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ABSTRACT

There are at least two general approaches for reducing the analysis of a multivariate data
set to the analysis ofa a univariate data set. One corresponds to the analysis of one or more linear
combinations of the components in which case the problem is to determine appropriate linear
combinations. A second approach is to represent the various components as linear combinations of
uncorrelated parts so that each may be analyzed separately. These two approaches are.not unrelated
and both have been used in geostatistics.

The Linear Coregionalization Model assumes that each variate, or component in the vector

random function, is representable as a linear combination of uncorrelated components. These are

normally taken to be represented by covariance or variogram models of the same type but with'

different ranges. The Linear Coregionalization model has the advantage that the positive definiteness
condition reduces to a test for positive definiteness of a constant rﬁatdx, it has the disadvantage of
restricting the choice for the cross-variogram, cross-covariance models and it is most useful in the
case of undersampling. ' N

More generally if each component is representable as a linear combination of uncorrelated
components this corresponds to a simultaneous diagonalizat’iﬁﬁ of the matrix structure function. This
formulation has application in image analysi’s and is related to the near simultaneous
diagonalization of multiple matrices.
1.0 INTRODUCTION

In order to apply cokriging in one of its various form‘s it is necessary to estimate and model
the matrix variogram or matrix covariance function. The diagonal entries are variograms, respec-

tively (auto)covariances, and the off-diagonal entries are cross-variograms, respectively cross-
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covariances. In addition t.o' the question of which form of cross-variogram to use, Myers (1992),
Cressie (1993), there is the more d.ifﬁcult practical question of how to model these cross-
variograms or cross-covariances. .One of the reasons that (univaﬁate) geostatistical estimation
methods are practical is that there is a ready supply of known valid variograms/covariances. With
any choice of these valid variogram models the kriging system is solvable and the kriging variance
is positive. Mére generally it is sufﬁcient to consider a positive linear combination of such known
modgls to ensure that the kriging variance will be positive and that the coefficient matrix in the
kriging equations will be invertible. These restrictions are relatively easy to incorporate into a
kriging program.

Unfortunately the problem is much more éomplicated for_ matrix fun'ctidns: We do not have
aset of kpown set of valid matrix functions sufficient to generate a wide class of valid models. It
will be shown later that even the question of valid linear combinations is more complicated for
matrix functions. The problem is also related to the question of what constitutes a valid cross-
variograxp. 'i‘hat question does not have a simple answer since the cross-variogram must be
considered in connection with the associated pair of variograms, Myers(1984, 1988a). Since the
easiest way to model a matrix function is to model the individual components we require a method
for modeling cross-variograms. Procedures for éstimating and modeling the diagonal entries , i.e.,
variogréms or covariances are known even if they are not perfect. The obvious steb is to compute
a sample cross-variogram, however it is not at all clear what a valid cross-variogram will look like.
It is not sufficient to choose a valid variogram/covariance model to model cross-variograms. A
number of necessary conditions are kno_Wh ‘such as the Cauchy-Schwartz inequality but sufficient

conditions are more difficult to apply. As a practical solution to this problem, Matheron intro-
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duced the linear coregionalization model (LCM) which generalizes the idea of a positive linear
cdmbination of valid models. Instead of having to test a positive definiteness conditi(;n for a matrix
valued function it is sufficient to test several (constant) matrices for positive definiteness. It is still
necessary to: (l) determine the number of such matrices, (2) estimate the entries in each of these
matrices and (3), estimate and model a corresponding number of variograms. Wackemagel (1985,
1988) proposed using a form of principal components together with a graphical analysis to perform
these steps. More recently Goulard and Voltz (1992) have given a variation of Wackernagel’s
algorthim. Bourgault and Marcotte(1991) have proposed the use of a multivariable variogram. This
is the variogram of a particular linear combination of the components. It is useful to re-examine the
foundations of the linear coregionalization model and the impli.cations. of its use as well as
connections with other applications of the matrix structure functior.l such as in image analysis.
2.0 THE GENERAL FORM OF THE LINEAR MODEL

Let Z(x) = [Zy(x),...,Zx(X)] be a vector valued random function. Let Y(x), ...., Y (x) be.
uncorrelated random functions where p may be greater or less than m . In general the same
stationarity assumptions will be imposed on the Y’s as on the components of Z. Conversely, the
stationarity assumptions imposed on the Y’s will imply the same for the components of Z. Suppose
now that

Zx)=. LY (x)a;;j=1,..,m 1)
In matrix form this becomes
[Zl(x),...,Zm(x)] =[Yi(x), ...., Y,,(x)]A 1)

It is easily seen that the spatial structure functions for Z are related to those of the Y’s in one of

several forms including
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Cyh) = ATCy(h)A | @)
and

p(h) = ATR(A 3)

where C,(h), C.Y(h) denote the matrix covariance functions with entries
Cuz(h) = Cov{Z(x+h), Z(x)} | C))
Cux(h) = Cov{ Y (x+h), Y{(x)}
=0, uzv &)
and y;(h), Yv(h) the matrix variograms with entries
Y uz(h) = Cov{Z(x+h)- Z(x),Z{(x+h)- Z(x)} | )
Yoo (1) = Cov{ Y(x+h)-Y(x), Yo(x#h)- Yo(x) }
=0, usv - | | ")
Ei;uations (4’) and (5°) utilize the standard cross-variogram rather than the pseudo-cross variogram
given in Myers (1991). Equations (2) and (3) may be written in non-matrix form and then it is easy
to see certain special cases, in particular the linear coregionalization model. Applying equations (4)
and (5), or equations (4’) and (5°), to the representations given in (1) we obtain
C.z(h)= Za,Cuy(ha. = ZbCux(h) ©)
or Cy(h) = ZBCux(h) @)
This is the way the LCM is usually written. Let A, be the u® column of A then B:= ATA.. With this
construction the Be’s will automatically satisfy the positive definiteness condition which is required
for thp LCM. 1t is also easy to see that if a matrix covariance function, or a matrix variogram, is

constructed as in (7) and the Bv's are positive definite then the matrix function will satisfy the
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appropriate positive definiteness condition as described in Myers (1984; . 1998a) since the test
reduces to showing that a positive linear combination of covariances, or a positive linear
~ combination of variograms, is again a covariance (respectively a variogram). This is, of course,
known to be sufﬁcientvbut it is not a necessary condition. Since the Y’s are not directly obervable
and hence the cov;riances/variograms are not directly estimable, various techniques have been
proposed for determining ihe number of Y’s, their covariances and the matrices Be.
3. LINEAR COMBINATIONS |

Since positive linear combinations of valid variograms result in valid models it is tempting
to consider the same form of construction for matrix functions. However for matrix functions there
are at least two different possibilities, one more general than the other. The LCM illustrates both at
the same time. It is useful to view that modei from both perspectives.

Let g,(h),...,g,(h) be conditionally positivo definite matrix functions (m x m) as defined in
Myers (1984), for generalizations see Myers (1988a, 1992). That is, if x,,...,x, are points in
Euclidean space and I3,..,I, are m x m matrices whose sum is the zero matrix then

N g (x-x)I >0;  s=1,..,p )
Definition 1. Let a,,...,a, be positive constants (Scaiars), then
a,g,(h) +.';.+apg,,(h) . )

is called a scalar positive linear combination of the g,(h),...,g,(h)

Itis easy to show that such a linear combination is again conditionally positive definite since
the trace of a sum is the sum of the traces and matrix multiplication is both left and right distriblitive.
This 1s the most obvious form of a linear combination of matrix functions.

Defintion 1°. Let A,,....,A; be arbitrary (real) m x m matrices then
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ATg(A, +..+ AJTg (WA, _ (10)
is called a matrix positive linear combination of the gl(h),...,gp(ﬁ) .

‘Thatsucha combinétion is a valid model is again an easy consequence of the definition of
conditional positive definiteness and Definition 1’. Fora valid LCM it is sufficient that the matrices
B, be positive definite and hence factorable as A,TA,. The LCM can then be viewed as a linear
combination under either defintion. For Definition 1 we take.gk(h) to be AJA“ v (h) where vy (h) is
a valid variogram, in this case the aj's are simply ones. With respect to Definition 1°, the g«(h)’s are
scalar matrices, i.e., the product of a valid vaﬁogram and the identity matrix. Note thaﬁ ifeach of the
g¢'s is an LCM then under either definition, a linear combination is again an LCM.

Unfortunately it would not be siﬁple nor sufficient to provide a list of valid models in a
cokriging program and allow the use to input the coefficient matrices. In part this is because of the
variability in the matrix size and in part because of the need to combine different variogram models
within a given matrix function. The complexity ofthe u.ser interfacc? to accomplish this in a cokrging
program would be non-ﬁ’ivial.

3. THE MULTIVARIABLE VARIOGRAM

Bourgault and Marcotte (1991) have proposed the use of a multivariable variogram which,
in the case of an LCM and an appropriate choice of the matrix M, reduces to the sum of the
variograms of the Y’s. Suppose that Z satisfies the intrinsic hypothesis. Let M be a symmetric
matrix and form |

G(h) = 0.5E{[Z(x+h)-Z(X)IM[Z(x+h)-Z(x))"} . (11) -
The multivariable variogram is simply the variogram of a particular linear combination of the

components of Z. Let B be an m x 1 vector and set W(x) = Z(x)B, moreover W(x+h) = Z(x+h)B.
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Both W(x) and W(x-+h) are scalar valued. Since Z is intrinsic, W will be. Then
Yw(h) =0.5E{[W(x+h)-W(x)]2}

= 0.5E{[W(x-+h)-W(x)][W(x+h)-W(x)]7}

= 0.5E{[Z(x+h)-Z(x)]BBT[Z(x+h)-Z(x)]7}

= 0.5ETr{BT[Z(x-+h)-Z(x)]"[Z(x+h)-Z(x)]B}

=Tr{BT y.(h)B} A (12)
w}ﬁ;:h was noted by Bourgault and Marcotte. If M = BBT then yw(h) is the multivariable variogram.
Sincevit is essential to require that M be positive definite such a representation is always possible.
The trick is to chobse B’s that produce useful results. One possibility is a vector which has 1’s in
two places and zeros elsewhere, in this case G(h) is simp1y> the variogram of the sum of two
components and as was noted by Myers.(1982) itis the sum of the respective variograms and twice
the cross-variogram. Likewise if B is a vector with a 1 in one position, -1 in another and zeros
elsewhere then G(h) is the variogram‘ of a difference which is also given in terms of the two
'vario.grams and the croés-variogram. In order that the multivariable variogram reduce’to the sum
of the variograms of the components when Z(x) has the representation given by equation ( 1), and
M =BBT then B should be chosen so that ABBTAT is the identity.

These results will all extend equally well to the sample variograms, both scalgr and matrix

valued. Let x,,...,x, be data locations and form the n X m matrix
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Z(xy)

Z(x,)

Z(x,)
which we denote simply By Z. We suppose that all components.of Z have data values at all the
sample locations (the full sampled cése). We could interpret Z as n points in m-dimensional space.
The rows of ZB are then projections of these points onto the 1-dimensional space determined by B.
In .many forms of multivariate analysis the question is; for what choice of B do we obtain
"interesti‘ng" projéctions? Is there some number 6f such projections (usually taken to be less than
'm) which are sufficient to characterize 'thé' data set- (or-nearly -characterize it). The sample
multivariable variogram is then a measure of the spread of these projections (of the increment
points!). In the case of an LCM the spread is maximized and the measure of the spread is the sum
of the eigenvalues of the matrix variogram ot; Z.
4. DIAGONALIZATION
It is easy to see that one interpretation of equations (2) and (3) is that they correspond to
(simultaneous) diagonalization of the the matrix functions. That is, consider thé set of matrices
corresponding to the set of possible values of h, these matrices are simultaneously diagonalized by
A. This is a rather strong condition. Suppose given a symmetric matrix valued function S(h) then
for each h there exist main'ces F(h) and D(h), D(h) a diagonal matrix , such that

S(h) = F(h)™D(h)F(h) : (13).
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Simultaneous diagonaiization with respect to h would irﬁply that the matrices F doﬂnot depend on
h. For fixed h, the diagonal entries of D(h) are the cigenva]u.es of S(h). If S(h) is positive definite
for each h then the F’s and D have édditional nice properties. Note that a positive definiteness
condition on S(h) for each h is not the sufficient conditioh for S(h) to be a matrix covariance
function, respectively a matrix variogram. However if the diagonal entries of D(h) are covariances
or variograms and F is any constant matrix then S(h) will be a matrix povariancc fixnction,
respectively a matrix variogram.
PRINCIPAL COMPONENTS ANALYSIS

Borgman and Framhe (1976) suggested the use of principal components analysis (PCA) as
a method for éonstructing a variant on the LCM. The Bentqnite clay data had eleven variables and

data locations. By applying PCA the data set 1s reconstructed with five factors which explain

88% of the variance. The factors are particular 1-dimensional vectors. They are obtainéd as
particular projections and one can compute the sample variograms for each of these projections.
After modeling the variograms for each of the factors these were used to reconstruct the variograms
of the origin_al variables. Myers and Carr (1984) compared these results with those obtained by the
use of sums and differences. Davis and Green (1984) ﬁse PCA in aslightly different manner. They
experimentally verified that the cross variograms of the factors were null and hence cokri ging of the
factors reduced to separate kriging. After kriging the factors, the original variables were
reconstructed from the PCA. |

PCA has pften-been used in the analysis of multiband images, particularly to "remove" noise..
The data for each band is written as a vector, the vectors are adjoined to form a data matrix and

PCA is applied. The small ei genvalues are interpreted as the variances of the noise terms and the
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data is reconstructed using only the factors corresponding to the non-trivial eigenvalues. There are
at least two dis-advantages to this usage. First of all, the factors and the eigenvalues obtained by
PCA are left unchanged when rows in the data matrix are interchanged. That is, the factors and the
eigenvalues are insensitive to the order in _which the pixels are arranged when constructing the data
matrix, secondly the covariance/correlation matrix used to generate the. factors only quantifies
intervariable correlation and not spatial correlation.

Switzer and Green (1984) proposed a variation on this use of PCA. Consider a shift of the
image one pixel in the ﬁorizontal or the vertical directions. At each pixel one then forms the differ-
ences between the original image and the shifted image (each band separately). The image of
differences is then arranged as a data matrix and PCA is applied to the increments. This is analagous
to computing the sample variogram métrix for one lag in both the ﬁoﬁzonﬁl and vertical directions.
Switzer and Green averaged these two directional sample variograms before diagonalization,
ciaiming that it was sufficient to consider only one lag and onl); the all directional-vaﬁogrmn. Re-
analyzing the same data set however it was found that there is an anisotropy and that the lag 2 and
lag 3 sample matrix variograms are of interest.

THE COKRIGING EQUIVALENCE
Suppose that Z(x) = Y(x)A where A is invertible. Let vy 2(h) = ATy y(h)A be the matrix

variogram for Z(x) expressed in terms of the matrix variogram for Y(x). The cokriging-estimator

for Z(x,) is given by
' Z'(x)= Z Z()T - (14)
where |
Tyxex) 0+ = yz(xo-x,) | B | (15)
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and

Ihi=1 , (16)
These are equi\)alent to |
Y*(x0) = XY(xDAE A1 = 3Z7(x,)T; A | an
" EZyv(xex)AT; A +(A_T)-'p A =Y_y(xo-x,) ' (18)
FAGAT =T a9

Note that the AT} A+,....,AT, A are diagonal matrices. Since yy(h) is a diagonal matrix the latter
cokriging systemn is in fact separate kriging of the components of Y(Xo). Moreover the
diagonalizability of the y,(h) implies the simultaneous diagonalization of the weight matrices for
any choice of the points x;,....,X,. |
MATRIX FUNCTION APPROXIMATION - . ,
Although in general the variogram matrix function for Z is unknown, the use of an LCM can
be considered as an approximation to the “true" function. Tl;eré are seve-ral ways to. describé the
approximation, e.g., to quantify the error of approximation and several ways to quantify the
consequence of the approximation. Suppose that vy;(h) denotes the "true" but unknown function and
ATy y(h)A is the approximating LCM. In general the difference, [ z(h)-AT Tr(h)A] Qill depend on
h. Tr{[y 2(h)-AT vy (h)AJ™[y »(h)- yv(h)A]} is the sum of the squares Qf the differences, element by
element for fixed h. If this is summed over all the data locations to be used, the result is a measure'
qf the error of approximation, equivalentlybne could use the maximum over all data locations to be
used. This does not easily translate into a measure of the differences in the cokriging weight
matrices nor of the cokriged values of Z(x,) however. The next section provideé an altemative way

of characterizing the approximation.
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NEAR DIAGONALIZATION

Let B,,....., Bx be m x m positive definite matrices. Then A is said to nearly simultaneously
diagonalize the B’sif the off diagonal entries in each of the V, = ATB,A are collectively small. There
are several ways of quantifying how small they are. Without loss of generality we will assume that
A is invertible. Flury and Gautshi (1986), Clarkson (1988 ) have adopted this approacﬁ. Clarkson
used the sum of the squares of the off-diagonal entries as a measure of near simultaneous
diagonalizability. This formulation has the disadvantage that the "new" matrix functions are not
diagonal.

Altei‘natively' suppose that there are diagonal matrices D,,...,.Dx such that each ADA is
"cl<.)se“ to B,. Let y;(h) be an unknown variogram matrix but let y;*(hy), = 1,...,N be a correspond-
ing sample v_aridgram matrix. If a least squares measure i§ used then we would minimize

J{Trlz(h) - A'D()AT'[2(h) - ATD(h)A]}dP(h)
where dP(h) is a prqbability measure on the domain of v:(h). The probability measure provides for
a weighting. Unfortunately of course 'yz(h)- is not known. This suggests using the sample variogram
matrices instead. Then we minimize

ITrly*(hy) - A‘D(th]‘[Yz*(hs) - ATD(h)A]
This is essentially a least squares fitting of the sample variogram matrix to a known model. One
choice of a known model is the LCM and the fitting process produces both the diagonal matrix D
and the matrix A. Goulard and Voltz (1992) use this formulation and obtain an iterative agorithm
for estimating A and D. |
SUMMARY AND CONCLUSIONS

The use of an LCM corresponds to the assumption that the variogram matrix function
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(covariance matrix function) is diagonalizable. It also implies that the cross structure functions are
symmetric, i.e., if G(h) is the matrix function then.G(h) = G(-h) whereas more generally G would
only satisfy G(-h) = G(h)T. Hence the. LCM doeé not incorpo;gte thé use of i)seudo-cross variograms
or non-symmetric Cross covariances éuch'are gi\;en in Myers (1991 ), Ver Hoef and Cressie (1993).
If the "true” matrix function is approximated by an LCM then in general the kriging variance will
be larger and the estimated values will differ. - | i

The multivvariable variogram introduced by Bourgault and Marcotte (1992) corresponds to
the variogram of a linear combination of the components of Z. I[-l the case of a LCM there is a
particular choice of the linear combiriation that is useful. 'i‘he method introduced by Myers (1982)
which uses the sum and difference conesponcis to other linear combination.s.' The application of
principal components analysis to the original data set-is analagous to looking for a linear
combination for which the variogram is most int;opmativct Note that such linear combinations do not
in_ general provide sufficient information fof modeling nqn-syr.nr{?étric Cross variogr_a.ms Or Cross
covariances. )

The lea;t squares approximatibn of the sample variogram matrix function by an LCM
introduced by Goulard and Voliz (1992) is analagous to near simultaneous diagonalization of the’
variogram matrix function.

While the LCM provides for an easy check on the positive definiteness condition for fhe
variogram matrix function, the LCM should in general be considered only as an approximation to
the "true" mo’del, an approximation that is severely restricted by the implicit diagonaliiability
condition and the imp.licit symmetry condition.
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