][e1/y][o/z] |ù ¶xyz or
M, a[e1/x][e/y][o/z] |ù ¶xyz. Thus e, e1 Ì o. Furthermore, since M |ù (P2), this e and
e1 are unique. But they both have rank less than o’s, so f (e) and f (e1) are well-defined
by the induction hypothesis. Setting e1 and e2 to the respective o1 and o2 as appropriate,
x f (o1), f (o2)y exists and is unique.

Next, to show that f is one-to-one. Suppose f (o) = f (o1). If o P D then o = o1 by f´’s
being one-to-one. Otherwise, o = x f (o1), f (o1)y = o1, where M, a[o1/x][o2/y][o/z] |ù
¶xyz and M, a[o1/x][o2/y][o1/z] |ù ¶xyz. But since M |ù (PL2), o = o1 (by the unique-
ness clause).

Finally, that f is onto D1. Let o P D1. By lemma 2, rankP is finite on D1. Proof by
induction on rankP. When rankP(o) = 0, then f´1(o) = f´1

´ (o) since f´ is a one-to-
one correspondence. If rankP(o) = n ą 0, then o = xo1, o2y by construction of D1, with
rankP(o1), rankP(o2) ă n. By the induction hypothesis, f´1(o1) and f´1(o2) exist. Since
M |ù (PL1), there is a unique e P D where M, a[ f´1(o1)/x][ f´1(o2)/y][e/z] |ù ¶xyz, so
f (e) = x f´1( f (o1)), x f´1( f (o2))y = xo1, o2y = o.
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Finally we construct a model M1 = xD1, I1y where I1(σ) is the image of I(σ) under
f . It is clear that M1 is then isomorphic to M under f . Given the isomorphism, I1(¶) =
txx, y, zy : x f´1(x), f´1(y), f´1(z)y P I(¶)u; but by our construction of f , z = f ( f´1(z)) =
x f´1(x), f´1(y)y = xx, yy, so I1(¶) = txx, y, zy : xx, yy = zu. So M is pair-faithful. ∴

3 Field-Conservativeness of P

We can use the lemmas of the previous section to show that P is Field-conservative
[4]. More precisely, we define a restriction function (¨)R that restricts the quantifiers
by:

(Dxφ)R = Dx(„Pr(x)^ φR)

(DXnφ)R = DXn(@ #»y (Xn #»y Ñ
Ź

„Pr(yi))^ φR)

and for any other type of formula ψ, ψR = ψ. Then we can show

Theorem 4.

Let Γ be a set of sentences that do not contain ¶. Then Γ has a model if and only
if ΓR + P has a model.

Proof.

Let M be any model of a ¶-free language and assume without loss of generality that
M’s domain contains no pairs. (Else we find an isomorphic model of this sort.) Let
M+ be the result of closing M under ordered pairs and interpreting ¶ so as to make
M+ pair-faithful. Conversely, if N |ù ΓR + P, it is (by theorem 3) isomorphic to some
pair-faithful M+, and we can find a pair-free M by cutting the pairs from the domain.

Since M+ is pair-faithful, by theorem 3 M+ |ù P, and it is clear that M, a |ù Pr(x)
iff a(x) is a pair. Thus a simple induction shows that M |ù φ iff M+ |ù φR. ∴

4 The Translation

As a matter of preference, we will code up relations ‘on the right’: xx, y, zy will be
understood as xx, xy, zyy. This makes it straightforward to treat arbitrary n-tuples in
our finite pairing theory. There is some risk of ambiguity: after all, xx, xy, xyy can be
considered both a pair and a triple. To avoid confusion, we will say that t is an n-tuple
if there is some resolution of the ambiguity according to which it is an n-tuple, and it
is a strict n-tuple if it is an n-tuple and for no m ą n is it an m-tuple. Thus, if none of
x, y, or z are tuples, xx, xy, zyy is both a pair and a triple, but is only a strict triple.

We now want to define a translation from arbitrary second-order sentences to
monadic second-order sentences with pairing. To do so, we’ll want a way to say, of a
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monadic X, that all its elements are (not necessarily strict) n-tuples for a given n. To
do this we’ll give an inductive definition of some abbreviations.

Definition.

2(p) := Pr(p)

n + 1(p) := Pr(p)^ Dp1(n(p1)^ p1 ă2 p)

1(X) := X = X
n(X) := @x(Xx Ñ n(x))

Of course, ‘7’ and the like are ambiguous between a first-order property of pairs and
a second-order property of sets of pairs; context disambiguates. The oddity of the
definition of 1(X) is because we don’t need to restrict translations of monadic second-
order variables, but having a trivial restrictor makes the translation easier to define.

We also want a way to say that a given n-tuple counts as xx1, . . . , xny. Here again,
a recursive definition of a series of abbreviations is in order.

Definition.

p «2 (x1, x2) := x1 ă1 p^ x2 ă2 p
p «n (x0, #»x ) := x0 ă1 p^ Dp1[p1 ă2 p^ p1 «n´1 ( #»x )]

Intuitively, p «n ( #»x ) says that p is the n-tuple x #»x y. The following can be shown by an
easy induction:

Proposition 5.

If M is pair-normal, then M, a |ù n(p) iff ~p�a is an n-tuple, M, a |ù n(X) iff
~X�a is a set of n-tuples, and M, a |ù p «n

#»α iff ~p�a = x
#      »
~α�ay.

Since the second-order variables are countably infinite for each adicity, we can help
ourselves to a one-to-one correspondence v between monadic predicate variables and
the entire space of predicate variables. The translation makes use of this v. Note
also that the translation treats predicate constants and monadic predicate variables
different than other predicate variables.

Definition.
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Tr(Πn #»α ) := Πn #»α

Tr(α = β) := α = β

Tr(X1α) := X1α

Tr(Xn+1 #»α ) := Dp(v(Xn+1)p^ p «n+1 ( #»α ))

Tr(„φ) := „Tr(φ)
Tr(φ^ ψ) := Tr(φ)^ Tr(ψ)

Tr(Dxφ) := DxTr(φ)
Tr(DXnφ) := Dv(Xn)[n(v(Xn))^ Tr(φ)]

5 The Equivalence

The main result here is

Theorem 6.

If M is pair-normal, then for any sentence φ, M |ù φ iff M |ù Tr(φ).

To prove the theorem we rely on a lemma. First, one more definition.

Definition.

Let M be a pair-normal model and V a set of variables. Then we say that a
variable assignment is v-well-behaved on V iff

(i) for every first-order variable x P V, a(x) is not a pair; and

(ii) for every second-order variable Xn P V, a(v(Xn)) = tx
#»x y : x #»x y P a(x)u.

(Recall that for any n, v(Xn) is monadic.) Note that if needed, for a given formula φ,
we can always re-shuffle variables to get an equivalent φ1 where no variable Y in φ1 is
v(X) for any X in φ1.

Since sentences, which have no free variables, are true relative to one assignment iff
they are true relative to them all, theorem 6 is an immediate corollary of

Lemma 7.

If M is pair-normal, V contains all the variables occurring in φ, and a is v-well-
behaved on V, then

M, a |ù φ iff M, a |ù Tr(φ).
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Proof.

By induction on the complexity of φ. The only non-trivial part of the base case is when
φ is Xn #»α and n ą 1. In this case, let p be a first-order variable not free in φ. Then
x

#      »
~α�ay = a[x

#      »
~α�ay/p](p). Note that x~α�ay is in D since M is pair-closed.

M, a |ù Xn #»α iff
#      »
~α�a P a(Xn) (TAP)

iff x
#      »
~α�ay P tx

#»x y : x #»x y P a(X)u (equivalence)

iff x
#      »
~α�ay P a(v(Xn)) (v-well-behavior)

iff a[x
#      »
~α�ay/p](p) P a(v(Xn)) (above)

iff M, a[x
#      »
~α�ay/p] |ù v(Xn)p^ p «n ( #»α ) (prop. 5)

iff M, a |ù Dp(v(Xn)p^ p «n ( #»α )) (TD)

iff M, a |ù Tr(Xn #»α ) (Df. Tr)

The truth-functional operators and first-order-quantifier are straightforward by the in-
duction hypothesis, as is the second-order quantifier DXn when n = 1. When n ą 1,
note that if Sn Ď Dn, then if t P Sn, t P D by repeated applications of pair-closure. Thus
Sn Ď D. So M, a[Sn/Y1] |ù n(Y1) for any monadic Y1. Furthermore, if Y1 = v(Xn), then
a[Sn/Y1] is v-well-behaved, and so the induction hypothesis applies.

M, a |ù DXnφ iff for some Sn P Dn, a[Sn/Xn] |ù φ (TD2)

iff Sn P Dn and M, a[Sn/Xn] |ù Tr(φ) (ind. hyp.)

iff M, a[Sn/v(Xn)] |ù Tr(φ) (above)

iff M, a[Sn/v(Xn)] |ù n(v(Xn))^ Tr(φ) (˚)

iff M, a |ù Dv(Xn)(n(v(Xn))^ Tr(φ)) (TD2)

iff M, a |ù Tr(DXnφ) (Df. Tr)

To finish the argument we need to check (˚). In the left-to-right direction, it holds from
our above observation that Sn satisfies n. Conversely, if some S Ď D satisfies n, then it is
a set of n-tuples and therefore also a member of Dn. ∴

6 Discussion

Theorems 3 and 6, plus the mutual interpretability between second-order and modal
logic, justify one version of the folklore. If we consider all the models of P, we see
that a full second-order sentence is true on one of them if and only if its monadic
translation is true on it, too. Thus the translations are equivalent on this restricted
class of models. That’s enough to at least convince us that there is some sort of mu-
tual interpretability between second-order logic and monadic second-order logic with
pairing.

But a residual worry lingers. What if there is some second-order theory that has
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countermodels, but none of its countermodels are also models of P? (There are in fact
are some — for instance, ones that are inconsistent with P.) If that can happen, the
claim of equivalence might seem too strong.

We might think this worry unfounded. After all, given well-known techniques for
embedding pairing functions inside a rich enough theory, any infinite second-order
model will contain an implicit pairing theory. So if P(¶) is the conjunction of P and
DX3(P(X3)) is the result of quantifying into the ¶-position of that conjunction, every
infinite model will be a model of DX3(P(X3)). So then, so long as Γ doesn’t contain
any instances of ¶, we’ll be able to take any model of Γ and extend it to a model of
Γ + P by reinterpreting ‘¶’ as some satisfier of P(X3).

This won’t work for finite models, since there will be no guarantee that we have
enough implicit pairs to go around. If we want a more general recipe for equivalence,
we can appeal to the Field-conservativeness of P (theorem 4). So long as Γ doesn’t
contain ¶, it has a model if and only if ΓR + P does. As a result, we can take the
equivalence claim to be modulated by (¨)R: a set of second-order sentences Γ has a
model if and only if the monadic Tr(Γ)R +P has a model. In this case, it is TrR, not Tr,
that gives us the final equivalence between monadic second-order logic with pairing
and full second-order logic. Thus the folklore is vindicated.1
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