Economics 8205-8206:
Applied Econometrics I

Instructor: Professor Gautam Gowrisankaran
Teaching Assistant: Mehmet Ozhabes
University of Minnesota, Fall Semester 2000

Assignment 4

Handed out: October 31, 2000
Due: November 14, 2000

Non-computer problem

1) (From Greene, Chapter 19, 9.894, problem 4.)
 a- Construct the LM statistic for testing the hypothesis that all the slopes (but not the constant term) equal zero in the binomial logit model \(y = \{\alpha + \beta X + u\} \), where \(u \) has a logistic distribution.
 b- Prove that \(LM = nR^2_c \) from the regression of \((Y_t - P) \) on the X’s, where P is the sample proportion of 1’s.

Computer problems: turn in your source code and results

2) Logit estimation
 Use the Matlab data set assig4_pr2 for this problem.
 Consider the model \(y = \{X_1\beta_1 + X_2\beta_2 + X_3\beta_3 + u\} \), where \(u \) has a logistic distribution.
 a- Estimate this model using maximum likelihood.
 b- Find the variance/covariance of your parameter estimates using the OPG and Hessian methods. How different are they?
 c- Perform a Wald test that \(\beta_1 + 2\beta_2 = 0 \) using the OPG variance estimator.
 d- Perform a LM test that \(\beta_1 + 2\beta_2 = 0 \) using a (restricted) OPG variance estimator. How different are the test statistics?

3) Comparison of logit, probit and linear probability model
 Use the Matlab data set assig4_pr3 for this problem.
 Consider the model \(y = \{X_1\beta_1 + X_2\beta_2 + X_3\beta_3 + X_4\beta_4 + u\} \).
 a- Estimate this model using logit, probit and linear probability models. How do your parameter estimates differ?
 b- Consider individuals \(t=10, 20, 30 \) and 40. Find the values of \(\frac{\partial \Pr(y_t = 1)}{\partial \beta_2} \) for these individuals for all three models. What differences do you find among the models.