Stability of in vitro spike patterns under variation of stimulus amplitude

J. V. Toups1, J. Fellous2, P. J. Thomas3, P. Tiesinga4, T. J. Sejnowski5,6

1UNC at Chapel Hill, Chapel Hill, NC, 2Psychology, The University of Arizona, Tucson, AZ, 3Departments of Mathematics, Biology and Cognitive Science, Case Western Reserve University, Cleveland, OH, 4Physics and Astronomy, UNC at Chapel Hill, Chapel Hill, NC, 5CNL and HHMI, The Salk Institute, La Jolla, CA, 6Division of Biological Sciences, UCSD, La Jolla, CA.

Figure 1: Two ways of modeling neural responses to time varying stimuli. The response of a neuron to a time varying signal can be characterized as a series of events, each of which describes a spike or a series of spikes related to a signal. The events may be characterized by properties such as onset, offset, or total duration. The events may also be characterized by properties such as mean or variance. The events may also be characterized by properties such as mean or variance. The events may also be characterized by properties such as mean or variance.

Figure 2: Spike Patterns exist in the response of a neuron to multiple amplitudes of the same current injection and can be extracted. When the neuron is stimulated with a single current injection, it fires a series of spikes. The spikes are characterized by their amplitude, time of occurrence, and other properties. When the neuron is stimulated with multiple current injections, the spikes are characterized by their amplitude, time of occurrence, and other properties. When the neuron is stimulated with multiple current injections, the spikes are characterized by their amplitude, time of occurrence, and other properties. When the neuron is stimulated with multiple current injections, the spikes are characterized by their amplitude, time of occurrence, and other properties.

Figure 3: Characterizing the response for a single amplitude. The response of a neuron to a single amplitude can be characterized by the properties of the spikes that are produced. The properties of the spikes can be characterized by their amplitude, time of occurrence, and other properties. The properties of the spikes can be characterized by their amplitude, time of occurrence, and other properties. The properties of the spikes can be characterized by their amplitude, time of occurrence, and other properties.

Figure 4: Trends in the mean spike time, precision and reliability of events as a function of stimulus amplitude. The mean spike time, precision and reliability of events as a function of stimulus amplitude can be characterized by the properties of the spikes that are produced. The properties of the spikes can be characterized by their amplitude, time of occurrence, and other properties. The properties of the spikes can be characterized by their amplitude, time of occurrence, and other properties. The properties of the spikes can be characterized by their amplitude, time of occurrence, and other properties.

Figure 5: Calculating the Pattern Significance. The pattern significance is the measure of the degree to which the observed distribution of spike events and the actual data set is different from the expected distribution of spike events. The pattern significance is the measure of the degree to which the observed distribution of spike events and the actual data set is different from the expected distribution of spike events. The pattern significance is the measure of the degree to which the observed distribution of spike events and the actual data set is different from the expected distribution of spike events. The pattern significance is the measure of the degree to which the observed distribution of spike events and the actual data set is different from the expected distribution of spike events.

Figure 6: Events in responses to time varying stimuli are not independent. The events in responses to time varying stimuli are not independent. The events in responses to time varying stimuli are not independent. The events in responses to time varying stimuli are not independent. The events in responses to time varying stimuli are not independent. The events in responses to time varying stimuli are not independent. The events in responses to time varying stimuli are not independent. The events in responses to time varying stimuli are not independent.