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ABSTRACT

It is well-known that kriging and interpolation by splines are equivalent. Kriging is
based on a stochastic formulation whereas splines are formulated in a deterministic way. A third
presentation is given in terms of Radial Basis Functions. The connections between these three are
described in elementary terms and implications for the properties of the kriging estimatcr are
reviewed as they relate to interpolation by Radial Basis Functions. Results given by Micchelli are

used tc obtain new models for generalized covariances.

RESUME

7] ect bien connu krigeage et spline plaque mince sont presque la méme chose. Le krigeage
=3* Pasc sur un modéle de fonctlons aléatolres intrinseques alors que les splines sont
detvrminystes. Une trcisiéeme présentation du probléme est donnée par ce yul s'appelle en anglais
"Radia] Basis Functions". Avec ces nouvelles idées, 11 est facile d'expliquer les rapports entre
les tro,s. Mais on peut dire que celle de 1'estimateur de krigeage demeure la plus geénérale. Par
conseguent, 11 est plus commede d'explliquer les caractéristiques du krigeage gue les autres. Les

résultets de Micrhelll nous donnent de nouveaux modéles pour les covariances générallsées.
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A — INTRODUCTION

One of the distinguishing features of geostatistics is the use of the variogram {(or more
generally the generalized covariance) in place of the covariance even though the kriging estimator
is obtained by minimizing the estimation variance. In particular the use of the variogram
precludes the necesity of knowing a constant drift and the use of the generalized covariance only
requires knowing the order of the drift. Both the variogram and generalized covariances must
satisfy a generalized positivity condition as well as a growth condition. From the perspective of
a stochastic formulation the positivity condition 1s necessary to ensure that the estimation

variance 1s non-negative and hence that the minimized value 1s non-negative.

An important characteristic of the kriging estimator 1s that the weights, 1.e., the
kriging equations do not depend on the data but rather only on the variogram (or covariance
funtion) and on the sample pattern. This characteristic suggests that the estimation process is
not as truly stochastic as 1ts derivation would make 1t appear. It has been known for some time,
although not recognized in all of the literature, that Xkriging and thin plate splines are
essentially the same. Both the form of the spline as well as the coefficents are obtained by an
optimization step where as for the kriging estimator it 1s the kriging system (l1.e.,the weights in
the estimator) that 1s obtained by optimization. In one part of the.the literature the problem is
posed as simply one of interpolation and of sufficient conditions for Lhe eixtence/uniqueness of
the interpolator. While Xkriging, 1.e., the estimation process that 1s at the heart of
geostatistics, 1s not thought of as primarily an interpolator one finds that these various
approaches are linked by the key concept ofvpositive definiteness. An examination of thils concept
and how it relates to the various approaches provides additional insight into the relationship

between these different methods.

B — POSITIVE DEFINITENESS

1 - A REVIEW
The usual way to define positive definiteness for complex valued functions defined on
n-dimensional Euclidean space is the following:
G(x) 1s positive definite if

EEAiijG(xi-xj)»O for all complex numbers A,,....,A and all points xy,...., X, (1)
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As noted by Stewart (1976) interest 1in positive definite functions of a real variable dates from
at least 1923 in the work of Mathias but was in fact preceded by the work on positive definite

kernels by Mercer in 1309 who was interested in the solution of certain integral equations. The
connection with interpolation appeared early in the work of E. H. Moore in 193139 who defined
positive definite kernels by the reproducing property, this formulation is very nearly the same
as that of the dual form of simple kriging.

When fitting variograms it 1s not uncommon to fit a model to only a part of the sample
variogram. This aproach 1s related to the question of determining the existence of a positive
definite function on all of Euclidean space gilven one that 1s positive definite only in a
neighborhaood of the origin. For example, in one dimension consider the interval (-a,a), in this
case the extension problem was solved by Krein in 1940 but in higher dimensions the existence of

an extension depends 1in a critical way on the shape of the neighborhood.

In probability and statistics (and dgeostatistics) positive definite functions are
important because they are covariances or alternatively because they are the Fourler transforms of
probability distributions. In turn positive definite functions are intimately connected with
positive definite matrices. This connection is very imortant for continuous functions and will be
pursued further in the next section. Positive definite matrices have all kinds of nice properties,
for example they have square roots or they can be used to define a metric and all the elgenvalucs
are positive. Multivariate technigues such as factor analysis, principal components analysils aui
correspondance analysis all depend on the properties of positive definite matrices, 1n partiil+
the diagonalizability property. The definition given above i1n (1) 1is essentially that ~f =

positive definite matrix.

2 - GENERALIZATIONS

It was noticed by early workers in the field that one might replace the finlte sum

condition given in (1) by an integral instead, as 1n the following:
[IG(x-y)o(x)o(y)dxdy > O (2)

with the o in some sultable collection of functions. One must of course make some assumptions
about the integrability of G and ¢ to ensure the existence of the integral in (2). If G ic

continuous and the ® are in the collection of continuous functions that vanish outside of a
compact set then (1) and (2) are equivalent. However if the continuity restriction on G is deleted

then there are unbounded functions that satisfy (2) and hence they are not (ordinary)
covariances. Stewart {1976) provides a quick overview of the work of Cooper in characterizing
functions that satisfy (2) for & in various spaces of functions. The variogram and generalized
covariances arise not from using (2) in lieu of (1) but rather in following the idea suggested by
the use of (2) namely the weight vectors [A1,...,An] which are analogous to the functions @ must
satisfy some auxillary condition(s). In the light of Cooper's results it is not surxprising that

variograms 1in particular need not be bounded. Matheron(1973) (and elsewhere in earlier work)
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generalized the condition in (1) by imposing conditions on the weight vectors to ensure that the
variance of authorized linear combinations could be computed as though the random function had a

true covariance.

In geostatistics and in the context of interpolation integrability as in (2) is not a
problem since only finite sums are of concern. Likewise the conditions to be imposed on the weight
vector are not quite 1n the nature of a growth condition but are certainly analogous. In the
development of the theory of intrinsic random functions polynomials play a central role since they
are translation invariant and this was necessary to obtain the stationarity of the authorized
linear combination and this results in the familiar universality conditions. As will be seen later
in the context of interpolation from a deterministic perspective it 1s the linear independence of

the polynomials that is important. A general formulation might be as follows:

Definition 1

Let G(x) be defined (and real valued) at each point of a subset A of Euclidean m-space. Let
K= {ko(x),....,kp(x)} be a collection of functions defined at each point of A and linearly
independent on A. Then G 1s said to be positive definite on A with respect to the class K

1f

X[AiAjG(xi-xj) » 0 (3)
for all points Xyooooo Xy in A and for all welght vectors [A1, ..... ,An] satisfying
[Aikj(xi) =0 ; 3=0,....,p (4)

Note that symmetry 1s a consequence of (3). Of course if K were ﬂr_1(Rm) the space of polynomials
in m variables, of degree less than or equal to r-1, A were Euclidean m-space and G were assumed
continuous then this would be the definition of conditionally positive definite as given 1in
Matheron(1973). Two other observations are in order, first there is no explicit condition on the
growth of G (continuous variograms are dominated by a guadratic) and secondly as in the special
case given by Matheron such functions would be unique only upto a term for which (3) 1is

identically zero.

We digress briefly to give an important special case, in the following A 1is Euclidean
m-space and X consists only of the one function which 1s identically 1. G 1is said to be

conditionally positive definite (order zero) if
ZZEiEj[G(xi-xj)-G(xi)-G(xj)]20 (3")

for all x < Xy in A and all weight vectors [E1,...,En]. As was shown by Johansen(1966) this

gree
condition is equivalent to (3) with the specified A and K. The latter is of course the familiar

condition for (the negative of) a variogranm.
Note that if A is taken to be a finite set,for example the set of sample locations, then the

class of postive definite functions is much larger. This is essentially the idea put forward by

Dunn (1983) although not in the guise of a new definition. In particular for a regular grid the
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sample variogram will satisfy the positive definiteness condition. As noted in Myers (1984) (and
reply by Dunn (1984)) this is not sufficient for kriging in any practical sense. Without the use

of a valid theoretical model one would still be unable to evaluate the terms on the right hand
side of the kriging equations. In order to see whether Lliis uwuric general definition of positive
definiteness 1s of any practical use 1t will be useful to recall some known results about
representation theorems and tests for positive definiteness as well as to examine the class of

positive definite functions under the various choices:of K.

3 - REPRESENTATION THEOREMS AND SUFFICIENT CONDITIONS

Although this paper is not primarily concerned with either of these topics 1t 1s useful
to review known (and perhaps not so well-known) results, for a more complete discussion an
excellent summary 1s found 1in Stewart (1976). The best-known representation theorem is the form
given by Bochner, that 1s, continuous positive definite functions vanishing at the origiﬁ are
Fourier Transforms. A version of this theorem was given by Mathias (see Stewart (1976)) and it has
been extended to more general contexts such as locally compact Abelian groups and operator
algebras. Stewart has given such an extension for the generalization of positive definiteness
given by Cooper. Matheron (1973) obtained a representation therorem for generalized covariances
which 1ncorporates the Bochner theorem as a special case. All of these representations are given
tn integral form, hence to determine whether a particular function 1s positive definite would in
general require solving an integral equation or inverting a Fourier transform. The condition given
in (1) {(or more generally as in (3)) is difficult to verafy in practice since the condition must
be satisfied for all points in A and all weight vectors satisfying the auxillary conditicns. In
practice each function must be tested by a method or approach that 1s special for that function,

this 15 aptly illustrated in Armstrong and Diamond(1984)

We note three results that are of practical use in testing for positive definiteness (in
addition to those demonstrated by Armstrong and Diamond).The first 15 not a representation theorem
in the sense indicated above whereas the second 1s a consequence of the general Bochner

representation theorem. The third provides for easy construction of positive definite functions.

a. It was shown by Johansen (1966) that Conditional positive definiteness of G (see
equation (3') above) is equivalent to the positive definiteness of exp(aF) ( a > 0 ) in the sense
of (1). This means that variograms can be obtained as the logarithms of covariances. One note of
caution, G(t):t2 is conditionally positive definite on the real line but does not satisfy the
growth condition for a variogram. More generally this relationship relates conditionally positive

definite functions to the logarithms of infinitely divisible characteristic functions.

b. The second résult is given by Micchelli(1986) and its presentation requires additional

notation and terminology;

G(t) defined on {0,w) is completely monotonic 1f G 1s infinitely differentiable and 1if

-116 (£)50 for 1=1,2,.... and all t.
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Let iPK(Rm) be the class of positive definite functions (satisfying condition (3),(4))

. ) . N
where A is Euclidean m-space and K is N__,(g™). Jy the intersection of these classes for m=1,....

Theorem (Micchelli)

(r)

F is in iPK if G(t)=F(Jt) 1is continuous on [0,=) and -n¥c is completely monotonic

on (0,=).

The proof of this theorem uses a result due to Bernstein on the representation of
completely monotonic functions as Laplace transforms.
Micchelli gives several other extensions of this theorem but we will simply give some examples of

its application.

Cc. The third result is found in Powell (1985) and is easily proven directly. Let F(t) be
given by

F(t) = fexp(-ut®)y(u)du (5)

where y(u) is a non-negative function such that the integral in (5) is finite and for which there

exist O<a<b such that
[y (u)du >0

then F is positive definite. Alternatively suppose that F is differentiable and that F' is given
by

F'(t) =tfexp(-ut2)w(u)du (6)

and ¢ satisfies the same conditions as above then F is conditionally positive definite.

4 - SOME PROPERTIES

The original definition of positive definiteness given by Mathias in 1923 included a
symmetry condition, but as was noted by Riesz the symmetry is a consequence of (1). More generally
for positive definiteness in the sense of (3) symmetry is a consequence if the function vanishes
at the origin. If the constant function 1is included in K then this restriction imposes no new
conditions.

It is well-known that the classes of functions positive definite in the sense of (1) (or
more generally in sense of (3)) are closed under positive linear combinations which justifies the
use of nested models. The class of functions positive definite in the sense of (1) is also closed
under multiplication and with respect to pointwise limits. Moreover if the functions are
continuous then pointwise convergence is equivalent to uniform convergence on compact sets (this

result is valid even in the context of locally compact Abelian groups). The closure under
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multiplication does not extend to conditionally positive definite functions (i.e., variograms) and
certainly not to generalized covariances. The closure under point-wise limits 1s easlily extended

to positive definiteness in the sense of (3) since the function 1s considered at only a finite
number of points at any one time hence 1t follows directly from the definitions of positive
definiteness and point-wise convergence. The latter is of interest in view of the results of
Armstrong and Diamond (1984), Mvers (1985) and Mvers (1986) on the continuity of the kriging
estimator with respect to the variogram.

Let K2 > K, he two sets of linearly independent functions then the class of positive
definite functions (in the sense of Definition 1) with respect to K1 and A 1is contained in the

class positive definite with respect to K, and A. Likewlse if A, > B, are two sets in R” then the

2
class of functions positive definite with respect to A1 and ¥ 15 contained in the class positive

definite with respect to A, and K.

2
The class of positive definite functions it also clesed with respect to convolution in a
certaln sense. For the case of conditicrnally pesitive definite functions (Eq. 3') the result is

given 1n Johansen but 1t 1s easilly seen to be valid for Definition 1 as well:

Lemma (Johansen) lLet g be real, continucus, symmetric and conditionally positive
definite with respect to & and K. Further let T be a finite subset such that u-s+t is in A for all

uin A, s and t 1in T. For any function k defined on T form

o(u} = [L k(s)g(u-s+t)k(t} (7)
then ¢ 1g continucus, symmetric and positive definite.

Covariances must he bounded, varicgrams must grow slower than a quadratic and in general
the growth condition is (elated tu the presence or absence of drift (Theorem 2.2, Matheron
(1973)). It may not be so obvious that positive definiteness and the growth condition are separate
properticse bul an example easily illustiates this; t® ., 0 < ¢ ¢ 7 satisfies both the growth

condition and produces a conditionally positive definite function. The latter condition 1is

satisfied even for a = 2 but the growth condition 1s violated.

5 - EXAMPLES

In practice variograms are modelled as positive linear combinations of valid models such
as the spherical, power, exponential, gaussian, logarithmic and cubic. For generalized covariances
the choice is usually limited to polynomial models. It could be useful then to expand the list of
such models. As an application of Micchelli's theorem we find that

G(t)= 1/[t+c]u , ¢>0 and a>0 (8)

is completely monotonic. Furthermore
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2yI-® =30 and 0¢ a ¢ 1 (9)
F(t) = -(c + t2)T154(c + t2), c>0 (10}

o A . . .
are 1n JK' For the case of c¢=0, k=1 (10) becomes the familiar "spline term" in generalized
covariances. In the case of a=1/2, c=1 (9) gilves Hardy's multiquadratic function (see Hardy
(1971)).

It should be noted that in the case of (8),(9), F(0) is not zero and hence to obtaln

variograms in the usual sense we must consider F(O)-F(t).

Let g be a spherical varicgram with range a and T =BL a/2, a], after applying Johansen's

lemma we find that ¢ is not spherical, has range 2a and incorporates second degree terms.

C - INTERPOLATION AND DUALITY

1 - DUAL FORM OF KRIGING

If i1nstead cf writing the punctual Kriging estimator in the usual form

*

) = . . ‘
A (XO, [AlZ(xl) (11)
where the weight vector satisfles the usual Kriging equations

Ekix(xi-xj) + Eulkl(xj) = 1(xo-xj)
EAikl(xi) = kl(xo); 1=0,...p , 3=1,...n

or in the simpler matrix form

0 (12)

*
Z (xo) is written in the dual form

*
2 (%) = Ebix(xo-xi) + Ealkl(xo) (13)
then the vectors aT = [ao,...ap], bT = {b1,...bn] are obtained from the system
KFb—’Z
FT 0 a 0 (14)
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The coefficient matrices in {(12) and (14) are the same and a unique solution 1s obtained if that
matrix 1s invertible. It will be seen that invertibility 1s a consequence of positive

definiteness. As is shown 1n Myers (1986) the general cokriging estimator may be written in dual
form in a completely analogous way. In obtaining the system (11) the variance of the error of
estimation 1is minimized and exactness is a (happy) by-product of that optimization. In contrast

thin plate splines are obtained by an optimization eonditioned on the exactness.

2 — RADIAL BASIS FUNCTIONS

In the context of numerical approximation the following problem has received considerable

attention:

Given an unknown function 2(x) , X in some region A find an approximating function Z2*({x)
which coincides with 2(x) at a finite number of specified locations. The approximating function
might be subject to some additional conditions such as differentiability or the minimization of

some loss function.

One approach 1s to assume that the aproximating function 1s a linear combination of known

basis functions and in particular to assume that the approximating function 1is of the furm
2" b
(x) = Ib.g(x,x,) (15)
or more generally
7’ Ib
(x) = (9(x%5) 4 Eajkj(x) (15")

and the functions g(x,xi) were frequently taken to be of the form 7(dxi

(i.e., radius) between x and X, and hence the name Radial Basis functions as used 1n Michelli and

) where dxi 15 the distance

in Powell. The functions k ..,kp are usually polynomials. If the exactness condition is imposed,

.
i.e., Z‘(xi)= Z(xi), i=1,?..,n then the coefficents in (15) are obtained as the solution to a
system of linear equations. Hardy (1971) used a particular choice of g and called the interpolated
surface Multiquadratic. It was soon noted that for some choices of the Radial Basis function that
the coefficent matrix could be singular, at least for some data configurations, and interest arose
in finding sufficient conditions to insure the existence. Note that Inverse Distance Weighting is
an interpolation process of this kind. It was subsequently proposed that the estimator (15) be
replaced by one like (13) (i.e. like (15')) for two reasons; first the polynomial terms would
ensure that if Z(x) were a polynomial of that degree or less then the approximation would be an
exact fit, secondly it was argued that this would make the coefficient matrix invertible when it
might not be otherwise. Micchelli has defined positive definiteness in a manner almost like
equation (3) but restricts it to isotropic functions in the context of showing that the positive
definiteness is sufficent to ensure the invertibility of the coefficent matrix in (14).

260




3 - A SUFFICIENT CONDITION

Although the following result is not completely new (it is given in a special form by
Micchelli and by Powell, it also apears as consequence of the derivation of the BLUE in Matheron
(1973)) the more general form is of interest both because of the result and because of the

simplicity of the proof.

Theorem
Let G be positive definite in the sence of (3) then for any choice of Kyoooo Xy in A the
coefficent matrix in (14) 1s invertible and hence C may be used with an estimator/interpolator of

the form (13) to interpolate 2.

Suppose that the matrix were not invertible for some choice of the points then there is a

non-zero vector [VT WT] such that

En
ool

Then KV + FW =0 and F'V = 0 , the latter being condition (4) in the definition of positive

(16)

P0G
I i
Lod

definiteness. Now note that

K Fl|lv ] = vy + vTEw + wTETv = vTky

F O||W (17
|
but we see that (16) implies that VTKV = 0. In turn this implies that V= 0 and finally W = O

because the functions in K are lineraly independent.

Note that 1. an estimator/interpolator is obtained that is exactly the same as a kriging
estimator (but written in dual form) and ii. no probabilistic or smoothness conditions have been
imposed. Moreover the interpolating function is non-unique in the sense that any function positive
definite in the sense of Definition 1 will do. In the derivation of the kriging estimator there is
a presumption that there is a unique generalized covariance (unique up to certain additive terms
which do not effect the estimator) and hence one must search for at least an approximation to that
unknown model. From the perspective of splines the non-uniqueness is removed by imposing certain
smoothness conditions. In the literature on Radial Basis Functions there seems to be litle

emphasis on the question of which Radial Basis Function to use or how it is selected.
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4 - MOVING AVERAGES

Of course it is well-known that in one sense the Kriging estimator is simply a weilghted
average of the data and 1f a non-unique neighborhood is used then it is in fact a moving average.
The key difference 1s in how the weights are assigned. This representation as a moving average
appears in a different light if the kriging estimator 1s written in the dual form. Consider an
interpolator in the form (15') with particular choices of the function g. If g 1s a covariance

corresponding to a pure nugget then
JE(y)g(x,y)dy = cf(x) (18)

where ¢ is the magnitude of the nugget. That is, g is the Dirac Delta function. g is an averaging
function but its window consists of only one point. In contrast a covariance corresponding to a
spherical variogram would have an averaging window of width two times the range. Exponential
models have an effective window width that is finite as does the Gaussian but power models and
generalized covariances in general have infinite window widths. In view of Bochner's theorem it is
not surprising that the averaging functions are essentially probability densities. This
formulation also appears in estimators of distribution functions. The empirical distribution
corresponds to a nugget effect model but a number of authors have used averaging functions (i.e.,
probability densities to obtain improved distribution function estimators. Indicator Kriging is an
example of such an approach although not always recognized as such. The choice of the generalized
covarlance (e.g., Radlal Basis Function) then is characterized by the parameters of the window of

the averaging function, its width and shape.

5 - USES AND QUESTIONS

While the typical application has been thought of as one in which the function is unknown
and hence the optimal choice of the basis function 1s also unknown, Powell has proposed the use of
such interpolators as computational aid for minimization (or maximization) of a function when
analytical methods are not available or readily applicable. That is, one finds (approximations to)
the critical point(s) on the given surface by finding the critical point(s) on the interpolated
surface. This potential application suggests some new perspectives on the question of variogram
modeliing, in particular what are adequate and appropriate criteria for optimal modelling of the

variogram (or generalized covariance)?

In the context of the derivation of the kriging estimator the question of the estimation
of the variogram does not even appear, there is a presumption of its existence and the
non-uniqueness of the generalized covariance due to additive polynomials does not affect the
kriging estimator. As a consequence the emphasis has been on statistical approaches. In contrast
the spline is obtained by imposing a smoothness condition on the interpolated surface but except
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at the data points no conditilons are imposed on the quality of approximation. Perhaps the ultimate
solution lies 1n a new formulation that incorporates both the approach suggested by the derivation

of the spline as well as the minimum variance approach utilized 1in the derivation of the kriging

- estimator.
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