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Estimating and modeling space–time correlation structures
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Abstract

In this paper, a class of product–sum covariance models has been introduced for estimating and modeling space–time
correlation structures. It is shown how the coe�cients of this class of models are related to the global sill and “partial”
spatial and temporal sills; moreover, some constraints on these sills have been given in order to assure positive de�niteness
of the product–sum covariance model. A brief comparative study with some other classes of spatial–temporal covariance
models has been pointed out. c© 2001 Elsevier Science B.V. All rights reserved
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1. Introduction

A large number of environmental phenomena may be regarded as realizations of space–time random �elds
(Eynon and Switzer, 1983; Le and Petkau, 1988). Geostatistics o�ers a variety of methods to model spatial
data; however, applying such space-oriented approaches to spatiotemporal processes, may lead to the loss of
valuable information in the time dimension.
One obvious solution to this problem is to consider the spatiotemporal phenomenon as a realization of

a random �eld de�ned in Rd+1 (i.e. d is the physical space dimension plus one time dimension). This
approach demands the extension of the existing spatial techniques into the space–time domain. Despite the
straightforward appearance of this extension, there are a number of theoretical and practical problems that
should be addressed prior to any successful application of geostatistical methods to space–time data.
In order to point out one of such di�culties let Z = {Z(s); s ∈ D⊆R d} be a real-valued spatial random

�eld de�ned on the domain D of the d-dimensional space R d, where d63. If Z is second-order stationary,
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its covariance function

C(hs) = Cov[Z(s+ hs); Z(s)]; ∀s; s+ hs ∈ D (1)

depends only on the separation vector between a pair of points s + hs, s. In geostatistics the second-order
stationarity assumption is ordinarily weakened slightly to require only that �rst-order increments be second-
order stationary, then the spatial correlation is quanti�ed by the variogram of Z


(hs) = 1
2 Var[Z(s+ hs)− Z(s)]; ∀s; s+ hs ∈ D: (2)

When Z is second-order stationary, 
(hs)=C(0)−C(hs); moreover, if the covariance or variogram is only
a function of the length of hs, then the covariance or variogram is called isotropic. In practice, anisotropic
models are constructed as positive linear combinations of isotropic models where the “lengths” are obtained
by a�ne transformations (Journel and Huijbregts, 1981): this is called a geometric anisotropy because the
range of each component changes with direction. Since the variogram or covariance must satisfy a certain
positive de�niteness condition (variograms must be conditionally negative de�nite), one ordinarily �ts a sample
function to standard isotropic models (Cressie, 1991; Myers, 1991).
Unfortunately, the technique of reducing the modeling process down to a one-dimensional problem does not

work so well for spatial–temporal models. If time is simply considered as another “dimension” then it would
be necessary to have an appropriate metric in space–time (Bilonick, 1985). The technique of separability is
used instead. Note that, in general, the sum of a spatial covariance (or variogram) and a temporal covariance
(respectively, a temporal variogram) will not be strictly positive de�nite and in that case the coe�cient matrix
in the kriging equations may be non-invertible for some sample location patterns (as shown in Myers and
Journel, 1990; Rouhani and Myers, 1990; Myers, 1992). While the product of two covariances will be a
covariance, in general, the product of two variograms is not a variogram.
In this paper, a class of product–sum covariance models has been introduced, in order to estimate and

model in a 
exible way realizations of space–time random �elds, which are very common in environmental
applications (De Cesare et al., 1999). Some constraints on the coe�cients of this class of models have been
given in order to guarantee positive de�niteness of the covariance model.
An overview and a short comparative study with some classes of space–time covariance models used in

some applications has been given.

2. Some classes of spatiotemporal covariance models

In this section some classes of spatiotemporal covariance models, which have been used in literature, are
discussed, in order to compare these last with the product–sum model proposed by the authors. In order to
distinguish between space and time, let Z = {Z(s; t); (s; t) ∈ D × T} be a second-order stationary spatial–
temporal random �eld, where D⊂Rd and T ⊂R+, with expected value

E(Z(s; t)) = 0: (3)

In this case, the covariance

Cst(h) = Cov(Z(s+ hs; t + ht); Z(s; t)) (4)

where h= (hs; ht), (s; s+ hs) ∈ D2 and (t; t + ht) ∈ T 2 and the variogram


st(h) =
Var(Z(s+ hs; t + ht)− Z(s; t))

2
;

depend solely on the lag vector h, not on location or time.
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The function Cst in (4) must satisfy a positive de�niteness condition in order to be a valid covariance
function. That is, for any (si; ti) ∈ D × T , any ai ∈ R, i = 1; : : : ; n, and any positive integer n, Cst must
satisfy:

n∑
i=1

n∑
j=1

aiajCst(si − sj; ti − tj)¿0:

For continuous functions, positive de�niteness is equivalent to the process having a spectral distribution
function (Matern, 1960).
1. The metric model. It is assumed (Dimitrakopoulos and Luo, 1994) that

Cst(hs; ht) = C(a2|hs|2 + b2h2t ) (5)

where the coe�cients a; b∈R . Note that in (5) the same type of model is assumed for the spatial and
temporal covariances, with possible changes in the range.
2. The product model. One of the simplest ways to model a covariance in space–time is to separate the

dependence on the two (Rodriguez-Iturbe and Meija, 1974; De Cesare et al., 1996). The product spatial–
temporal covariance model is

Cst(hs; ht) = Cs(hs)Ct(ht); (6)

where spatial dependence is separated by the temporal one. Posa (1993) used the above model which assumes
a range of in
uence independent of the time.
The previous model could be easily written in terms of the spatial–temporal variogram


st(hs; ht) = Ct(0)
s(hs) + Cs(0)
t(ht)− 
s(hs)
t(ht)
where 
st is the spatiotemporal variogram, 
t the temporal variogram, 
s the spatial variogram, Ct the temporal
covariance and Cs the spatial covariance.
In (6) Cs is a positive-de�nite function in R d and Ct is a positive-de�nite function in R; admissible spatial

covariance models and admissible temporal covariance models are readily available (Cressie, 1991) and hence
they can be combined in product form to give spatiotemporal covariance models.
However, class (6) is severely limited, since for any pair of spatial locations the cross-covariance function

of the two time series always has the same shape. In fact, for any two �xed spatial lags h1 and h2

Cst(h1; ht)˙ Cst(h2; ht):

A similar result holds for any pair of time points and the cross-covariance function of the two spatial processes.
3. The linear model. Another type of separability involves adding spatial and temporal covariances (Rouhani

and Hall, 1989), that is

Cst(hs; ht) = Cs(hs) + Ct(ht): (7)

For this model, covariance matrices of certain con�gurations of spatiotemporal data are singular (Myers and
Journel, 1990; Rouhani and Myers, 1990): in this case, the covariance function is only positive semide�nite
and it is unsatisfactory for optimal prediction.
4. The nonseparable model. A new approach that allows to obtain classes of nonseparable, spatiotemporal

stationary covariance functions has been derived by Cressie and Huang (1999). The authors assume that

H (!; ht) = �(!; ht)K(!); (8)

where

H (!; ht) = (2�)−d
∫
e−ih

T
s !Cst(hs; ht) dhs
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and the following two conditions are satis�ed:

• for each ! ∈ Rd, �(!; :) is a continuous autocorrelation function and K(!)¿ 0;
• the positive function K(!) satis�es:∫

K(!) d!¡∞:

3. The product–sum model

A very general model combining products and sums can be obtained in the following way:

Cst(hs; ht) = k1Cs(hs)Ct(ht) + k2Cs(hs) + k3Ct(ht); (9)

or equivalently


st(hs; ht) = [k2 + k1Ct(0)]
s(hs) + [k3 + k1Cs(0)]
t(ht)− k1
s(hs)
t(ht); (10)

where Cs and Ct are covariance functions and 
s and 
t are the corresponding variogram functions. Note
that Cst(0) is the “sill” of 
st , Cs(0) is the sill of 
s and Ct(0) is the sill of 
t . Note also that by de�nition

st(0; 0) = 
s(0) = 
t(0) = 0.

3.1. Estimation and modeling

The following condition is implicit in the transformation from covariance form to variogram form

k1Cs(0)Ct(0) + k2Cs(0) + k3Ct(0) = Cst(0; 0): (11)

Note also from Eq. (10) that


st(hs; 0) = [k2 + k1Ct(0)]
s(hs); (12)


st(0; ht) = [k3 + k1Cs(0)]
t(ht): (13)

It is assumed that

k2 + k1Ct(0) = 1; k3 + k1Cs(0) = 1 (14)

in order to estimate and model 
s(hs) and 
t(ht) by 
st(hs; 0) and 
st(0; ht), respectively.
Let H be the set of data locations, then the standard moment estimator for the spatial variogram at the

vector lag rs, with spatial tolerance �s, is


̂s(rs) = 
̂st(rs; 0) =
1

2|N (rs)|
∑

[Z(s+ hs; t)− Z(s; t)]2; (15)

where the summation is over the set

N (rs) = {(s+ hs; t) ∈ H and (s; t) ∈ H such that ‖rs − hs‖¡�s};
and |N (rs)| is the cardinality of this set. Similarly


̂t(rt) = 
̂st(0; rt) =
1

2|M (rt)|
∑

[Z(s; t + ht)− Z(s; t)]2; (16)

where

M (rt) = {(s; t + ht) ∈ H and (s; t) ∈ H such that ‖rt − ht‖¡�t}
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and |M (rt)| is the cardinality of this set. Usually, the spatial locations need not be on a regular grid, while
the temporal points are regularly spaced and hence it is not necessary to use temporal distance classes.

3.2. Results on positive de�niteness

From Eq. (9) it is clear that k1¿ 0, k2¿0 and k3¿0 is a su�cient condition for positive de�niteness.
From Eqs. (11) and (14) we obtain

k1 = [Cs(0) + Ct(0)− Cst(0; 0)]=Cs(0)Ct(0);

k2 = [Cst(0; 0)− Ct(0)]=Cs(0);

k3 = [Cst(0; 0)− Cs(0)]=Ct(0): (17)

In modeling the separate spatial and temporal variograms it is necessary to ensure that the sills are chosen so
that the numerators in Eqs. (17) remain positive.

4. Some general comments

A brief comparison between the classes of models described in Section 2 and the product–sum covariance
model proposed by the authors is made in this section.

• note that if the autocorrelation function � in (8) is purely a function of ht , then the product covariance
model is obtained;

• the product model and the linear model are easily obtained by the product–sum covariance model setting,
respectively, k2 = k3 = 0 and k1 = 0;

• the product–sum covariance model is more 
exible than the nonseparable covariance model for estimating
and modeling spatial–temporal correlation structures, as described in Section 3.1.
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