MULTIVARIABLE GEOSTATISTICAL ANALYSIS
FOR ENVIRONMENTAL MONITORING

Donald E. MYERS*

CONTENTS

ABSTRACT « c et e teecaacssccssscsscacccascsasa 412 RESUME..iescesscsassssssnsssenassnssssnans
A - INTRODUCTION...seceecoooasosacascaanss 413 D - POSITIVE DEFINITENESS..eeeerencceacann
B - WHY LINEAR COMBINATIONS? cievevaccanoasn 414 1 - Equivalent definitions...........

C - COKRIGING.  ceeeeneenoosceacscncscnnnsces 414 2 - Models for variogram
1 - The estimator and the MAtriCeS.ecueeeeeencacecacssonnns
ASEUMPLIONSaeceusssassssnssensanns 414 3 - The linear model...ececeescanaons
2 - The cokriging equations..ssecec.. 415 E - PRACTICAL ASPECTS..cu.vcnccncncennenn
3 - Full or undersampled?.....ccceuc... 416 1 - Problems and difficulties........
4 - Linear combinations...eeceesccesss 418 2 - SOftWAT€iisucssocsssccananascccns
5 - Punctual vs block cokriging....... 419 3 - EXtenSiONS..eececeasscecsassannes
6 - NOn-stationarity..eeeececeecoceann 419 F - ACKNOWLEDGEMENT...cccivecooasanosasans
7 - Temporal dependence....c.eosececas 420 G = NOTICE. s eceeasccaaasaccenaasscscnnnnas
8 - Duality.eueeeeeencnceecccaascrcnscas 420 REFERENCES..uieseasceacasscasccnnccancase

* Department of

Mathematics, University of Arizona, TUCSON, Arizona 85721 (USA)

Geomathematics and Geostatistics Analysis Applied to Space and Time Dependent Data', in Sci. de la Terre, Sér. Inf., Nancy,

1988,27,411-427.

41

412

421
421

422
423
424
424
425
425
426
426
426




ABSTRACT

The application of statistics to environmental monitoring incorporates many aspects, some
of which are the same as those utilized in applying geostatistics to problems in mining and
hydrology. By its very nature the problem is multivariate either because there are multiple
pollutants that are of interest or because the laboratory analysis produces data requiring a

multivariate approach.

Classical multivariate techniques do not explicitly incorporate the locations of the
samples nor the spatial correlation and also do not reflect differences in the support of the
samples or the support of the region for which an appraisal is desired. Univariate geostatistics
does have these properties but it does not incorporate intervariable correlation. Tools are needed
then which incorporate the important features of both approaches. Multivariable geostatistics
based on cokriging provides such tools. A brief review is given of cokriging in 1ts general form
as developed by Myers (1982, 1983, 1984, 1986) together with new results characterizing positive
definiteness. This is followed by a discussion of the practice of cokriging including software

development. This is placed in the context of applications to environmental monitoring.

RESUME

L'utilisation des méthodes statistiques pour le contrbéle de 1'environnement est, par bien
des égards, semblable aux applications dans 1'industrie miniére ou en hydrologie. Le probléme est,
par sa nature méme, multivariable soit & cause du nombre de pollutants d'interet, soit parce que

la méthode d'analyse fournit des données exigeant une approche multivariable,

Les techniques mﬁltivariables classiques ne tiennent compte ni de la localisation des points
de mesure ni de la corrélation spatiale. Le support des échantillons et la taille de la région
étudiée n'entrent pas en jeu non plus. La géostatistique monovariable a 1l'avantage d'en tenir
compte, sans, pour autant,prendre en compte les correlations entre variables. Il faut, donc, des
outils congus pour les données qui sont & la fois multivariables et'spatiales; d'ol 1l'origine du
cokrigeage. Aprés un bref resumé de la technique dans la forme developpée par Myers, de nouveaux
résultats au sujet de la positivité et des variogrammes croisés sont presentés. On fait quelques
remarques sur des considérations pratiques de 1'implémentation du cokrigeage (ainsi <que des

logicels correspondants) dans le contexte des études d'environnement.
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A — INTRODUCTION

Environmental monitoring is concerned >with the determination of the presence or absence
as well as the identification of one or more pollutants in a region, all of the conclusions drawn
or decisions made to be based on information resulting from the analysis of samples taken from the
environment. The sampling and analytical process which is often cyclical might be thought of as
having five components:

i. Decisions about where to sample, what to sample for, kinds of samples

1i. Actual sampling process including possible in-situ measurements

iii. Laboratory analysis of samples

iv., Statistical or other analysis of data from analyses

v. Conclusions or Decisions based on results of step iv
0f course these are all related and inter-dependent. While we shall concentrate on‘the fourth
component we shall see that the importance of a multivariable approach is in part a consequence of

problems arising out of the other components.

O0f course any well designed statistical analysis requires prior consideration of the
sampling plan but environmental problems like problems arising out of mining applications require
consideration of where to sample and the supports of the samples. The formulation of an optimal
sampling plan requires identifying appropriate loss function(s), sample size alone is not an
adequate characterization. Note that there 1is a «clear distinction between the sampling
requirements and subsequent handling of the samples with respect to the ultimate decision. making
process and that pertaining to the analytical process. Even for the analytical chemist the
analysis of the samples is no longer simply a laboratory process but rather 1is often one
utilizing computer controlled experiments with subsequent statistical analysis to make the final
determinations. This intermingling of mathematics and statistics with analytical chemistry has
spawned a new field known as Chemometrics (see for example the summaries in the Fundamental
Reviews issues of Analytical Chemistry, 1980,1982,1984 and 1986). While this baper is not
primarily concerned with the problems pertaining to the laboratory analysis suffice it to say that
the single most distinguishing characteristic of Chemometrics is its emphasis on multivariable
analysis both in the sense of the methods of data analysis and also in the sense of compounds or
elements analyzed. This increased complexity has occurred concurrently with an escalation in costs
both as a cause and as a response. In many applications a multivariable approach should be seen as
one incorporating coroborating information or proxy information used to replace missing or

unobtainable information.

The simplest problem is simply to determine the presence or absence at the sampled
locations in which case one must decide which pollutants are of interest and little if any data
analysis is required unless one wishes to draw an inference about non-sampled locations. In this
case one may wish to estimate the probability of the presence, estimate a spatial mean for a given
region or estimate the probability distribution for the concentrations in a given region. These

are exactly the kinds of problems addressed by geostatistics in its various forms. The simplest of
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these being linear kriging and the tool used to formulate the other methods such as disjunctive
kriging or probability kriging. As will be seen, cokriging incorporates univariate kriging as a
special case and hence all the advantages of kriging as an estimator are retained. In some of the
extensions of linear geostatistics to non-linear techniques cokriging provides the tool to reduce
these to linear problems. It was originally assumed that cokriging would require much greater
computations and hence to be avoided where possible, however programs such as those given in Carr,

Myers and Glass (1985) show that this need not be a deterent.

B — WHY LINEAR COMBINATIONS?

Univariate geostatistics uses a linear estimator, i.e., a linear regression as an appro-
ximation to the conditional expectation. This is motivated both by the special case of the multi-
variate gaussian distribution wherein the conditional expectation is a linear function of the data
but also because the linear estimator only requires knowledge of the the covariance function.
These reasons are still relevant in the case of several variables moreover nearly all classical
(as opposed to geostatistical) multivariate statistical techniques are linear, for example

principal components and the various related approaches such as cluster analysis, factor analysis

and discriminant analysis. Suppose Z1(x),...,Zm(x) are random functions representing the variables
of interest, x denoting the position in 1,2 or 3 space. If Xyi...0X, are the sample locations then
denote the data as Z1(x1),”.,z1(xn), ..... Zm(xn). In general of course these samples are not

punctual but will have an associated support. We shall see that the non-punctual support problem
can be resolved in the context of multivariable geostatistics 1in exactly the same way as in
univariate geostatistics. It is also seen that consideration of linear estimators and linear
combinations leads quite naturally to questions pertaining to positive definiteness. Finally we
shall see that linear geostatistics particularly multivariate geostatistics provides a way to

incorporate non-linear techniques.

C — COKRIGING

1 ~ THE ESTIMATOR AND THE ASSUMPTIONS

Let Z1(x),....zm(x) be random functions representing the variables of interest as above.
Let LETREIS be the sample locations with data Zj(xi); i=1,....,n and j=1,....,m. For the moment
it is assumed that all variables are sampled at all locations, later this restriction will be

removed. Write
Z2(x) = (Zy(x)s o2 (x)] (1)

Z(x) is assumed to satisfy the Intrinsic Hypothesis (analagous to the Intrinsic Hypothesis for

univariate geostatistics), namely
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E (Z(x+h)-Z(x))= [0,....,0]  for all x, h (2)
C(h)=0.5 E(Z(x+h)-T(x)) (Z(x+h)-Z(x)) exists and depends only on h
Y(h) 1s the variogram matrix, the entries in <Y(h) are the covariances, yjk(h)z 0.5
C”V(ZJ(X+h)~zi(x)'z'(X+h)-z'(XJ)' Note that the matrix of covariances for the components of Z(x)
may not bc symmetric whereas Y(h) 1s, however covariances are in general bounded whereas

variograms and cross-variograms need not be.
The cokriging estimator as given by Myers (1982) 1is
*

—% - . . *
Z (xo): LZ(XL)[l = [Z1 (xo),...,zm (xo)] (3)

and the weight matrices T .,Fn are chosen so that

100

-% —
E (2 (xo)-Z(xO))= [0,....,0] (4)

EajZVar(ij(xo)—Zj(xo)) is minimised for fixed positive numbers a a

1" "m

The entries in the weight matrices have an immeadiate interpretation, if Ajkl is an entry in ri
then 1t 1s the weight assigned to Zj(xi) in estimating Zk(xo). The conditions given 1in (2)
constitute a weak form of stationarity, these conditions can be further weakened to allow for

Universal cokriging. It will also be seen that the estimator can be re-written in dual form.
2 — THE COKRIGING EQUATIONS

The first condition in (4) is the unbiasedness condition and the second is a weighted sum
of the estimation variances. The original derivation of the equations given by Myers (1982) used
an equally weighted sum which is a special case. When the Intrinsic Hypothesis (2) 1s satisfied
and if

1

which is sufficlient to ensure that the unbiasedness condition 1is satisfied then the weighted sum

of the estimation variances can be written as
Tr LTB. E[Z(x.)-Z(x.) ] [Z(x.)-Z(x.) 1B, (6)
3 Jj 0 1 0 1
where Bi = riA and A 1s a diagonal matrix with the ai‘s as the diagonal entries. Tr denotes
the trace of the matrix, that 1is, the sum of the diagonal entries. We then replace (5) by the
equivalent condition (5")

Zsi = A (5")

To obtain the Bi's or rather the Fi's the scalar valued expression in (6) must be minimised

subject to the conditions given in (5'). The reason for allowing unequal weighting in (4) or (6)
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is two fold, the first is that we may consider some variables less important (for example in the
case of environmental sampling some variables may only be pathfinders or indicators rather than
pollutants themselves) and the second is simply one of generality. After introducing Lagrange

multipliers because of the constraints we obtain the cokriging equations
EY(xi_xj)Bi tuy = Y(xo-xj); j=1,...n : B, = A (n

and the minimised value of (6) 1s given by

2

9ck

= Tr(L ?(xo-xj)Bj +wu,] = Trl(E ?(xo-xj)rj# p)al (8)

al
where p= uA(A_i). Note that the individual variances may be extracted as the diagonal entries. In
fact it is seen that the matrix A is irrelevant and affects neither the estimator nor the separate

minimised estimation variances.

3 - FULL OR UNDERSAMPLED?

All of the early applications and a number of examples more recently in print, for
example Vauclin et al (1983), Aboufirassi and Marino (1984), represent the "undersampled” problem.
That is, where one variable is of principal interest and the other variables are used to enhance
the estimation of the first. Moreover in most of these examples, the supplementary variable is
used to compensate for a lack of data for the primary variable. There were and are two apparent
reasons for this emphasis. First, in most mining applications one metal is of principal interest
and decisions are made based only on grades for that metal. Secondly it was assumed that this made
the system of equations simpler hence reducing computer time. It was shown in Myers (1984) that
the undersampled problem is a special case of the general formulation and there is a simple
algorithm for reducing the system. This was implemented in the program given in Carr,Myers and
Glass (1985). In many deposits for example some low grade copper deposits, there may be precious
metals such as gold,silver,molybdenum, etc. which are insufficient to justify sole extraction but
when mined with the primary metal contribute significantly to the profitability of the mine. If
this information is not used in the ore selection process, there may be significant variance
between potential and realized profit. Hence even in mining applications the first reason for
concentrating on the undersampled problem may not be valid, in the context of environmental
monitoring it is even less valid. The second reason is not really a valid one in that the system

is not appreciably simplified.

First we briefly review the algorthim given in Myers (1984). Write the system given by
(7) in matrix form

?(x1-x1) ........ ?(x1-xn) I Cy Y(x4-%q)
Y(xz—x1) ........ y(xz-xn) I r2 y(xo—xz)
------------------------- - (7!)
Y(x -x1) ........ Jix_-x ) I M x ?(xo—xn)

I ..., I 0 ] A
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It is immeadiately obvious that this is exactly like a uni-variate kriging system except
that all entries are replaced by matrices and hence the form of the system is independent of the
number of variables as well as the number of sample locations. We see that each of the first n
rows of all three "big" matrices (the coefficient matrix on the left, the vector of unknowns on
the left and the vector on the right hand side) corresponds to a sample location. If there were no
data available at location X then that row would be deleted. Likewise each of the first n
columns of the coefficient matrix corresponds to a sample location. But each of these rows or
columns has as entries matrices, the columns or rows within these matrices correspond to
variables. Hence if data for 22 is missing at X, we first find column (respectively row) 4 and
within that column (row) of matrices we delete column 2 (row 2). In the case of rows we do the
same to all three "big" matrices but in the case of columns only the coefficient matrix is
altered. As was shown in Carr,Myers and Glass (1985) the software can alter the general system to
fit the particular undersampled problem. Subsequent versions of the program has made the process
more efficient by never incorporating the rows and columns that would subsequently be deleted. To
put the relationship of the undersampled problem to the general formulation in another 1light

consider the former in the usual way.

We wish to estimate Z1(x0) using data for Z1, 22 at Xy %y Xg. In non-matrix form we have

: i i |
2y (%)= T AptZi(xp) + DAy t2,0xp) (9)

and the system of equations

i i B _ .

EA11 111(xi—xj)+EA12 112(xi—xj)+ Myg = 111(x0 xj) j=1,...,n
i i B ) .

LAy 121(xi—xj)+):/\12 Y i xj) oy T Ypq(xg xj) i=1,...,n  (10)
i_ i

D= v Drigp = 0

* ®
is obtained by minimizing Var[Z1 (xo)-Z1(x0)] subject to E[Z1 (x0)~z1(x0)]= 0. However if we
re-arrange this system of equations then it can be written in the form

~ — — —

— - 1
1(x1—x1)...1(x1~xn) ;W A111 111(x0—x1)
M2 Yp1 (%9 %q)

?(xn—x1)...?(xn-xn) 1

I U 0| . = . (7")
A, (X~ '
11 Yq1(%g7%p)
221 Y21 (Xg%,)
H1q 1
Moy i | . 0 B
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which is exactly like (7') except that the column is missing for the A's for estimating the other
variable as well as the second column on the right hand side but these have no effect on the
coefficient matrix and it is the inversion of that matrix that requires all the computer time.
Hence we can see that solving the full system is essentially no different than solving the single
variable system. However the algorithm for producing the undersampled system from the full

sampled system is much simpler and much more obvious when the matrix formulation is used.

4 - LINEAR COMBINATIONS

In a mining application one might try to avoid a multivariable approach by forming a
linear combination, for example each variable is weighted by its value (for example market price
normalized for any differences in the cost of extraction). This new variable then is used.for all
estimation purposes, variograms are computed etc. This would appear to provide a substantial
reduction in time and effort but one must ask what is the price for this simplification and is it
always an adequate replacement. In an environmental application, it may not be so simple to assign
relative weights since the ‘*value®" of a pollutant may not be easily determined and more
importantly our perception of the danger (i.e.,cost) associated with a pollutant may change over

time.

The basic relationship between kriging linear combinations and forming linear combi-
nations of co-kriged values is given in Myers (1983) and will be briefly reviewed along with an

elaboration of the relationship to more classical multivariate techniques. Using Z(x) as above let

W(x) = Z(x)A, aT= lagi...ia ] (11)

then va(h) = AT%, (M)A (12)

4 . .
If Wwr(x0) = [ AiV(xi) then the first question is, is W (xo) = 7 (xo)A ? The kriging
equations for the estimator given in (11) are

L z\iw‘,(xi—xj) oy s Yw(xo-xj) ) L x =1 (13)

If (12) is substituted into (13) then it seen that in order for W'(xo) to coincide with 7’(x0)A we
must have AjA =T;A for i=1,...,n. Since A is a column vector and hence is not invertible this
limits the choice of the Fi's and hence the optimum is in general not acheived. This means that

. . . '. . : =%
the variance associated with W 1is in general greater than that with 7 A.

In a more classical approach one generates new variables, i.e. factors, as linear combi-
nations of the original variables with several objectives in mind. For example if the variables
are correlated then the number of factors required to adequately explain the original data set is
less than the number of original variables. Several authors, Myers and Carr (1984), Myers (1984),
Aboufirassi and Marino (1984), Davis and Greenes (1983) have attempted to merge classical methods

such as Principal Components with kriging. In each case Principal Components is used to reduce the
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number of variables to a smaller number of "uncorrelated variables”, variograms are computed for
each new variable and the original variable is obtained as a linear combination of the new
variables. One should be aware that orthogonal factors in the sense of Principal Components is not
the same as having cross-variograms that are zeio. Davis and Greenes did check the sample cross-
variograms of the factors and found that it was reasonable to conclude that the factors were

uncorrelated in the sense of geostatistics. To put it in a more general context let

Y(x) = Z(x)A, A anmx p matrix or ?Y(h) = AT7Z(h)A (14)

each component of Y(x) is a linear combination of tﬁe components of Z(x). If the components of
Y(x) are uncorrelated in the sense of geostatistics then 7Y(h) must be a diagonal matrix. This is
very nearly the same as requiring that the sample correlation matrix be diagonalized as in
Principal Components. In general however one would expect that the matrix A would depend on h.
This perspective is also relevant to the problem of models for variogram matrices and we shall

return to this in a later section.
5 - PUNCTUAL vs BLOCK COKRIGING

In the uni-variate form of geostatistics, specifically the kriging estimator, if one

wishes to estimate a spatial average such as
2, = (V) [ 2(x)dx (15)

where V 1s an area or volume then it is only necesary to alter the right hand side of the system
of kriging equations. Specifically one replaces the variogram matrix by an average value of the
variogram matrix. As shown in Myers (1984) the same simple replacement is sufficient for
cokriging. Although non-punctual support for the data causes the same problems for the estimation
of cross-variograms as for variograms, the use of non-punctual data in the estimator causes no new

problems.

6 — NON-STATIONARITY

Although the Intrinsic Hypothesis (2) is itself a form of non-stationarity this

assumption can be weakened further. Suppose that

Z(x) = Y(x) + M(x) (16)
where M(x)= F(X)B. F(x) = [fo(x),....,fp(x)] is a vector of known linearly independent functions
(usually taken to be polynomials in the position coordinates) and B is a p X m matrix of

constants. Y(x) is assumed to satisfy the Intrinsic Hypothesis. The system of cokriging equations

(7) or (7') must be modified by replacing each identity matrix by a row (repectively column) of
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matrices and the single matrix of Lagrange multipliers is replaced by several such matrices. Write

Fg(xj) = fg(xj)l then the new system 1s
Xw(xi-xj)ri + LFy(x;)uy = w(xj-xo)
EFE(xi)ri= F2(x0) ; 3=1,...,n and 2=0,...,p (17)

Further details may be found in Myers (1982). As in the simplest form of cokriging using the
intrinsic hypothesis, Universal cokriging is completey analogous to (uni-variate)Universal kriging
in that each entry in the system of equations is replaced-by a matrix. The algorithm for obtaining

the undersampled version of the system works equally well for Universal cokriging.

7 - TEMPORAL DEPENDENCE

In many applications of geostatistics such as in mining, the time scale for deposition or
formation is exceedingly long in comparison to the time span for the period of analysis and hence
one may reasonably ignore any temporal dependence. In many environmental problems however the time
scale for change is relatively short, for example the dispersion of a plume in an aquifer or the
spread of sulfur dioxide in the air. Moreover in many instances the tendency is to sample at
multiple time points for a small number of sample locations. We are concerned with estimation/
interpolation problems for a single random function Z(x,t) or vector function Z(x,t). There are
several possible ways for reducing this problem to a simpler one and at least one leads to the use

of cokriging.

a. Assume that Z(x,t) (or Z(x,t)) satisfies the Intrinsic Hypothesis with respect to x for
each t and that moreover the variogram depends.on t only in the parameters. This formulation is
not too different from an assumption of local stationarity, in some such instances the relative
variogram is a useful way to filter out the non-stationarity. In practice only a finite number of

t's will be considered.

b. In some instances it is the time dependence that is of primary importance and the

formulation in a. might be used with x,t interchanged.

c. If only one variable is of interest and data is available at a finite number of locatilons
and times, re-write the problem as a vector function. That is, Z(x)= [Z(x,t1),....,Z(x,tm)]. This
approach has the advantage that data for one time point can be used in the estimation for another
time point. If Z(x,t) is a vector then the same approach may be used except that the dimension

will increase more rapidly.

8 — DUALITY

It is well-known that the uni-variate kriging estimator can be written in a dual form,

2*(xg)= LA 2(x;) = Lbyy(xy-x;) + a . ' (18)
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where the Ai's and bi'satisfy respectively

ZAiy(xi—xj)+p = x(xo—xj) i 3=1,...,n : EAi =1 (19)

[biy(xi—xj) +a-= Z(xj) i 3=1,...,n : Zbi =0 (20)

We see however that the coefficient matrix is exactly the same in (19) and (20). Matheron (1980)
and others have shown that this duality implies that thin plate splines are a special case of

kriging and smoothing splines are a special case of cokriging. Myers (1986) has shown that this

duality can be extended to cokriging and in fact programs to solve the cokriging system can
provide the dual solution as well. This duality is not so readily apparent if the cokriging system

is written in the “one variable" form as given by equations (9). First we need some notation:

Y(x1—x1) ....... ?(x1—xn) I
K = H F =
Y(x -x,)....... J(x_-x_) I
L 1 n n: (21)
Yy 7(x1—x0)
~ el —_— —
r = H KO = . ;2= [Z(x1),...Z(xn)]
n Yo |

then the analogues of (19) and (20) are

K F r KO
- (22)
LI 1
K F 7T
- (23)
ool (M 0
and the cokriging estimator can be written in either of the two forms
* A A
2 (xg)= 2T = (K, 11087 M T (24)

Further properties of the Dual form of the cokriging estimator and in particular of the matrices
B, M are found in Myers (1986)

D — POSITIVE DEFINITENESS
1 — EQUIVALENT DEFINITIONS

It is well-known as shown in Matheron (1973) that .in order for a function to be a

variogram it must satisfy a (conditional) positive definiteness condition as well as aAgrowth
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condition. Although a number of different estimators have been proposed and used for the
variogram, in all cases one of the steps involves fitting the estimated variogram to a theoretical
model which 1s usually taken to be a linear combination of known valid models such as the
spherical, exponential, power, etc. In particular this ensures that the estimation variance is
non- negative and hence has a minimum value. There are several ways to extend these concepts to the

multivariable version.

4. As was noted above it 1s reasonable to consider linear combinations and since the linear
comblnation 1s uni-variate we might define positive definiteness for matrix valued functions by
transforming to a univariate problem. We shall consider only the multi-variate version of

variograms but the extension to generalized covariances 1s 1mmeadiate.

If ¥(h) 1s a m x m matrix valued function with ¥(0)= O then -¥ is conditionally positive
definite 1f for all vectors AT: [a1,._.,am]; -AT§(h)A is conditionally positive definite. That is

, y{(h) 1s a valid variogram matrix 1if ATY(h)A is a valid variogram. In particular this means that

_[zZEarasAiAjyrs(xi-xj) > 0 (25)

for any choice of A, any choice of the Kyvoo Xy and any choice of the A , A With EAi = 0.

ERRERTAN
Note several important special cases. Suppose that only two the ai's are non-zero and A~ 1s either
[1 1] or [1 -1] then we have that Yii+7jj+2yij . Yii+7jj_27ij
This observation provides further insight into the form of valid models.

must both be valid models,

b. Recalling the form of the estimator used when data on several variables is used to

estimate a single variable we see that another possible formulation might be that

. i3 .
IRRRN A sYrs(xi xj) > 0 (26)

for any choice of the Xyvoo Xy and any choice of the A's with EAi = 0 for all r. Clearly this

definition is equivalent to the first one.

c¢. The obvious definition that corresponds to the general form of the cokriging egquations
was given by Myers (1984) as

T .
~Tr):):rl. Y(xi—xj)r‘j %0 (27)

when [ri = 0. Moreover in that same paper it was shown that this is equivalent to (26) although

the later was not formulated as a definition at that time.
2 -~ MODELS FOR VARIOGRAM MATRICES

Irrespective of which estimator is used for the variogram.at some point in the process
one uses two important properties of valid variograms; the set of valid variograms is closed under
positive linear combinations and secondly it contains certain known models such as the spherical,
exponential, power, cubic and gaussian. Moreover all of these are characterized by parameters that

are interpretable on the graph fo; an isotropic model. By analogy we might attempt to characterize
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valid variogram matrices by requiring that the entries be valid models. For the diagonal entries
this is appropriate and each corresponds to a single component of the vector random function,
i.e., each diagonal entry is a variogram. For the off-diagonal entries the problem is not so
simple. One may utilize a sample cross-variogram to estimate the off-diagonal entries but now the
question is, what does a valid cross-variogram look like? In a number of instances, authors have
used variogram models for cross-variograms, in general this will lead to an invalid model in view
of the first definition of positive definite given above. Moreover that approach would asume that
the correlation between the two components is always positive, that is, while variograms are
always positive cross-variograms could be negative. Moreover variograms except possibly for hole-
effect models are non-decreasing functions but clearly the cross-variogram need not be either

non-decreasing or non-increasing.

From the first definition of positive definiteness given above we see that there are

three equivalent general forms of the cross-variogram

— + - _ _ _ -

= 0.25[1ij+(h)—wij_(h)] (28)

where Yij+ Yij respectively are the variograms for Zi(x)+Zj(h), Zi(h)-Zj(h). In general a

cross-variogram does not look like a variogram but rather like the difference of two variograms.

In Myers (1982) it was suggested that cross-variograms be modelled by modelling Xij+'Yii

Y35 then using the first form given in (28), The dis-advantage of this is that the three
variograms are modelled independently and one is still not assured of having the correct model. If
all three relations given in (28) are used then this problem is overcome. This process does not
avoid the fact that for m components there are m variograms and m(m-1)/2 cross-variograms, this is
not an impossible task as 1s seen in Myers and Carr (1984) where eleven variables were considered.
If the relations given in (28) are combined with the integral representation formumla given by
Matheron (1973) then an integral representation is obtained for the cross-variogram but this is of
more theoretical interest than practical. The key point about models for cross-variograms is that

they must always be considered in connection with the variograms for the two components.

3 - THE LINEAR MODEL

The construction that has received perhaps the most attention is the linear model.
Suppose—that Y1(x),...,Yp(¥) are uncorrelated random functions and that Zj(x)= L aini(x) or
Z(x) = Y(x)A. Then 7z(h)=A ?Y(h)A with ?Y a diagonal matrix of variograms. This suggests a way to
construct general variogram matrices. By using Version 1 of the definition of positive definite-
ness we see that for any choice of A ?z is a valid model. The problem of course is to determine
the Y's or rather their variograms and the entries in A when we begin with Z(x). In some instances
the decomposition has a physical interpretation such as for geochemical variables, Wackernagel
(1985) has exploited this possibility together with the use of Principal Components to»model'both

A and ?Y. Note that such a representation is equivalent to diagonalizing ?Z, this is analogous to
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the use of Principal Components on a correlation matrix except that the factors are required to be
the same for each choice of h. In the case of a multivariate gaussian this decomposition is
reasonable since it corresponds to a rotation but in general one would not expect such a decompo-

sition. In all of the early applications only the linear model was used which 15 very restrictive.

E - PRACTICAL ASPECTS

1 — PROBLEMS AND DIFFICULTIES

Most of the problems encountered in the practice of cokriging are the same as those
encountered in the practice of kriging but perhaps magnified by the number of variables
incorporated. With respect to the variograms there are no new problems except there are multiple

variograms to model.

The problems are essentially of two types both relating to the estimation and modelling

of cross-variograms oOr cross-covariances

a. No matter which estimator 1s used nor how the cross-variograms are modelled, it 1is
necessary to have a sufficient number of sample locations where both variables are sampled (for
each pair of variables). At least in theory the supports should be the same as well. This
condition is frequently not satisfied if the form of the analysis is decided after the sampling is
complete. Where the condition is not satisfied one sometimes uses an ad-hoc process of kriging one
variable at the sample locations of the other variable and estimating the cross-variograms using
the kriged data. This should always be done in connection with some form of cross-validation using

cokriging.

b. In the case of variograms or covariances it 1s easy to ensure that the positive defini-
teness condition is satisfied by using nested models, i.e., positive linear combinations of valid
models moreover the parameters of the models are at least partially identifiable from the graph of
the sample variogram. However positive definiteness is not a property of a_cross—variogram rather
it is a property of the triple of two variograms and the associated cross-variogram. As shown
above the cross-variogram has a more complex structure and one can not easily idefitify the
components or the -parameters from the graph of the sample cross-variogram. One should follow
several approaches i. compute and plot the sample cross-variogram (or cross-covariance) ii. model
the variograms of each variable separately and cross-validate iii. model the variograms for the
sum and difference of each pair of variables then compute and model the cross-variograms using the
relations in (28), this later step will likely require sequential adjustments to get a match
between the three representations of the cross-variogram. It should be noted that in the case of
one variable the variogram generalizes the covariance but in the case of cross-variograms where
the cross-covariance is not symmetric then they do not necessarily coincide in the case of second
order stationarity. A sufficient condition is given in Myers (1982), in particular it may be
preferable to use cross-covariances in some cases since the Qariog;ams,crdss—varioqrams are always

symmetric.
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wWhile cross-validation does not lead to tests of hypotheses in a strong statistical sense
it does provide a mechanicism for ascertaining whether the variogram model reproduces the charac-
teristics of the data, in the case of cokriging however the problem is more complex. It is
possible to use cokriging to cross-validate in exactly the same way the univariate kriging is used
but the question of which statistics to use to select the better model has not been resolved as

yet.

2 - SOFTWARE

Proto-type general cokriging and co-coditional simulation programs are given 1n Carr,
Myers and Glass (1985) and in Carr, Myers (1985). Sample variogram and sample cross-varioqram
programs are given in Journel and Huijbregts (1978) and are generally available in a number of
commercially available packages or the public domain STATPAC available from the USGS. At the
University of Arizona newer versions of the cokriging programs including dual cokriging and
cross-validation using cokriging have been written 1in FORTRAN 77 and implemented on PC
compatibles, the same source codes are useable on VAXs. A program for testing the Cauchy-Schwartz
inequality has also been written and is being altered to incorporate graphics. The availlability of
high resolution color graphics and version 4.1 of the MicroSoft FORTRAN compiler which allows
much larger source codes and data sets makes the micro quite adequate both for computation and for
display of results. There is a considerable in savings in capital investment in comparison to the

use of the mainframe.

3 - EXTENSIONS

Because of the weaknesses associated with interpolating or estimating non-linear
functions such as probability distributions by linear combinations, Matheron introduced
Disjunctive Kriging. Myers (1986) has shown that the multivariate form of Disjunctive Kriging is
easily obtained using the general form of cokriging, this extension is in the process of being
implemented by software. Disjunctive Kriging incorporates a strong gaussian distribution
assumption and Journel has proposed the use of Indicator or Probability Kriging which uses a
non-linear transformation. In its most general form the weights are obtained as the solution to a
cokriging system. It was noted above that univariate kriging incorporates thin plate splines as a
special case via the dual form of the kriging estimator, dual cokriging provides a way to define

multivariable splines and this connection is currently be developed.

In that kriging allows the computation of the variance without knowledge of the data
values, a number of authors have dealt with the possibility of the design of an optimal sampling
plan where the function to be minimized in some combination of kriging variances or 1s the kriqing
variance associated with the estimation for a region. In the case of environmental monitoring
similar problems arise but the loss function will now be much more complicated including

components such as the overhead on the sampling process, costs for individual sites, costs
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assoclated with particular types of samples, type of laboratory analysis to be used (i.e.,
pollutants or indicators to be sampled for), costs (health, social, etc) associated with Type I,
Type I1I errors. It is important to recall that sampling designs in this sense refer to the
collection of data for cokriging (in one of its various forms) not for the purpose of estimation
of variograms Or cross-variograms. General software for the former is under development and unlike
previous examples in the univariate case does not select new sample locations from a pre-specified

qgrid, this requires a different search/optimization technique.
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