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ABSTRACT 

I t  i s  well-known t h a t  k r i g i n g  and i n t e r p o l a t i o n  by s p l i n e s  a r e  e q u i v a l e n t .  Kr ig ing  i s  

based on a  s t o c h a s t i c  f o r m u l a t i o n  whereas  s p l i n e s  a r e  f o r m u l a t e d  I n  a  d e t e r m i n i s t i c  way. A t h i r d  

p r e s e n t a t i o n  i s  g i v e n  i n  terms of Rad ia l  P a s i s  F u n c t i o n s .  The c n n n e c t l o n s  between t h e s e  t h r e e  a r e  

d e s c r i b e d  i n  e l emen ta ry  terms and implications f o r  t h e  properties of t h e  k r i g i n g  e s t i m a t c r  a r e  

r e v i c w ~ d  a s  t h e y  r e l a t e  t o  i n t e r p o l d t i o n  by R a d i a l  B d ~ 1 5   function^. R e s u l t s  g i v e n  by M i c c h e l l i  d r e  

used t c  o b t a i n  new models f o r  g e n e r a l i z e d  c o v a r i a n c e s .  

RESUME 

T I  r , r t  b l e ~ ;  connu k r i g e a g e  e t  s p l l n e  p l aque  rnlnce son t  p r e s q u t  l a  meme r h n s e .  Le k r i g e a g e  

-.=+ ha-? c u r  tin  model^ d r  f o n c t l o n s  a l e a t o l r e s  i n t r l n s e q u e s  d l n r s  que l e s  s p l i n e s  s o n t  

t i i t . , r n l n : s ~ r s .  1.lz.r- t r c l s l e m e  p r k s e n t a t l n n  du probleme e s t  donnee pa r  c e  q ~ 1 1  s ' a p p e l l c  en a n g l a i j  

"Ra(i1;lI E;as?s Fi inc . t ions" .  Avec ces  n o u v ? l l c s  ~ d C e s ,  i! [:st l d c l l c  d ' e x p l l q u e r  it's r a p p o r t s  e n t r r  

12:: : rP . , s  Mals on Feu: d l r c  q u c  cc , l le  d e  l ' e s t i ~ n a t c u r  J e  k r l g e a y e  derneure l a  p l u s  y t ' n e r d l e .  Pa r  

,:~.;nsec;lic>nt, 11 r s t  p!t:r> corncode d ' e x p l i q u t - r  i e s  c a r a c t e r i s t i q u c s  flu k r i y e a g e  que l c s  a u t r e s .  Les 

rci-n1t.-!s d e  i?lc.:.hi-lil n ~ l u s  d:jnr,ent de no~ iceaux  n o d e l c s   our !cs  i i l va r l ancc : ;  g e n e r a l l s i e s .  



A - INTRODUCTION 

One of the distinguishing features of geostatistics is the use of the variogram (or more 

generally the generalized covariance) in place of the covariance even though the kriging estimator 

is obtalned by minimizing the estimation variance. In particular the use of the variogram 

precludes the necesity of knowing a constant drift and the use of the generalized covariance only 

requlres knowing the order of the drift. Both the variogram and generalized covariance5 must 

satisfy a generalized positivity condition as well as a growth condition. From the perspective of 

a stochastic formulation the positivity condition is necessary to ensure that the estimation 

variance 1s non-negative and hence that the minimized value is non-negative. 

An important characteristic of the kriging estimator 1s that the weights, i.e., the 

kriging equations do not depend on the data but rather only on the variogram (or covariance 

funtion) and on the sample pattern. This characteristic suggests that the estimation process is 

not as truly stochastic as its derivation would make it appear. It has been known for some time, 

although not recognized in all of the literature, that kriging and thin plate splines are 

essentially the same. Both the form of the spline as well as the coefficents are obtained by an 

optimization step where as for the kriging estimator it is the kriging system (i.e.,the weights in 

the estimator) that is obtained by optimization. In one part of the.the literature the problem is 

posed as simply one of interpolation and of sufficient conditions for the eixtence/uniqueness of 

the interpolator. While kriging, i.e., the estimation process that is at the heart of 

geostatistics, is not thought of as primarily an interpolator one finds that these various 

approaches are linked by the key concept of positive definiteness. An examination of this concept 

and how it relates to the various approaches provides additional insight into the relationship 

between these different methods. 

B - POSITIVE DEFINITENESS 

1 - A REVIEW 

The usual way to define positive definiteness for complex valued functions defined on 

n-dimensional Euclidean space is the following: 

G(x) is positive definite if 

1 b . X  .G(xi-x.) ),O for all complex numbers A,, . . . . ,An and all points x,, . . . . ,xn 
1 3  1 



A S  no ted  hy S t e w a r t  ( 1 9 7 6 )  l n t e r e s t  I n  p o s l t l v e  d e f l n l t e  functions of a  r e a l  v a r l a t l e  d a t e s  from 
a t  l e a s t  1923 I n  t h e  work of Mathlds  hu t  was I n  f a c t  p receded  by t h e  work on p o s l t l v e  d e f l n l t e  

k e r n e l s  hy Mercer I n  1909 who was interested I n  t h e  s o l u t l o n  of c e r t a l n  I n t e g r a l  equations The 

c o n n e c t i o n  w i t h  interpolation appea red  e a r l y  i n  t h e  work of E .  H. Moore i n  1919 who d e f i n e d  

p c ) s l t i v e  d e f i n i t e  k e r n e l s  hy t h e  r e p r o d u c i n g  p r o p e r t y ,  t h i s  f o r m u l a t i o n  i s  v e r y  n e a r l y  t h e  same 

a s  t h a t  o f  t h e  d u a l  form of s i m p l e  k r i g i n g .  

When f i t t i n g  va r iog rams  i t  i s  n o t  uncommon t o  f i t  a model t o  o n l y  a  p a r t  of t h e  sample  

v a r i o g r a m .  T h i s  a p r o a c h  i s  r e l a t e d  t o  t h e  question of d e t e r m i n i n g  the. e x i s t e n c e  of a  p o s i t i v e  

d e f i n i t e  f u n c t i o n  on a l l  of Euclidean s p a c e  g i v e n  one  t h a t  i s  p o s i t l v e  d e f i n i t e  o n l y  i n  a  

ne ighborhood  of t h e  o r i g l n .  For  e x i ~ m p l e ,  i n  one dimension c o n s i d e r  t h e  i n t e r v a l  ( - a , a ) ,  i n  t h l s  

c a s e  t h e  e x t e n s i o n  problem was s c ~ l v e d  hy K r e i n  i n  1940 b u t  I n  h i g h e r  d imens ions  t h e  e x i s t e n c e  of 

a n  e x t e n s i o n  depends  i n  a  c r i t l c a l  way on t h e  s h n p r  nf t h e  ne ighborhood .  

I n  p r o b a h ~ l i t y  and s t a t i e t l c s  (2nd g e o s t a t i s t l c s l  p o s l t l v e  d e f l n i t e  fur~ct l : rns  a r e  

i n lpo r t an t  because  t h e y  d r e  c o v n r l a n c e s  o r  ~ l t e r n a t l v e l y  because  t h e y  a r e  t h e  F o u r l e r  t r a n s f o r m s  cif 

p r o h a h l l l t y  d i s t r i b u t i o n s .  I n  t u r n  p o s i t i v e  d e f i n i t e  funct ic lns  a r e  i n t i m a t e l y  c o n n e c t ~ d  w l ~ i -  

p o s i t l v e  d e f i n l t e  m a t r i c e s .  T h i s  connec- t ion  i s  v e r y  i m o r t a n t  f o r  cc ln t inuous  f u n c t i o n s  and w i l l  t ,c 

pur sued  f u r t h e r  i n  t h e  n e x t  ~ e c t i o n .  P o s i t l v e  d e f l n i t e  m a t r i c e s  have a l l  k i n d s  o f  n i c e  p r l ; p e r t l e . i ,  

f o r  example t h e y  have  s q u a r e  r o o t s  o r  t h e y  can be used t o  d e f i n e  a m e t r i c  and a l l  t h e  t . l<r-nval :~: . :  

a r e  p o s i t i v e .  M u l t l v a r l a t e  t e c h n i q u e s  sucti a s  f a c t o r  a n a l y s i s ,  p r i n c i p a l  components a n a l p - i s  - I : . >  

c o r r e s p o n d a n c e  a n a l y s l s  a l l  d e p ~ n d  on t h e  p r c : p e r t i e s  of p i l s l t i v c  d e f i n i t e  n a t r l c e s ,  i n  ; . ; ; r t : , - ~ l : .  

t.he d l a q o n a l i z a t l l i t j .  p r o p e r f - y .  T h e  definition g l v e n  ahove i n  ( 1 )  i s  e s s e n t i a l l y  t h d t  - , f  i 

p o s i t i v e  definite r n a t r l x .  

2 - GENERALIZATIONS 

I t  was n o t i c e d  by e a r l y  worke r s  i r ,  t h e  f i e l d  t h a t  one mlght  r e p l a c e  the. f - n l t e  sl!m 

c o n d i t i o n  g i v e n  i n  ( 1 )  by an  i n t e g r a l  ~ n s f : e a d ,  a s  I n  t h e  f o l l o w i n g :  

w l t h  t h e  0 i n  some s u i t a h l c  c o l l e c t i o n  of f u n c t i o n s .  One must o f  c o u r s e  make sclme assumpti:irls 

a b o u t  t h e  i n t e g r a b i l i t y  of C and @ t o  e n s u r e  t h e  e x i s t e n c e  of t h e  i n t e g r a l  i n  ( 2 ) .  I f  r; I :  

c o n t i n u o u s  and t h e  m a r e  i n  t h e  c o l l e c t i o n  of c o n t i n u o u s  f u n c t i o n s  t h a t  v a n i s h  o u t s i d e  of a 
compact s e t  t h e n  ( 1 )  and ( 2 )  a r e  e q u i v a l e n t .  However i f  t h e  c o n t i n u i t y  r e s t r i c t i o n  on G i s  d e l e t e d  

t h e n  t h e r e  a r e  unbounded f u n c t i o n s  t h a t  s a t i s f y  ( 2 )  and hence  t h e y  a r e  n o t  ( o r d i n a r y )  

c o v a r i a n c e s .  S t e w a r t  ( 1 9 7 6 )  p r o v i d e s  a  q u i c k  ove rv i ew o f  t h e  work of Cooper i n  c h a r a c t e r i z i n g  

f u n c t i o n s  t h a t  s a t i s f y  ' ( 2 )  f o r  @ i n  v a r i o u s  s p a c e s  o f  f u n c t i o n s .  The va r log ram and g c r ~ e r a l i z e d  

c o v a r i a n c e s  a r i s e  n o t  f rom u s i n g  ( 2 )  i n  l i e u  o f  (11  b u t  r a t h e r  i n  f o l l o w i n g  t h e  i d e a  s u g g e s t e d  by 

t h e  u s e  o f  ( 2 )  namely t h e  w e i g h t  v e c t o r s  [ A l , .  . . ,An]  which a r e  a n a l o g o u s  t o  t h e  f u n c t i o n s  @ must 

s a t i s f y  some auxiliary c o n d i t i o n ( s ) .  I n  t h e  l i g h t  of C o o p e r ' s  r e s u l t s  i t  i s  n o t  s u r p r i s i n g  t h a t  

v a r i v g r a m s  i n  p a r t i c u l a r  need n o t  be  bounded.  M a t h e r o n ( l 9 7 3 )  ( and  e l s e w h e r e  i n  e a r l i e r  work)  



generalized the condition in (1) by imposing conditions on the weight vectors to ensure that the 
variance of authorized linear combinations could be computed as though the random function had a 

true covariance. 

In geostatistics and in the context of interpolation integrability as in (2) is not a 

problem since only finite sums are of concern. Likewise the conditions to be imposed on the weight 

vector are not qulte in the nature of a growth condition but are certainly analogous. In the 

development of the theory of intrinsic random functions polynomials play a central role since they 

are translation invariant and this was necessary to obtain the stationarity of the authorized 

linear combination and this results in the familiar universality conditions. As will be seen later 

in the context of interpolation from a deterministic perspective it is the linear independence of 

the polynomials that is important. A general formulation might be as follows: 

Definition 1 

Let G(x) be defined (and real valued) at each point of a subset A of Euclidean m-space. Let 

ko(x), . . . . ,kp(x)) he a collection of functions defined at each point of A and liniarly 

independent on A .  Then G is said to be positive deflnite on A with respect to the class K 

if 

E A , A ~ G ( X ~ - X . )  I h 0 (3 1 

for all points x,, . . . , x n  in A and for all weight vectors [A l , . . . . . , A n ]  satisfying 

Note that symmetry is a consequence of (3). Of course if K were fl ( R ~ )  the space of polynomials r-1 
in m variables, of degree less than or equal to r-1, A were Euclidean m-space and G were assumed 

continuous then thls would be the definition of conditionally positive definite as given in 

Matheron(l973). Two other observations are in order, first there is no explicit condition on the 

growth of G (continuous variograms are dominated by a quadratic) and secondly as in the special 

case given by Matheron such functions would be unique only upto a term for which (3) is 

identically zero. 

We digress briefly to give an important special case, in the following A is Euclidean 

m-space and K consists only of the one function which is identically 1. G is said to be 

conditionally positive definite (order zero) if 

for all x1, . . . . ,xn in A and all weight vectors [El,. . . ,En]. As was shown by Johansen!l966) this 

condition is equivalent to (3) with the specified A and K. The latter is of course the familiar 
condition for (the negatlve of) a variogram. 

Note that if A is taken to be a finite set,for example the set of sample locations, then the 

class of postive definite functions is much larger. This is essentially the idea put forward by 

Dunn (1983) although not in the guise of a new definition. In particular for a regular grid the 



sample variogram w i l l  s a t i s f y  t h e  p o s l t i v e  d e f i n i t e n e s s  c o n d i t i o n .  As noted i n  Myers (1984) (and 
r e p l y  by Dunn ( 1 9 8 4 ) )  t h i s  i s  no t  s u f f i c i e n t  l o r  k r i g i n g  i n  any p r a c t i c a l  sense .  Without t h e  use 

of a  v a l i d  t h e o r e t i c a l  model one would s t i l l  be unable t o  e v a l u a t e  t h e  terms on t h e  r i g h t  hand 

s i d e  of t h e  k r i g i n g  e q u a t i o n s .  In o rder  t o  s e e  whether L I I I L  U ~ U L C  genera l  d e f i n i t i o n  of p o s i t i v e  

d e f i n i t e n e s s  i s  of any p r a c t i c a l  use i t  w i l l  be usefu l  t o  r e c a l l  some known r e s u l t s  about 

r e p r e s e n t a t i o n  theorems and t e s t s  f o r  p o s i t i v e  d e f i n i t e n e s s  a s  well  a s  t o  examine t h e  c l a s s  of 

p o s i t i v e  d e f i n i t e  f u n c t i o n s  under t h e  var ious  choice.s30f K .  

3 - REPRESENTATION THEOREMS AND SUFFICIENT CONDITIONS 

Although t h i s  paper i s  not p r i m a r i l y  concerned with e i t h e r  of t h e s e  t o p i c s  it i s  u s e f u l  

t o  review known (and perhaps not so  well-known1 r e s u l t s ,  f o r  a  more complete d i s c u s s i o n  an 

e x c e l l e n t  summary 1 5  found I n  Stewart ( 1 9 7 6 ) .  The best-known represent .a t ion theorem i s  t h e  form 

glrren t:y Bochner, t h a t  i s ,  cont inuous p o s l t i v e  d e f i n l t e  f u n c t i o n s  vanishing a t  t h e  o r i g l n  a r e  

Four le r  Tranzformz. A ve rs ion  of t h i s  theorem was given by Mathias ( s e e  Stewart  ( 1 9 7 6 ) )  and i t  ha3 

1jee11 extended t o  more yoneral  c o n t e x t s  such a s  l o c a l l y  compact Abelian groups and o p e r a t o r  

a l g e b r a s .  Stewart  has glven such an ex tens ion  f o r  t h e  generalization of p o s i t i v e  definiteness 

given hy Cooper. Matheron ( 1 P 7 3 )  obta ined  a  r e p r e s e n t a t i o n  therorem f o r  genera l ized  covar lances  

whlch Incorpora tes  t h e  Bochner theorem a s  a s p e c i a l  c a s e .  A l l  o l  these  r e p r e s e n t d t i o n s  a r e  given 

in i n t e g r d l  form, hence t o  determine whether ;I p a r t i c u l a r  f u n c t ~ o n  it; p o s i t l v e  d e f l n i t e  would In 

generd! r e q u i r e  solving an i n t e g r a l  equa t ion  or i n v e r t i n g  a  Fourler  t rans form.  The condi t ion  glven 

i n  ( 1 )  ( o r  more g e n e r a l l y  a s  i n  ( 3 ) )  i s  difficult t o  v e r l f y  In p r a c t j c e  s i n c e  t h e  condition must 

be s a t l s f l e d  f ~ r  a l l  p o i n t s  In  A and a l l  weight v e c t o r s  s a t i s f y i n g  t h e  auxiliary c o n d l t l o n s .  In  

p r a c t i c e  each f u n c t i o n  must be t e s t e d  by a  method o r  approach t h d t  1 s  spec141 f o r  t h a t  f u n c t i o n ,  

t h i s  i s  a p t l y  i l l u s t r a t e d  i n  Armstrong and Diamond(1984) 

We n o t e  t h r e e  r e s u l t s  t h a t  a r e  of p r a c t i c a l  use i n  t e s t l n q  f o r  p o s i t i v e  d e f i n i t e n e s s  ( i n  

a d d l t i o n  t o  t h o s e  demor~strated by Armstrong dnd Diamond1.The f l r s t  i s  no t  a  r e p r e s e n t a t i o n  theorem 

i n  t h e  s e n s e  i n d i c a t e d  above whereas t h e  second i s  a  cclnsequence of t h e  genera l  Aochner 

r e p r e s e n t a t i o n  theorem. The t h i r d  provides f o r  easy construction o f  posl t lvr l  d e f i n i t e  f u n c t i o n s .  

a .  I t  was shown by Johansen (1966) t h a t  Condi t iona l  p o s l t i v e  d e f i n i t e n e s s  of G ( s e e  

equa t ion  ( 3 ' )  above)  i s  e q u i v a l e n t  t o  t h e  p o s i t i v e  d e f i n i t e n e s s  of e x p ( a F )  ( a ) 0  ) i n  t h e  sense  

of ( 1 ) .  This  means t h a t  variograms can be obtained a s  t h e  logar i thms  of covar iances .  One no te  of 

c a u t i o n ,  G ( t ) = t L  i s  c o n d i t i o n a l l y  p o s i t i v e  d e f i n i t e  on t h e  r e a l  l i n e  but  does not  s a t i s f y  t h e  

growth c o n d i t i o n  f o r  a  var iogram. More g e n e r a l l y  t h i s  r e l a t i o n s h i p  r e l a t e s  c o n d i t i o n a l l y  p o s i t i v e  

d e f i n i t e  f u n c t i o n s  t o  t h e  logar i thms  of i n f i n i t e l y  d i v i s i b l e  c l ~ a r a o t e r i s t i c  f u n c t i o n s .  

b .  The second r e s u l t  i s  given by Micche l l i  (1986) and i t s  p r e s e n t a t i o n  r e q u i r e s  a d d i t i o n a l  

n o t a t i o n  and terminology;  

G ( t )  de f ined  on ( 0 , ~ )  i s  completely monotonic i f  G i s  infinitely differentiable and i f  

- 1 ~ ) 0  f o r  1 = 1 , 2 ,  and a l l  t .  



Let c~K(Rml be the class of positive definite functions (satisfying condition (31, (4) ) 

where A is fuclidean m-space and is nr-l(~m) - '3K the intersection of these classes for m=l,. . . . 

Theorem (Micchelli) 

F is in pK if ~ ( t ) = ~ ( i  t) is continuous on [O,-1 and (-1)'~") is completely monotonic 

on (0,-). 

The proof of this theorem uses a result due to Bernstein on the representation of 

completely monotonic functions as Laplace transforms. 

Micchelli gives several other extensions of this theorem but we will simply give some examples of 

its application. 

c. The third result is found in Powell (1985) and is easily proven directly. Let F(t1 be 

given by 

where $(u) is a non-negative function such that the integral in ( 5 )  is finite and for which there 

exist Ota(b such that 

then F is positive definite. Alternatively suppose that F is differentiable and that F' is given 

by 

F' (t) =tjexp(-utL)$(u)du 

and $ satisfies the same conditions as above then F is conditionally positive definite 

4 - SOME PROPERTIES 

The original definition of positive definiteness given by Mathias in 1923 included a 

symmetry condition, but as was noted by Riesz the symmetry is a consequence of (1). More generally 

for positive definiteness in the sense of ( 3 )  symmetry is a consequence if the function vanishes 

at the origin. If the constant function is included in K then this restriction imposes no new 

conditions. 

It is well-known that the classes of functions positive definite in the sense of ( 1 1  (or 

more generally in sense of (3)) are closed under positive linear combinations which justifies the 

use of nested models. The class of functions positive definite in the sense of (1) is also closed 

u-der multiplication and with respect to pointwlse limits. Moreover if the functions are 

continuous then pointwise convergence is equivalent to unlform convergence on compact sets (this 

result is valid even in the context of locally compact Abelian groups). The closure under 



multiplication does not extend t o  condit icrnal ly p o s i t i v e  d e f i n i t e  f u n c t i o n s  ( i . e . ,  var iograms) and 
c e r t a i ~ i l y  not t o  generalized c o v a r l a n c e s .  The c l o s u r e  under po ln t -wise  l i m i t s  i s  e a s i l y  extended 

t o  p o s i t i v e  d e f i n i t e n e s s  In t h e  sense of ( 3 )  s l n c e  t h e  func t ion  i s  considered a t  only a  f i n i t e  

number of p o i n t s  a t  any one tlme hence l t  fol lows d i r e c t l y  from t h e  d e f i n i t i o n s  of p o s i t i v e  

d e f i n i t e n e s s  and po ln t -wis r  convergence. The l a t t e r  i s  of i n t e r e s t  i n  view of t h e  r e s u l t s  of 

Armstrong and Diamond (1934), Myers (1985) and :lyers (1986) on the continuity of the kriging 

estimator with respect to the variogram. 

Let K 2  3 K ,  he two s e t i  nf l i n e a r l y  independent func.ticrns then t h e  c l a s s  of p o s i t i v e  

d e f i n i t e  functions ( i n  t h c  sense  of D e f i n l t l o n  1 )  with respec t  t o  K 1  and A  i s  contained i n  t h e  

c l a s s  p o s i t i v e  d e f ~ n i t e  with r e s p e c t  t o  K 1  and A .  Likewlse i f  A 1  3 A 2  a r e  two s e t s  i n  R" then t h e  

c l a s s  of f u n c t i o n s  p o s i t i v e  d e f i n l t e  wlth r e s p e c t  tc; A 1  and K 1 s  contained i n  t h e  c l a s s  p o s i t i v e  

d e f l n i t e  wlth respet-t  t o  A  and K 
2 

The c l a s s  of k o s l t l v e  d e f l n l t i  f u n : . t ~ o n s  1: a l s o  c lcsed  wlth respect  t o  convolut ion i'n a 

c e r t a l n  s e n s e .  For t h e  case  of ccndl t lc!r .a l ly  p c s l t l v e  definite functiclns ( E q .  3 ' 1  t h e  resul t .  i s  

glven I n  Johansen but l t  1 s  e a s l l y  seen t o  be v a l i d  f o r  C ? f i n l t l o n  1  a s  ~ ~ 1 1 :  

Lemma ! Johansen)  I>et ; t ~ c  r e a l ,  cvnt:nuous, Fymnetrlc and c o n d l t i o n a l l y  p o s i t i v e  

d c f l n l t e  wltl! r p s p e c t  t!, A and K Further  l e t  T be a f l n l t e  sub:;et 1;11cIi t h ~ t  u - s t t  i s  i l l  A  f o r  a11 

u i n  A ,  s  and t  In T .  For any funct:on k dc f lncd  21.1 T f c  rm 

Ccivarlancc.~ mu:;? t.c tloundcd, varlr!grhms nlust grc,w slowrr  than a quadratic and i n  genera l  

t h e  growth condit1c)n L S  tc . l ;~ted t o  ? h c  p r r sence  o r  absence of d r i f t  !Theorem 2 . 2 ,  Matheron 

( 1 9 7 7 ) ) .  L L  may riot be so  ohvi13uz t l ~ i -  p o s i t l v e  d e f i n i t e n e s s  and t h e  growth condi t ion  a r e  s e p a r a t e  

propert ic : .  !rut. an cxirmpli eas~!).  lllu::t16tc.:. tli::.; t a  , 0 ( iy ( 2 s d t l s f i c ' s  both t h e  growth 

ccrndltion and produces a  c o n d l t i o n a l l y  p n s i t i v e  d e f l n i t e  function. The l a t t e r  condi t ion  i s  

s a t i s f i e d  even f(;r u = 2  but  t h e  growth c o n d l t ~ c ~ n  1 s  violated. 

5 - EXAMPLES 

In p r a c t i c e  variograms a r e  mcldclled a s  p o s i t i v e  l i n e a r  combinations of v a l i d  models such 

a s  t h e  s p h e r i c a l ,  power, e x p o n e n t i a l ,  g a u s s i a n ,  logar i thmic  and c u b i c .  For genera l ized  covar iances  

t h e  c h o i c e  i s  u s u a l l y  l i m i t e d  t o  polynomial models. I t  could be u s e f u l  then t o  expand t h e  l i s t  of 

such models. As an a p p l i c a t i o n  of M i c c h e l l i ' s  theorem we f i n d  t h a t  

G ( t ] =  l / [ t + c l a  , c)O and a)O (8 

i s  completely monotonic. Furthermore 



F(t)= (c + t 2)r-a , c)O and 0< a < 1 (9) 

are in . For the case of c=O, k=l (10) becomes the familiar "spline term' in generalized 

covarlances. In the case of a=1/2, c=l (9) gives Hardy's multiquadratic function (see Hardy 

It should be noted that In the case of ( a ) ,  (91, F(0) is not zero and hence to obtaln 

varlograms In the usual sense we must conslder F(0)-F(t). 

Let q be a spherlcal varlogram wlth range a and T =[o, a/2, a], after applylng Johansvn's 

lemma we flnd that @ 1s not spherlcal, has range 2a and incorporates second degree terms. 

C - INTERPOLA'TION AND DUALITY 

1 - DUAL FORM OF KRlGlNG 

If instead cf wr~tl~:g the punctual Kriging estimat.or in tlie usual form 

t 

Z ( x o l  = CAIZ(xl) 

whert the w e ~ g h t  vel:tor r-nt lsfles the usual Krlglng egudtlons 

LAi'(xi-xj) + Cvlkl(xj) = -,(x 0 -x.) j 

Lhikl(xi) = k 1 0  (x ) ;  1.0,. . .p , j.1,. . . n  

or in the simpler matrix form 

Zm(x ) is written in the dual form 0 

T then the vectors aT = [a0,. . .ap], b = [b,, . . .bn] are obtained from the system 



The coefficient matrices in (12) and (14) are the same and a unique solution is obtained if that 
matrix is invertible. It will be seen that invertibility is a consequence of positive 

definiteness. As is shown in Myers (1986) the general cokriging estimator may be written in dual 

form in a completely analogous way. In obtaining the system (11) the variance of the error of 

estimation is minimized and exactness is a (happy) by-product of that optimization. In contrast 

thin plate splines are obtained by an optimization cdnditioned on the exactness. 

2 - RADIAL BASIS FUNCTIONS 

In the context of numerical approximation the followinq problem has received considerable 

attention: 

Given an unknown function Z(x) , x in some region A flnd an approxrmating function Zi(x) 

which coincides with Z(x) at a finite number of specified locations. The approxlrnating function 

might be subject to some additional conditions such as differentiability or the minimization of 

some loss function. 

One approach is to assume that the aproximatlng function 1s a linear combination of known 

basis functions and in particular to assume that the approximating functlon is of the f~jrrn 

or more generally 

t 
Z (x) = tbig(x,xi) + ra.k. (x) 

3 3 
(15' 

and the functions g(x,xi) were frequently taken to be of the form r(dxi) where d . 1s the distance 
X1 

(i.e., radius) between x and x ,  and hence the name Radial Basis functions as used ln Michelli and 
1 

in Powell. The functions kg, . . . ,  k are usually polynomials. If the exactness condition is imposed, 
P 

i.e., Zi(xi)= Z(x.), i=l, . . . ,  n then the coefficents in (15) are obtained as the solution to a 
1 

system of linear equations. Hardy (1971) used a particular choice of g and called the interpolated 

surface Multiquadratic. It was soon noted that for some choices of the Radial Basis function that 

the coefficent matrix could be singular, at least for some data configurations, and interest arose 

in finding sufficient conditions to insure the existence. Note that Inverse Distance Weighting is 

an interpolation process of this kind. It was subsequently proposed that the estimator (15) be 

replaced by one like (13) (i.e. like (15')) for two reasons; first the polynomial terms would 

ensure that if Z(x) were a polynomial of that degree or less then the approximation would be an 

exact fit, secondly it was argued that this would make the coefficient matrix invertible when it 

might not be otherwise. Micchelli has defined positive definiteness in a manner almost like 

equation (3) but restricts it to isotropic functions in the context of showing that the positive 

definiteness is sufficent to ensure the invertibility of the coefficent matrix in (14). 



3 - A SUFFICIENT CONDITION 

Although the following result is not completely new (it is given in a special form by 

Micchelli and by Powell, it also apears as consequence of the derivation of the BLUE in Matheron 

( 1 9 7 3 ) )  the more general form is of interest both because of the result and because of the 

simplicity of the proof. 

Theorem 

Let G be positive definite in the sense of ( 3 )  then for any choice of x , ,  . , . .,xn in A the 

coefficent matrix In (14) 1s invertible and hence G may be used wlth an estimator/interpolator of 

the form ( 1 3 )  to interpolate 2 .  

Suppose that the matrlx were not invertible for some choice of the points then there is a 

non-zero vector [vT wT] such that 

T Then KV + FW =O and F V = 0 , the latter being condition (4) in the definition of posltive 

definiteness. Now note that 

T but we see that (16) implies that V KV = 0 .  In turn this implies that V= 0 and finally W = 0 

because the functions in K are lineraly independent. 

Note that i. an estimator/interpolator is obtained that is exactly the same as a kriging 

estimator (but written in dual form) and ii. no probabilistic or smoothness conditions have been 

imposed. Moreover the interpolating function is non-unique in the sense that any function positive 

definite in the sense of Definition 1 will do. In the derivation of the kriging estimator there is 

a presumption that there is a unique generalized covariance (unique up to certain additive terms 

which do not effect the estimator) and hence one must search for at least an approximation to that 

unknown model. From the perspective of splines the non-uniqueness is removed by imposing certain 

smoothness conditions. In the literature on Radial Basis Functions there seems to be litle 

emphasis on the question of which Radial Basis Function to use or how it is selected. 



4 - MOVING AVERAGES 

Of course it is well-known that in one sense the Kriging estimator is simply a weighted 

average of the data and if a non-unique neighborhood is used then it is in fact a moving average. 

The key difference is in how the weights are assigned. This representation as a movlng average 

appears in a different light if the kriging estimator is written in the dual form. Consider an 

interpolator in the form ( 1 5 ' )  with particular choices of the function g. If g is a covariance 

corresponding to a pure nugget then 

where c is the magnitude of the nugget. That is, g is the Dirac Delta function. g is an averaging 

functlon hut its window consists of only one point. In contrast a covariance corresponding to a 

spherical variogram would have an averaging window of width two times the range. Exponential 

models have an effective window width that is finite as does the Gaussian but power models and 

generalized covariances in general have infinite window wld'hs. In view of Bochner's theorem it is 

not surprising that the averaging functions are essentially probability densities. This 

formulatlcln also appears In estimators of distribution functions. The empirical distribution 

corresponds to a nugget effect model but a number of authors have used averaging functions (i.e., 

probability densities to obtain improved distribution function estimators. Indicator Kriqlnq is an 

example of such an approach although not always recognized as such. The choice of the generalized 

covariance (e.g., Radlal Basls Function) then 1s characterized by the parameters of the window of 

the averaging function, its width and shape. 

5 - USES AND QUESTIONS 

While the typical application has been thought of as one in which the function is unknown 

and hence the optimal choice of the basis function is also unknown, Powell has proposed the use of 

such interpolators as computational aid for minimization (or maximization) of a function when 

analytical methods are not available or readily applicable. That is, one finds (approximations to) 

the critical point(s1 on the given surface by finding the critical point(s) on the interpolated 

surface. This potential application suggests some new perspectives on the question of variogram 

modeliing, in particular what are adequate and appropriate criteria for optimal modelling of the 

variogram (or generalized covariance)? 

In the context of the derivation of the kriging estimator the question of the estimation 

of the variogram does not even appear, there is a presumption of its existence and the 

non-uniqueness of the generaiized covariance due to additive polynomials does not affect the 

kriging estimator. As a consequence the emphasis has been on statistical approaches. In contrast 

the spline is obtained by imposing a smoothness condition on the interpolated surface but except 



at the data pslcts nn C-nnciltlons are lmposed on the quality of approximation. Perhaps the ultimate 
solution l l r s  in 3 n r u  iornulatlon that incorporates both the approach suggested by the derivation 

of the spllne as well as the mlnlmum variance approach utillzed in the derivation of the kriging 

estimator. 

Portlclns of this research were completed durlng a visit at the Centre de Ceostatistique, 

Fontalnebleau, France 
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