Corpus data vs. experiments in English phonotactics

Michael Hammond

U. of Arizona
Outline

Syllable onsets in different domains
Syllable onsets and grammar
Syllable onsets and frequency
Syllable onsets and acquisition
Syllable onsets and judgments
A model
Conclusions
Collaborators

- Jeff Berry
- Jordan Brewer
- Lynnika Butler
- Jason Ginsburg
- Ben Tucker
What does phonology say about syllable onsets?
What does phonology say about syllable onsets?

- **Onset substring** Big onsets are more marked than smaller onsets.
What does phonology say about syllable onsets?

- **Onset substring** Big onsets are more marked than smaller onsets. If a language has an onset $C_1^+ C_2^+$, then it will also have onset C_1^+ and onset C_2^+.
What does phonology say about syllable onsets?

- **Onset substring** Big onsets are more marked than smaller onsets. If a language has an onset $C_1^+ C_2^+$, then it will also have onset C_1^+ and onset C_2^+.

- **Sonority sequencing** Onsets with more than one consonant increase in sonority.
What does phonology say about syllable onsets?

- **Onset substring** Big onsets are more marked than smaller onsets. If a language has an onset $C_1^+ C_2^+$, then it will also have onset C_1^+ and onset C_2^+.

- **Sonority sequencing** Onsets with more than one consonant increase in sonority. If a language has an onset $\ldots C_1 \ldots C_2 \ldots$, then C_1 is less sonorous than C_2.
Are these true in English?
Are these true in English?

What does it mean to be *true*?
Are these true in English?

What does it mean to be true?

Grammar
Are these true in English?

What does it mean to be true?

► Grammar
► Frequency
Are these true in English?

What does it mean to be true?

- Grammar
- Frequency
- Acquisition
Are these true in English?

What does it mean to be true?

- Grammar
- Frequency
- Acquisition
- Judgments
Are these true in English?

What does it mean to be true?

- Grammar
- Frequency
- Acquisition
- Judgments

Are these all in sync with each other?
Are these true in English?

What does it mean to be true?

- Grammar
- Frequency
- Acquisition
- Judgments

Are these all in sync with each other? If not, what story do we tell?
English consonants

<table>
<thead>
<tr>
<th>Consonants</th>
<th>Consonants</th>
<th>Consonants</th>
</tr>
</thead>
<tbody>
<tr>
<td>p t k</td>
<td>b d g</td>
<td>f θ s š</td>
</tr>
<tr>
<td>v ď z ž</td>
<td></td>
<td>c ý</td>
</tr>
<tr>
<td>m n ŋ</td>
<td>l</td>
<td>r</td>
</tr>
<tr>
<td>w y h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All of these can be syllable onsets except the ones marked in red (Hammond, 1999); [ŋ] cannot occur at all and [ž] is marginal.
The diphthong [yu]
The diphthong [yu]

- English diphthongs can generally occur with any onset.
The diphthong [yu]

- English diphthongs can generally occur with any onset.
- The sequence [yu] behaves like a diphthong; [y] is part of the vowel, not part of the onset (Davis & Hammond, 1995).
The diphthong [yu]

- English diphthongs can generally occur with any onset.
- The sequence [yu] behaves like a diphthong; [y] is part of the vowel, not part of the onset (Davis & Hammond, 1995).
 - In the sequence CyV, V can only be [u], e.g. in skew [skyu], few [fyu], etc.
The diphthong [yu]

- English diphthongs can generally occur with any onset.
- The sequence [yu] behaves like a diphthong; [y] is part of the vowel, not part of the onset (Davis & Hammond, 1995).
 - In the sequence CyV, V can only be [u], e.g. in skew [skyu], few [fyu], etc.
- Pig Latin
 - \textit{Strom} [stram] \quad \rightarrow \quad [am-stre]
 - \textit{Gwen} [gwɛn] \quad \rightarrow \quad [ɛn-gwe]
 - \textit{Beula} [byulə] \quad \rightarrow \quad [yulə-be]
Complex onsets
Complex onsets

\[
\{\text{stop, voiceless fricative}\} + \{l, r, w\}
\]

e.g. play [ple], fry [fray], queen [kwin], etc.
Complex onsets

\[
\left\{ \begin{array}{c}
\text{stop} \\
\text{voiceless fricative}
\end{array} \right\} + \left\{ \begin{array}{c}
l \\
r \\
w
\end{array} \right\}
\]

e.g. \textit{play} [ple], \textit{fry} [fray], \textit{queen} [kwin], etc.

\[
\left\{ \begin{array}{c}
\text{nasal}
\end{array} \right\}
\]

\[
\left\{ \begin{array}{c}
[s] + \\
\text{voiceless stop} \\
(\text{voiceless fricative})
\end{array} \right\}
\]

e.g. \textit{snow} [sno], \textit{spot} [spat], \textit{sphere} [sfir], etc.
Complex onsets

- {stop} + {\text{voiceless fricative}}
 - e.g. play [ple], fry [fray], queen [kwin], etc.

- [s] + {\text{voiceless stop (voiceless fricative)}}
 - e.g. snow [sno], spot [spat], sphere [sfir], etc.

- [s] + {\text{voiceless stop (voiceless fricative)}} + {\text{nasal}}
 - e.g. splash [splæʃ], spree [spri], squash [skwɔʃ], etc.
Grammatical generalizations
Grammatical generalizations

Remember: neither generalization is a biconditional.

- Onset substring
- Sonority sequencing
Grammatical generalizations

Remember: neither generalization is a biconditional.

- **Onset substring True**: if $C_1^+ C_2^+$ is an onset, then C_1^+ and C_2^+ are both onsets. (Clements & Keyser, 1983)

- **Sonority sequencing**
Grammatical generalizations

- **Onset substring** True: if $C_1^+ C_2^+$ is an onset, then C_1^+ and C_2^+ are both onsets. (Clements & Keyser, 1983)

- **Sonority sequencing** True: if $\ldots C_1 \ldots C_2 \ldots$ is an onset, then C_1 is less sonorous than C_2, except for [s]-clusters, a common exception. (Clements & Keyser, 1983)

Remember: neither generalization is a biconditional.
Grammatical generalizations

Remember: neither generalization is a biconditional.

- **Onset substring** True: if $C_1^+ C_2^+$ is an onset, then C_1^+ and C_2^+ are both onsets. (Clements & Keyser, 1983)

- **Sonority sequencing** True: if $\ldots C_1 \ldots C_2 \ldots$ is an onset, then C_1 is less sonorous than C_2, except for [s]-clusters, a common exception. (Clements & Keyser, 1983)

For example, in [kw] in *queen*, [k] and [w] are independently onsets, e.g. in *keel* [kil] and *we* [wi], and [k] is less sonorous than [w].
Markedness
Markedness

These are really claims about markedness, which makes stronger claims in the domains of frequency, acquisition, and gradient judgments. More marked elements should be:
Markedness

These are really claims about markedness, which makes stronger claims in the domains of frequency, acquisition, and gradient judgments. More marked elements should be:

- less frequent;
Markedness

These are really claims about markedness, which makes stronger claims in the domains of frequency, acquisition, and gradient judgments. More marked elements should be:

- less frequent;
- acquired earlier;
Markedness

These are really claims about markedness, which makes stronger claims in the domains of frequency, acquisition, and gradient judgments. More marked elements should be:

- less frequent;
- acquired earlier;
- judged more well-formed.
Predictions about onsets
Predictions about onsets

- Cluster size
- Sonority
Predictions about onsets

- **Cluster size**
 - Larger clusters are less frequent;

- **Sonority**
 - Onsets that violate sonority are less frequent;
Predictions about onsets

- **Cluster size**
 - Larger clusters are less frequent;
 - larger clusters are acquired later;

- **Sonority**
 - Onsets that violate sonority are less frequent;
 - onsets that violate sonority are acquired later;
Predictions about onsets

- **Cluster size**
 - Larger clusters are less frequent;
 - larger clusters are acquired later;
 - larger clusters are less well-formed.

- **Sonority**
 - Onsets that violate sonority are less frequent;
 - onsets that violate sonority are acquired later;
 - onsets that violate sonority are less well-formed.
Predictions about onsets

- **Cluster size**
 - Larger clusters are less frequent;
 - larger clusters are acquired later;
 - larger clusters are less well-formed.

- **Sonority**
 - Onsets that violate sonority are less frequent;
 - onsets that violate sonority are acquired later;
 - onsets that violate sonority are less well-formed.

But there shouldn’t be any clusters that violate the Sonority generalization.
How frequent are these clusters in the Brown corpus?
How frequent are these clusters in the Brown corpus?

- **Size of clusters**

<table>
<thead>
<tr>
<th>size</th>
<th>tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>302878</td>
</tr>
<tr>
<td>1</td>
<td>630175</td>
</tr>
<tr>
<td>2</td>
<td>76270</td>
</tr>
<tr>
<td>3</td>
<td>3713</td>
</tr>
</tbody>
</table>

\((X^2 : p < 2.2e - 16)\)
How frequent are these clusters in the Brown corpus?

- Size of clusters

<table>
<thead>
<tr>
<th>size</th>
<th>tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>302878</td>
</tr>
<tr>
<td>1</td>
<td>630175</td>
</tr>
<tr>
<td>2</td>
<td>76270</td>
</tr>
<tr>
<td>3</td>
<td>3713</td>
</tr>
</tbody>
</table>

\(X^2 : p < 2.2e - 16\)

- Sonority of clusters (2- and 3-consonant clusters)

<table>
<thead>
<tr>
<th>sonority</th>
<th>tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rising</td>
<td>61571</td>
</tr>
<tr>
<td>Falling</td>
<td>18412</td>
</tr>
</tbody>
</table>

\(X^2 : p < 2.2e - 16\)
How frequent are these clusters in the Brown corpus?

- **Size of clusters**

<table>
<thead>
<tr>
<th>size</th>
<th>tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>302878</td>
</tr>
<tr>
<td>1</td>
<td>630175</td>
</tr>
<tr>
<td>2</td>
<td>76270</td>
</tr>
<tr>
<td>3</td>
<td>3713</td>
</tr>
</tbody>
</table>

\(X^2 : p < 2.2e - 16\)

- **Sonority of clusters (2- and 3-consonant clusters)**

<table>
<thead>
<tr>
<th>sonority</th>
<th>tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rising</td>
<td>61571</td>
</tr>
<tr>
<td>Falling</td>
<td>18412</td>
</tr>
</tbody>
</table>

\(X^2 : p < 2.2e - 16\)

- This latter comparison may not be apropos, since [s]-clusters are exceptional.
What happens in acquisition?
What happens in acquisition?

- Levelt, Schiller & Levelt (1999-2000): smaller clusters are acquired before larger clusters.
What happens in acquisition?

- Levelt, Schiller & Levelt (1999-2000): smaller clusters are acquired before larger clusters.
- Meta-analysis of Smit et al. (1993) shows no effect of rising/falling sonority on cluster acquisition.
What happens in acquisition?

- Levelt, Schiller & Levelt (1999-2000): smaller clusters are acquired before larger clusters.
- Meta-analysis of Smit et al. (1993) shows no effect of rising/falling sonority on cluster acquisition. (Again, this comparison may not be apropos, because [s]-clusters are an exception.)
What happens in acquisition?

- Levelt, Schiller & Levelt (1999-2000): smaller clusters are acquired before larger clusters.
- Meta-analysis of Smit et al. (1993) shows no effect of rising/falling sonority on cluster acquisition. (Again, this comparison may not be apropos, because [s]-clusters are an exception.)
- But: D. Ohala (1996) shows that complex clusters are simplified to their least sonorous members.
Up to here
Corpus frequency and acquisition show clear effects of cluster size.
Corpus frequency and acquisition show clear effects of cluster size.

It’s not clear whether or how sonority shows itself in these domains.
Judgments
Generative grammar says that grammaticality judgments are a direct reflection of competence.
Generative grammar says that grammaticality judgments are a direct reflection of competence.

Are they?
Generative grammar says that grammaticality judgments are a direct reflection of competence.

Are they?

Experimental judgment tasks are a way of examining judgments more closely.
Generative grammar says that grammaticality judgments are a direct reflection of competence.

Are they?

Experimental judgment tasks are a way of examining judgments more closely.

Gradient judgments allow us to look even more closely.
Neighborhood density
Neighborhood density

- Nonsense words are judged as well-formed if they sound like lots of actual words (Ohala & Ohala, 1986).
Neighborhood density

- Nonsense words are judged as well-formed if they sound like lots of actual words (Ohala & Ohala, 1986).
- Neighborhood density: how many actual words are “one segment away” from the form in question?
Neighborhood density

- Nonsense words are judged as well-formed if they sound like lots of actual words (Ohala & Ohala, 1986).
- Neighborhood density: how many actual words are “one segment away” from the form in question?
- For example, *blick* [blɪk] has these neighbors:

 - click [klɪk]
 - lick [lɪk]
 - brick [brɪk]
 - bleak [blæk]
 - blink [blɪŋk]
 - flick [flɪk]
 - slick [slɪk]
 - block [blæk]
 - bliss [blɪs]
Phonotactic probability
Phonotactic probability

- Nonsense words are judged as well-formed if their parts are frequent (Coleman & Pierrehumbert, 1997).
Phonotactic probability

- Nonsense words are judged as well-formed if their parts are frequent (Coleman & Pierrehumbert, 1997).
 - $wf(\text{blIk}) \approx p(\text{bl}) \times p(\text{ik})$
Phonotactic probability

- Nonsense words are judged as well-formed if their parts are frequent (Coleman & Pierrehumbert, 1997).
 - \(\text{wf} (\text{blık}) \approx p(\text{bl}) \times p(\text{ık}) \)
 - \(\text{wf} (\text{bli̇k}) \approx p(\text{b}) \times p(\text{l|b}) \times p(\text{i|ı}) \times p(\text{k|ı}) \)
Phonotactic probability

- Nonsense words are judged as well-formed if their parts are frequent (Coleman & Pierrehumbert, 1997).
 - $wf(\text{blIk}) \approx p(\text{bl}) \times p(\text{Ik})$
 - $wf(\text{blIk}) \approx p(\text{b}) \times p(\text{l|b}) \times p(\text{i|l}) \times p(\text{k|i})$

- This effect is independent of neighborhood density (Bailey & Hahn, 2001).
Phonotactic probability

- Nonsense words are judged as well-formed if their parts are frequent (Coleman & Pierrehumbert, 1997).
 - $wf(b\text{\i}k) \approx p(b) \times p(\text{i}k)$
 - $wf(b\text{\i}k) \approx p(b) \times p(l|b) \times p(l|l) \times p(k|l)$
- This effect is independent of neighborhood density (Bailey & Hahn, 2001).
- Both effects also show up in yes-no tasks (Frisch et al., 2000).
Phonotactic probability

- Nonsense words are judged as well-formed if their parts are frequent (Coleman & Pierrehumbert, 1997).
 - $wf(blık) \approx p(bl) \times p(ık)$
 - $wf(blık) \approx p(b) \times p(l|b) \times p(i|l) \times p(k|i)$

- This effect is independent of neighborhood density (Bailey & Hahn, 2001).

- Both effects also show up in yes-no tasks (Frisch et al., 2000).

- Both effects show up with auditory or visual presentation (Bailey & Hahn, 2001).
Previous results
Previous results

- If we want to look at the effects of markedness of onsets, we have to factor out the effects of neighborhood density and phonotactic probability.
Previous results

- If we want to look at the effects of markedness of onsets, we have to factor out the effects of neighborhood density and phonotactic probability.
- One way to do that is to carefully select materials so these are all balanced and controlled.
If we want to look at the effects of markedness of onsets, we have to factor out the effects of neighborhood density and phonotactic probability.

One way to do that is to carefully select materials so these are all balanced and controlled.

Match items for neighborhood density and phonotactic probability.
Previous results presented here

<table>
<thead>
<tr>
<th>C</th>
<th>CC</th>
<th>CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>zɪlm</td>
<td>twɪlm</td>
<td>skrɪlm</td>
</tr>
<tr>
<td>gayθ</td>
<td>stayθ</td>
<td>strayθ</td>
</tr>
<tr>
<td>vɔrk</td>
<td>flɔrk</td>
<td>strɔrk</td>
</tr>
<tr>
<td>viʃ</td>
<td>kwɪʃ</td>
<td>skrɪʃ</td>
</tr>
<tr>
<td>dʒæntʃ</td>
<td>spæntʃ</td>
<td>stræntʃ</td>
</tr>
<tr>
<td>basp</td>
<td>plasp</td>
<td>strasp</td>
</tr>
<tr>
<td>rarv</td>
<td>klarv</td>
<td>strarv</td>
</tr>
</tbody>
</table>
Previous results presented here

<table>
<thead>
<tr>
<th>C</th>
<th>CC</th>
<th>CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>zilm</td>
<td>twilm</td>
<td>skrilm</td>
</tr>
<tr>
<td>gayθ</td>
<td>stayθ</td>
<td>strayθ</td>
</tr>
<tr>
<td>vork</td>
<td>flork</td>
<td>strork</td>
</tr>
<tr>
<td>viʃ</td>
<td>kwɨʃ</td>
<td>skrɨʃ</td>
</tr>
<tr>
<td>dʒæntʃ</td>
<td>spæntʃ</td>
<td>stræntʃ</td>
</tr>
<tr>
<td>basp</td>
<td>plasp</td>
<td>strasp</td>
</tr>
<tr>
<td>rarv</td>
<td>klarv</td>
<td>strarv</td>
</tr>
</tbody>
</table>

Items matched as closely as possible for neighborhood density and phonotactic probability.
Uh-oh!

But the effect appears to go in the **wrong** direction.
Many problems
Many problems

- Significant by subjects \([F(2, 19) = 4.31, p < .01]\), but not by items \([F(2, 18) = 1.27, \text{n.s.}]\).
Many problems

- **Significant by subjects** \(F(2, 19) = 4.31, p < .01 \), but not by items \(F(2, 18) = 1.27, \text{n.s.} \).

- If we add in neighbors and phonotactic probability, then:
 - there is an effect of neighbors, also in the wrong direction. By subjects: \(F(2, 19) = 7.95; p < .000 \); By items: \(F(2, 18) = 4.87; p < .03 \)
 - plus several significant interactions of phonotactic probability and neighbors with onset size.
The upshot
The upshot

- **A problem**: Did we somehow reverse the scale? Is there some unknown factor that overwhelms the factors we’re interested in?
The upshot

- **A problem**: Did we somehow reverse the scale? Is there some unknown factor that overwhelms the factors we’re interested in?

- **A significant problem**: We can’t control neighborhood density or phonotactic probability adequately for this investigation.
The upshot

- **A problem**: Did we somehow reverse the scale? Is there some unknown factor that overwhelms the factors we’re interested in?
- **A significant problem**: We can’t control neighborhood density or phonotactic probability adequately for this investigation.
- **Teaser**: There seems to be a typological effect of onset complexity in there somewhere.
New experiment
New experiment

- How else might we control for the effects of phonotactic probability?
New experiment

How else might we control for the effects of phonotactic probability? Choose materials that are *impossible* words of English.

<table>
<thead>
<tr>
<th>bmluke</th>
<th>dliz</th>
<th>dmloke</th>
<th>fmreap</th>
<th>fnape</th>
<th>fnlope</th>
<th>gnruke</th>
</tr>
</thead>
<tbody>
<tr>
<td>kmroot</td>
<td>kneeb</td>
<td>knliz</td>
<td>ldiz</td>
<td>lmbeke</td>
<td>lmdoke</td>
<td>lmthed</td>
</tr>
<tr>
<td>lmube</td>
<td>lmzen</td>
<td>lnfope</td>
<td>lnkiz</td>
<td>lnthem</td>
<td>lntope</td>
<td>lnzape</td>
</tr>
<tr>
<td>lshiz</td>
<td>lthiz</td>
<td>lzoog</td>
<td>mlube</td>
<td>mpazz</td>
<td>mruke</td>
<td>mtaz</td>
</tr>
<tr>
<td>mthazz</td>
<td>mvupe</td>
<td>mzi</td>
<td>nfae</td>
<td>nkeeb</td>
<td>nzafe</td>
<td>mazz</td>
</tr>
<tr>
<td>pmreese</td>
<td>rmfeap</td>
<td>rmkoot</td>
<td>rmpeeze</td>
<td>rmthass</td>
<td>rmtofe</td>
<td>rmuke</td>
</tr>
<tr>
<td>rmzube</td>
<td>ranguke</td>
<td>rntafe</td>
<td>rtntheef</td>
<td>rnvizz</td>
<td>rviss</td>
<td>shliz</td>
</tr>
<tr>
<td>thliz</td>
<td>thmazz</td>
<td>thmled</td>
<td>thmrass</td>
<td>thnlem</td>
<td>thnreef</td>
<td>tmaz</td>
</tr>
<tr>
<td>tmrofe</td>
<td>tnlope</td>
<td>tnrafe</td>
<td>vmupe</td>
<td>vnrizz</td>
<td>vriss</td>
<td>zlloog</td>
</tr>
<tr>
<td>zmiv</td>
<td>zmlen</td>
<td>zmrube</td>
<td>znafe</td>
<td>znlape</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New experiment

- How else might we control for the effects of phonotactic probability? Choose materials that are **impossible** words of English.

<table>
<thead>
<tr>
<th>bmluke</th>
<th>dliz</th>
<th>dmloke</th>
<th>fmreap</th>
<th>fnape</th>
<th>fnlope</th>
<th>gnruke</th>
</tr>
</thead>
<tbody>
<tr>
<td>kmroot</td>
<td>kneeb</td>
<td>knliz</td>
<td>ldiz</td>
<td>lmbuke</td>
<td>lmduke</td>
<td>lmthed</td>
</tr>
<tr>
<td>lmube</td>
<td>lmzen</td>
<td>lnfope</td>
<td>lnkiz</td>
<td>lnthem</td>
<td>lnrope</td>
<td>lnzape</td>
</tr>
<tr>
<td>lshiz</td>
<td>lthiz</td>
<td>lzoog</td>
<td>mlube</td>
<td>mpazz</td>
<td>mruke</td>
<td>mtaz</td>
</tr>
<tr>
<td>mthazz</td>
<td>mvupe</td>
<td>mziv</td>
<td>nfape</td>
<td>nkeeb</td>
<td>nzafe</td>
<td>pmazz</td>
</tr>
<tr>
<td>pmreeze</td>
<td>rmfeap</td>
<td>rmkoot</td>
<td>rmpeeze</td>
<td>rmthass</td>
<td>rmtofe</td>
<td>rmuke</td>
</tr>
<tr>
<td>rmzube</td>
<td>rnguke</td>
<td>rntafe</td>
<td>rntheef</td>
<td>rnvizz</td>
<td>rviss</td>
<td>shliz</td>
</tr>
<tr>
<td>thliz</td>
<td>thmazz</td>
<td>thmlaz</td>
<td>thmrass</td>
<td>thnlem</td>
<td>thnreef</td>
<td>tmaz</td>
</tr>
<tr>
<td>tmofoe</td>
<td>tnlope</td>
<td>tnrafe</td>
<td>vmupe</td>
<td>vnrizz</td>
<td>vriss</td>
<td>zloog</td>
</tr>
<tr>
<td>zmiv</td>
<td>zmlen</td>
<td>zmrube</td>
<td>znafe</td>
<td>znape</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Items have **no** neighbors and have **zero** phonotactic probability.
New experiment

- How else might we control for the effects of phonotactic probability? Choose materials that are **impossible** words of English.

 - Items have **no** neighbors and have **zero** phonotactic probability.
 - Factors are size and **sonority cline** of onset.
Results from new experiment

Experiment #4 means

Response mean

- Rising 2
- Falling 2
- Rising 3
- Falling 3
Statistics
Judgments

Statistics

- Items with onsets that are bigger are judged as more ill-formed.

 [by subjects: $F(1, 20) = 122.116, p < .000$; by items: $F(1, 64) = 37.889, p < .000$]
Items with onsets that are bigger are judged as more ill-formed.
[by subjects: $F(1, 20) = 122.116$, $p < .000$; by items: $F(1, 64) = 37.889$, $p < .000$]

Items with onsets that violate the sonority hierarchy are judged as more ill-formed.
[by subjects: $F(1, 20) = 75.807$, $p < .000$; by items: $F(1, 64) = 23.521$, $p < .000$]
Statistics

- Items with onsets that are bigger are judged as more ill-formed.

 \[F(1, 20) = 122.116, p < .000; \text{ by items: } F(1, 64) = 37.889, p < .000 \]

- Items with onsets that violate the sonority hierarchy are judged as more ill-formed.

 \[F(1, 20) = 75.807, p < .000; \text{ by items: } F(1, 64) = 23.521, p < .000 \]

- **But the factors interact.**

 \[F(1, 64) = 14.886, p < .000 \]
Up to here
Syllabic markedness plays a role in judgment tasks.
Syllabic markedness plays a role in judgment tasks.

Do other markedness relations play a role?
Segmental markedness
Segmental markedness

How to calculate segmental markedness: count the number of times each segment occurs in UPSID. Thanks to Natasha Warner!
Segmental markedness

- How to calculate segmental markedness: count the number of times each segment occurs in UPSID. Thanks to Natasha Warner!

- We replicated Bailey & Hahn’s visual presentation experiment and found an independent effect of segmental markedness: items containing typologically more marked sounds are judged as less well-formed in the Bailey & Hahn visual presentation replication. [By subjects: phonotactic probability $F(1, 17) = 197.33, p < .000$; neighborhood density $F(1, 17) = 46.32, p < .000$; markedness $F(1, 17) = 21.96, p < .000$] and [By items: phonotactic probability $F(1, 254) = 43.98, p < .000$; neighborhood density $F(1, 254) = 10.33, p < 0.001$; markedness $F(1, 254) = 4.89, p < 0.02$]
The effect of markedness

![Graph showing the effect of markedness on response. The graph plots markedness on the y-axis against response on the x-axis. The data points suggest a trend where higher markedness is associated with lower response values.]
Desiderata

What properties must a correct model of judgments have?
Desiderata

What properties must a correct model of judgments have?

- a role for phonotactic probability;
Desiderata

What properties must a correct model of judgments have?

- a role for phonotactic probability;
- a role for neighborhood density;
Desiderata

What properties must a correct model of judgments have?

- a role for phonotactic probability;
- a role for neighborhood density;
- a role for markedness;
Toward a model
Toward a model

- Several (cognitive) machines operating in parallel.
Toward a model

- Several (cognitive) machines operating in parallel.
- Each machine produces a numerical result.
Toward a model

- Several (cognitive) machines operating in parallel.
- Each machine produces a numerical result.
- Outputs of machines combined by linear regression.
Toward a model

- Several (cognitive) machines operating in parallel.
- Each machine produces a numerical result.
- Outputs of machines combined by linear regression.
- What machines?
Toward a model

- Several (cognitive) machines operating in parallel.
- Each machine produces a numerical result.
- Outputs of machines combined by linear regression.
- What machines?
 - **Weighted Finite automaton** (WFSA) for language-specific frequency distributions and for typological patterns. (Initial weights reflect typological predispositions.)
Toward a model

- Several (cognitive) machines operating in parallel.
- Each machine produces a numerical result.
- Outputs of machines combined by linear regression.
- What machines?
 - Weighted Finite automaton (WFSA) for language-specific frequency distributions and for typological patterns. (Initial weights reflect typological predispositions.)
 - Something else for lexical items.
Initial weights for onset size
Reweighting by experience

<table>
<thead>
<tr>
<th>onset</th>
<th>before</th>
<th>after</th>
</tr>
</thead>
<tbody>
<tr>
<td>fV</td>
<td>.009</td>
<td>.09</td>
</tr>
<tr>
<td>sfV</td>
<td>.007</td>
<td>.07</td>
</tr>
<tr>
<td>sfrV</td>
<td>.005</td>
<td>.05</td>
</tr>
<tr>
<td>fnV</td>
<td>.007</td>
<td>.007</td>
</tr>
<tr>
<td>fnrV</td>
<td>.005</td>
<td>.005</td>
</tr>
</tbody>
</table>

Weights here are illustrative.
Neighborhood density
Neighborhood density

A Model

Michael Hammond (U. of Arizona)
Why are there different effects?
Why are there different effects?

- Corpora and acquisition don’t show obvious effects of sonority cline;
Why are there different effects?

- Corpora and acquisition don’t show obvious effects of sonority cline;
- Corpora involve real words;
Why are there different effects?

- Corpora and acquisition don’t show obvious effects of sonority cline;
- Corpora involve *real* words;
- Naturalistic observations of children involve *real* words;
Why are there different effects?

- Corpora and acquisition don’t show obvious effects of sonority cline;
- Corpora involve real words;
- Naturalistic observations of children involve real words;
- Experiments on adults can involve impossible words.
Conclusions
Conclusions

- It can be especially informative to look at impossible words, rather than just possible words.
Conclusions

- It can be especially informative to look at impossible words, rather than just possible words.
- Segmental and syllabic markedness play a role in gradient judgments.
Conclusions

- It can be especially informative to look at impossible words, rather than just possible words.
- Segmental and syllabic markedness play a role in gradient judgments.
- These factors may not play a role in corpus studies or observations of natural acquisition for methodological reasons.
Conclusions

- It can be especially informative to look at impossible words, rather than just possible words.
- Segmental and syllabic markedness play a role in gradient judgments.
- These factors may not play a role in corpus studies or observations of natural acquisition for methodological reasons.
- Typology and neighborhood density can be incorporated into judgments by using WFSAs and setting initial weights accordingly.