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ABSTRACT 

The application of statistics to environmental monitoring incorporates many aspects, some 

of which are the same as those utilized in applying geostatistics to problems in mining and 

hydrology. By its very nature the problem is multivariate either because there are multiple 

pollutants that are of interest or because the laboratory analysis produces data requiring a 

multivariate approach. 

Classical multivariate techniques do not explicitly incorporate the locations of the 

samples nor the spatial correlation and also do not reflect differences in the support of the 

samples or the support of the region for which an appraisal is desired. Univariate geostatistics 

does have these properties but it does not incorporate intervariable correlation. Tools are needed 

then which incorporate the important features of both approaches. Multivariable geostatistics 

based on cokriging provides such tools. A brief review is given of cokriging in ~ t s  general form 

as developed by Myers (1982, 1983, 1984, 1986) together with new results characterizing positive 

definiteness. This is followed by a discussion of the practice of cokriging including software 

development. This is placed in the context of applications to environmental monitoring. 

L'utilisation des methodes statistiques pour le contr6le de l'environnement est, par bien 

des egards, semblable aux applications dans l'industrie miniire ou en hydrologie. Le problkme est, 

par sa nature mCme, multivariable soit a cause du nombre de pollutants d'interet, soit parce que 

la methode d'analyse fournit des donnees exigeant une approche multivariable. 

Les techniques multivariables classiques ne tiennent compte ni de la localisation des points 

de mesure ni de la correlation spatiale. Le support des echantillons et la taille de la rCgion 

CtudiCe n'entrent pas en jeu non plus. La geostatistique monovariable a l'avantage d'en tenir 

compte, sans, pour autant,prendre en compte les correlations entre variables. I1 faut, donc, des 

outils concus pour les donnees qui sont la fois multivariables et' spatiales; d'oG l'origine du 

cokrigeage. Apr&s un bref resume de la technique dans la forme developpee par Myers, de nouveaux 

resultats au sujet de la positivite et des variogrammes croises sont presentes. On fait quelques 

remarques sur des considerations pratiques de l'implementation du cokrigeage (ainsi que des 

logicels correspondants) dans le contexte des etudes d'environnement. 



A - INTRODUCTION 

Environmental monitoring is concerned with the determination of the presence or absence 

as well as the identification of one or more pollutants in a region, all of the conclusions drawn 

or decisions made to be based on information resulting from the analysis of samples taken from the 

environment. The sampling and analytical process which is often cyclical might be thorlght of as 

having five components: 

i. Decisions about where to sample, what to sample for, kinds of samples 

ii. Actual sampling process including possible in-situ measurements 

iii. Laboratory analysis of samples 

iv. Statistical or other analysis of data from analyses 

v. Conclusions or Decisions based on results of step iv 

Of course these are all related and inter-dependent. While we shall concentrate on the fourth 

component we shall see that the importance of a multivariable approach is in part a consequence o t  

problems arising out of the other components. 

Of course any well designed statistical analysis requires prior consideration of the 

sampling plan but environmental problems like problems arising out of mining applications require 

consideration of where to sample and the supports of the samples. The formulation of an optimal 

sampling plan requires identifying appropriate loss function(s), sample size alone is not an 

adequate characterization. Note that there is a clear distinction between the sampling 

requirements and subsequent handling of the samples with respect to the ultimate decision making 

process and that pertaining to the analytical process. Even for the analytical chemist the 

analysis of the samples is no longer simply a laboratory process but rather is often one 

utilizing computer controlled experiments with subsequent statistical analysis to make the final 

determinations. This intermingling of mathematics and statistics with analytical chemistry has 

spawned a new field known as Chemometrics (see for example the summaries in the Fundamental 

Reviews issues of Analytical Chemistry, 1980,1982,1984 and 1986). While this paper is not 

primarily concerned with the problems pertaining to the laboratory analysis suffice it to say that 

the single most distinguishing characteristic of Chemometrics is its emphasis on multivariable 

analysis both in the sense of the methods of data analysis and also in the sense of compounds or 

elements analyzed. This increased complexity has occurred concurrently with an escalation in costs 

both as a cause and as a response. In many applications a multivariable approach should be seen as 

one incorporating coroborating information or proxy information used to replace missing or 

unobtainable information. 

The simplest problem is simply to determine the presence or absence at the sampled 

locations in which case one must decide which pollutants are of interest and little if any data 

analysis is required unless one wishes to draw an inference about non-sampled locations. In this 

case one may wish to estimate the probability of the presence, estimate a spatial mean for a given 

region or estimate the probability distribution for the concentrations in a given region. These . 

are exactly the kinds of problems addressed by geostatistics in its various forms. The simplest of 



these being linear kriging and the tool used to formulate the other methods such as disjunctive 

kriging or probability kriging. As will be seen, cokriging incorporates univariate kriging as a 

special case and hence all the advantages of kriging as an estimator are retained. In some of the 

extensions of linear geostatistics to non-linear techniques cokriging provides the tool to reduce 

these to linear problems. It was originally assumed that cokriging would require much greater 

computations and hence to be avoided where possible, however programs such as those given in Carr, 

Myers and Glass (1985) show that this need not be a deterent. 

B - WHY UNEAR COMBINATIONS? 

Univariate geostatistics uses a linear estimator, i.e., a linear regression as an appro- 

ximation to the conditional expectation. This is motivated both by the special case of the multi- 

variate gaussian distribution wherein the conditional expectation is a linear function of the data 

but also because the linear estimator only requires knowledge of the the covariance function. 

These reasons are still relevant in the case of several variables moreover nearly all classical 

(as opposed to geostatistical) multivariate statistical techniques are linear, for example 

principal components and the various related approaches such as cluster analysis, factor analysis 

and discriminant analysis. Suppose Zl(x), . . . ,  Zm(x) are random functions representing the variables 
of interest, x denoting the position in 1,2 or 3 space. If x,, . . . ,  xn are the sample locations then 
denote the data as Z (x ) ,  . . . ,  Z1(xn) , . . . . .  Zm(xn). In general of course these samples are not 1 1  
punctual but will have an associated support. We shall see that the non-punctual support problem 

can be resolved in the context of multivariable geostatistics in exactly the same way as in 

univariate geostatistics. It is also seen that consideration of linear estimators and linear 

combinations leads quite naturally to questions pertaining to positive definiteness. Finally we 

shall see that linear geostatistics particularly multivariate geostatistics provides a way to 

incorporate non-linear techniques. 

1 - THE ESTIMATOR AND THE ASSUMPTIONS 

Let Zl(x) , . . . .  Zm(x) be random functions representing the variables of interest as above. 
Let xl, . . .  x be the sample locations with data Z.(x.); i=l, ...., n and j=l, . . . . ,  m. For the moment n 3 1 

it is assumed that all variables are sampled at all locations, later this restriction will be 

removed. Write 

- 
Z(X) is assumed to satisfy the ~ntrinsic Hypothesis (analagous to the ~ntrinsic Hypothesis for 

univariate geostatistics), namely 



E (i(x+h)-Z(x)):= [O,. . . .  ,0] for all x, h ( 2 )  

r(h)=O.S ~ ( ~ ( x + h ) . ~ ( x ) ) ~ ( ~ ( x + h ) - ~ ( x ) )  exists and depends only on h 

G(I1) LS the variclgram matrlx, the entries in y(h) are the covariances, u .  (h)= 0.5 
I k 

Cov( Z (x+h)-Z. ( x ) ,  Z . (xth) -Z (x) ) . Note that the matrix of covariances for the components of y(x) 
I. I 

may not t ~ c  symmetric whereas r ( h )  15, however covarlances are in general bounded whereas 

varioqrams and cross-varioljrams need not be. 

The cokriging estimator as given by Myers (1982) is 

and the we~ght matrices f . . . , fn are chosen so that 

- * 
E (Z (xo)-?(xo))= [ O , .  . . . ,0] (4) 

Ed 2 ~ a r ( ~ x  ( x  1-Z (x ) )  is minimised for fired posltive numbers a l , .  . a 
I 3 0  I 0  m 

The entries in the weight matrices have an immeadiatc interpretation, if A .  is an entry in Ti 
1 k 

then it is the weight assigned to Z.(xi) in estimating Zk(x0). The conditions given in (2) 
I 

constitute a weak form of stationarity, these conditions can be further weakened to allow for 

Universal cokriging. It will also be seen that the estimator can be re-written in dual form. 

2 - THE COKRlGlNG EQUAI-IONS 

The first condition in (4) is the unbiasedness condition and the second is a weighted sum 

of 'he estimation variances. The original derivation of the equations given by Myers (1982) used 

an equally weighted sum which is a special case. When the Intrinsic Hypothesis (2) is satisfied 

and if 

which is sufficient to ensure that the unbiasedness condition is satisfied then the weighted sum 

of the estimation variances can be written as 

where B. = T . A  and A is a diagonal matrix with the ails as the diagonal entries. Tr denotes 
1 1  

the trace of the matrix, that is, the sum of the diagonal entries. We then replace (5) by the 

equivalent condition (5') 

To obtain the B.'s or rather the Ti's the scalar valued expression in (6) must be minimised 

subject to the conditic~ns given in (5'). The reason for allowing unequal weighting in (4) or (6) 



is two fold, the first is that we may consider some variables less important (for example in the 

case of environmental sampling some variables may only be pathfinders or indicators rather than 

pollutants themselves) and the second is simply one of generality. After introducing Lagrange 

multipliers because of the constraints we obtain the cokriging equations 

and the minimised value of (6) is given by 

where v= vA(li-'). Note that the individual variances may be extracted as the diagonal entries. In 

fact it is seen that the matrix A is irrelevant and affects neither the estimator nor the separate 

minimised estimation variances. 

3 - FULL OR LINDERSAMPLED? 

All of the early applications and a number of examples more recently in print, for 

example Vauclin et a1 (1983), Aboufirassi and Narino (1984), represent the 'undersampled' problem. 

That is, where one variable is of principal interest and the other variables are used to enhance 

the estimation of the first. Moreover in most of these examples, the supplementary variable is 

used to compensate for a lack of data for the primary variable. There were and are two apparent 

reasons for this emphasis. First, in most mining applications one metal is of principal interest 

and decisions are made based only on grades for that metal. Secondly it was assumed that this made 

the system of equations simpler hence reducing computer time. It was shown in Myers (1984) that 

the undersampled problem is a special case o f  the general formulation and there is a simple 

algorithm for reducing the system. This was implemented in the program given in Carr,Myers and 

Glass (1985). In many deposits for example some low grade copper deposits, there may be precious 

metals such as gold,silver,molybdenum, etc. which are insufficient to justify sole extraction but 

when mined with the primary metal contribute significantly to the profitability of the mine. If 

this information is not used in the ore selection process, there may be significant variance 

between potential and realized profit. Hence even in mining applications the first reason for 

concentrating on the undersampled problem may not be valid, in the context of environmental 

monitoring it is even less valid. The second reason is not really a valid one in that the iystem 

is not appreciably simplified. 

First we briefly review the algorthim given in Myers (1984). Write the system given by 

( 7 1  in matrix form 



It is immeadiately obvious that this is exactly like a uni-variate kriglng system except 

that all entries are replaced by matrices and hence the form of the system is indeprndent of the 

number of variables as well as the number of sample locations. We see that each of the first rl 

rows of all three "big" matrices (the coefficient matrix on the left, t,he vector of unknowns on 

the left and the vector on the right hand side) corresponds to '3 sample location. If there were no 

data available at location xi, then that row would be deleted. Likewise each of the first n 

columns of the coefficient matrix corresponds to a sample location. But each of these rows or 

columns has as entries matrices, the columns or rows within these matrices correspond to 

variables. Hence if data for Z2 is missing at x4 we first find column (respectively row) 4 and 

within that column (row) of matrices we delete column 2-(row 2). In the case of rows we do thc 

same to all three "big" matrices but in the case of columns only the coefficient matrlx is 

altered. As was shown in Carr,Myers and Class (1985) the software can alter the general system to 

fit the particular undersampled problem. Subsequent versions of the program has made the process 

more efficient by never incorporating the rows and columns that would subsequently be deleted. TO 

put the relationship of the undersampled problem to the general. formulation in another liyllt 

consider the former in the usual way. 

We wish to estimate Z (x ) using data for Z,, Z2 at x1,x2,xY In non-matrix form we have 1 0  

* i i 
Zl (x0)= E A l l  Z1(xi) + E A21 Z2(xi) 

and the system of equations 

* 
is obtained by minimizing ~ a r [ ~ ~ * ( x ~ ) - ~ ~ ( x ~ ) ]  subject to EIZ1 (X )-Z (x )I= 0. However if we 0 1 0  
re-arrange this.system of equations then it can be written in the form 



which i s  e x a c t l y  l i k e  (7') e x c e p t  t h a t  t h e  column i s  m i s s i n g  f o r  t h e  A ' s  f o r  e s t i m a t i n g  t h e  o t h e r  

v a r i a b l e  a s  we l l  a s  t h e  second column on t h e  r i g h t  hand s i d e  b u t  t h e s e  have no e f f e c t  on t h e  

c o e f f i c i e n t  ma t r ix  and it i s  t h e  i n v e r s i o n  of t h a t  m a t r i x  t h a t  r e q u i r e s  a l l  t h e  computer t ime .  

Hence we can s e e  t h a t  s o l v i n g  t h e  f u l l  sys tem i s  e s s e n t i a l l y  no d i f f e r e n t  t h a n  s o l v i n g  t h e  s i n g l e  

v a r i a b l e  system.  However t h e  a l g o r i t h m  f o r  producing t h e  undersampled system from t h e  f u l l  

sampled system i s  much s i m p l e r  and much more obv ious  when t h e  m a t r i x  f o r m u l a t i o n  i s  used .  

4 - LINEAR COMBINATIONS 

I n  a  mining a p p l i c a t i o n  one  might  t r y  t o  a v o i d  a  m u l t i v a r i a b l e  approach  by forming a  

l i n e a r  combina t ion ,  f o r  example each  v a r i a b l e  is weighted by i t s  v a l u e  ( f o r  example marke t  p r i c e  

normal ized f o r  any d i f f e r e n c e s  i n  t h e  c o s t  o f  e x t r a c t i o n ) .  T h i s  new v a r i a b l e  t h e n  is used f o r  a l l  

e s t i m a t i o n  purposes ,  va r iograms  a r e  computed e t c .  T h i s  would a p p e a r  t o  p r o v i d e  a s u b s t a n t i a l  

r e d u c t i o n  i n  t i m e  and e f f o r t  b u t  one must a s k  what i s  t h e  p r i c e  f o r  t h i s  s i m p l i f i c a t i o n  and  i s  it 

always a n  a d e q u a t e  r ep lacement .  In  a n  env i ronmenta l  a p p l i c a t i o n ,  i t  may n o t  be s o  s imple  t o  a s s i g n  

r e l a t i v e  w e i g h t s  s i n c e  t h e  ' va lue '  o f  a p o l l u t a n t  may n o t  be e a s i l y  de te rmined  and more 

i m p o r t a n t l y  o u r  p e r c e p t i o n  of t h e  danger  ( i . e . , c o s t )  a s s o c i a t e d  w i t h  a p o l l u t a n t  may change o v e r  

t i m e .  

The b a s i c  r e l a t i o n s h i p  between k r i g i n g  l i n e a r  combina t ions  and forming l i n e a r  combi- 

n a t i o n s  of c o - k r i g e d  v a l u e s  i s  g i v e n  i n  Myers (1983)  and w i l l  be  b r i e f l y  reviewed a l o n g  w i t h  a n  

e l a b o r a t i o n  o f  t h e  r e l a t i o n s h i p  t o  more c l a s s i c a l  m u l t i v a r i a t e  t e c h n i q u e s .  Using Z(x)  as above l e t  

t h e n  l w ( h )  = A ~ Y ~ ( ~ ) A  ( 1 2 )  

t 
I f  Wt(xO) = I: AiW(xi) t h e n  t h e  f i r s t  q u e s t i o n  is ,  i s  W * ( X  ) = 3 (xO)A ? The k r i g i n g  0  

e q u a t i o n s  f o r  t h e  e s t i m a t o r  g i v e n  i n  ( 1 1 )  a r e  

I: Aiyw(xi-xj) + lJW = y ( x  -x ) W O j  I E A . = 1  1 

I f  ( 1 2 )  i s  s u b s t i t u t e d  i n t o  ( 1 3 )  t h e n  it s e e n  t h a t  i n  o r d e r  f o r  Wt(xo) t o  c o i n c i d e  w i t h  Z * ( X ~ ) A  we 

must have A .A = r .A f o r  i = l ,  . . . , n .  S i n c e  A i s  a  column v e c t o r  and hence i s  n o t  i n v e r t i b l e  t h i s  
1 1 

limits t h e  c h o i c e  of t h e  r i ' s  and hence t h e  optimum is  i n  g e n e r a l  n o t  a c h e i v e d .  T h i s  means t h a t  

t h e  v a r i a n c e  a s s o c i a t e d  w i t h  W* i s  i n  g e n e r a l  g r e a t e r  t h a n  t h a t  w i t h  Z*A. 

I n  a  more c l a s s i c a l  approach  one g e n e r a t e s  new v a r i a b l e s ,  i . e .  f a c t o r s ,  as l i n e a r  combi- 

n a t i o n s  of t h e  o r i g i n a l  v a r i a b l e s  w i t h  s e v e r a l  o b j e c t i v e s  i n  mind. For example i f  t h e  v a r i a b l e s  

a r e  c o r r e l a t e d  t h e n  t h e  number o f  f a c t o r s  r e q u i r e d  t o  a d e q u a t e l y  e x p l a i n  t h e  o r i g i n a l  d a t a  s e t  i s  

less t h a n  t h e  number o f  o r i g i n a l  v a r i a b l e s .  s e v e r a l  a u t h o r s ,  Myers and C a r r  (19841,  Myers (19841, 

A b o u f i r a s s i  and Marino ( 1 9 8 4 ) ,  Davis  and Creenes  (1983)  have a t t e m p t e d  t o  merge c l a s s i c a l  methods 

such a s  P r i n c i p a l  Components wi th  k r i g i n g .  I n  each  c a s e  P r i n c i p a l  Components is used t o  r e d u c e  t h e  



number of variables to a smaller number of "uncorrelated variables", variograms are computed for 

each new variable and the original variable is obtained as a linear combination of the new 

v~riables. One should be aware that orthogonal factors in the sense of Principal Components is not 

the same as having cross-variograms that are zero. Davis and Greenes did check the sample cross- 

variograms of the factors and found that it was reasonable to conclude that the factors were 

uncorrelated in the sense of geostatistics. To put it in a more general context let 

- - 
Y(X) = Z(X)A, A an m x p matrix or -yy(h) = liTyZ(h)~ (14) 

each component of ?(x) is a linear combination of the components of ?(XI. If the components of - 
Y(x) are uncorrelated in the sense of geostatistics then Ty(h) must be a diagonal matrix. This is 

very nearly the same as requiring that the sample correlation matrix be diagonalized as in 

Principal Components. In general however one would expect that the matrix A would depend on h. 

This perspective is also relevant to the problem of models for variogram matrices and we shall 

return to this in a later section. 

5 - PUNCTUAL vs  BLOCK COKRlGlNG 

In the uni-variate form of geostatistics, specifically the kriging estimator, if one 

wishes to estimate a spatial average such as 

where V is an area or volume then it is only necesary to alter the right hand side of the system 

of kriging equations. Specifically one replaces the variogram matrix by an average value of the 

variogram matrix. As shown in Myers (1984) the same simple replacement is sufficient for 

cokriging. Although non-punctual support for the data causes the same problems for the estimation 

of cross-variograms as for varioqrams, the use of non-punctual data in the estimator causes no new 

problems. 

6 - NON-STATIONARITY 

Although the Intrinsic Hypothesis (2) is itself a form of non-stationarity this 

assumption can be weakened further. Suppose that 

where M(x)= F(x)B. F(x) = [fo(x), . . . . ,  f (x)] is a vector of known linearly independent functions 
P 

(usually taken to be polynomials in the position coordinates) and B is a p x m matrix of 

constants. Y(x) is assumed to satisfy the Intrinsic Hypothesis. The system of cokriging equations 

(7) or (7') must be modified by replacing each identity matrix by a row (repectively column) of 



matrices and the single matrix of Lagrange multipliers is replaced by several such matrices. Write 

F (x.) = f (x.)I then the new system 1s a I a I 

EFa(xi)ri= F2(xO) ; j=l,. . . ,n and a=O,. . . ,p (17) 

Further details may be found in Myers (1982). As in the simplest form of cokriging using the 

intrinsic hypothesis, Universal cokriging is completey analogous to (uni-variate)Universal kriging 

in that each entry in the system of equations is rep1aced.b~ a matrix. The algorithm for obtaining 

the undersampled version of the system works equally well for Universal cokriging. 

7 - TEFAPORAL DEPENDENCE 

In many applications of geostatistics such as in mining, the time scale for deposition or 

formation is exceedingly long in comparison to the time span for the period of analysis and hence 

one may reasonably ignore any temporal dependence. In many environmental problems however the time 

scale for change is relatively short, for example the dispersion of a plume in an aquifer or the 

spread of sulfur dioxide in the air. Moreover in many instances the tendency is to sample at 

multiple time points for a small number of sample locations. We are concerned with estimation/ 

interpolation problems for a single random function Z(x,t) or vector function Z(x,t). There are 

several possible ways for reducing this problem to a simpler one and at least one leads to the use 

of cokriging. 

a. Assume that Z(x,t) (or Z(x,t)) satisfies the Intrinsic Hypothesis with respect to x for 

each t and that moreover the variogram depends on t only in the parameters. This formulation is 

not too different from an assumption of local stationarity, in some such instances the relative 

variogram is a useful way to filter out the non-stationarity. In practice only a finite number of 

t's will be considered. 

b. In some instances it is the time dependence that is of primary importance and the 

formulation in a. might be used with x,t interchanged. 

c. If only one variable is of interest and data is available at a finite number of locations - 
and times, re-write the problem as a vector function. That is, Z(x)= [~(x, t,), . . . . , Z(x,tm)].  his 

approach has the advantage that data for one time point can be used in the estimation for another 

time point. If ?(x, t) is a vector then the same approach may be used except that the dimension 

will increase more rapidly. 

8 - DUALITY 

It is well-known that the uni-variate kriging estimator can be written in a dual form, 



where the hi's and bi'satisfy respectively 

We see however that the coefficient matrix is exactly the same in (19) and (20). Hatheron ( 1900) 

and others have shown that this duality implies that thin plate splines are a specla1 case of 

kriging and smoothing splines are a special case of cokriging. Myers (1986) has shown that this 

duality can be extended to cokriging and in fact programs to solve the cokriging system can 

provide the dual solution as well. This duality is not so readily apparent if the cokriginq :jyatem 

is written in the "one variable" form as given by equations (9). First we need some notation: 

then the analogues of (19) and (20) are 

and the cokriging estimator can be written in either of the two forms 

Further properties of the Dual form of the cokriging estimator and in particular of the matrices 

B, M are found in Myers (1986) 

D - POSITIVE DEFINITENESS 
1 - EQUIVALENT DEFINI'I-IONS 

It is well-known as shown in Matheron (1973) that .in order for a function to be a 

variogram it must satisfy a (conditional) positive definiteness condition as well as a growth 



condition. Although a number of different ?stimators have been proposed and used for the 

var~oqrsm, in all cases one of the nt.eps involves fitting the estimated variogram to a theoretical 

model which is usually taken to be a linear combination of known valid models such as the 

spherical, exponential, power, etc. In particular this ensures that the estimation variance is 

non-11egat.ive and hence has b minlmum value. There are several ways to extend these concepts to the 

mult~variable version. 

a. As was noted above it 1s reasonable to consider linear combinations and since the linear 

combination is uni-variate we might define positive definiteness for matrix valued functions by 

transforming to a univarlate prohlem. We shall consider only the multi-variate version of 

vsriograms but the extensLon to generalized covariances is immeadiate. 

If y(h) is a m x m matr~x valued function with y(O)= 0 then -7 is conditionally positive 
T definite if for all vectors A = [a , , a m ] ;  -ATy(h)~ is conditionally positive definite. That is 

, y(h) is a valid variogram matrix if ATzi(1l)A is a valid variogram. In particular this means that 

for any choice of A, any choice of the x l , .  . .x and any choice of the Al,. . . ,A with L A .  = 0. n T .  Note several important :jpecldl cases. Suppose that only two the a.'s are non-zero and A 1s either 

[l 1 1  or [ l  - 1 1  then we have that y.. ty. .+2y. lj , y. .+y. .-2y. . must both be valid models. 
11 I 3  11 3 3  11 

This observation provides further insiqht into the form of valid models. 

b. Recalling the form of the estimator used when data on several variables is used to 

estimate a single varlable we see that another possible formulation might be that 

for any choice of the xl,. . . ,xn and any choice of the A's with EAi = 0 for all r. Clearly this 

definition is equivalent to the first one. 

c. The obvious definition that. corresponds to the general form of the cokriging equations 

was qiven by Myers (1984) as 

when E f .  = 0. Moreover in that same paper it was shown that this is equivalent to (26) although 
1 

the later was not formulated as a definition at that time. 

2 - MODELS FOR VARIOGRAM MATRICES 

Irrespective of which estimator is used for the variogram .at some point in the process 

one uses two important properties of valid variograms; the set of valid variograms is closed under 

positive linear combinations and secondly it contains certain known models such as the spherical, 

exponential, power, cubic and qaussian. Moreover all of these are characterized by parameters' that 

are interpretable on the graph for an isotropic 'hodel. By analogy we might attempt to characterize 



valid variogram matrices by requiring that the entries be valid models. For the diagonal entries 

this is appropriate and each corresponds to a single component of the vector random function, 

i.e., each diagonal entry is a variogram. For the off-diagonal entries the problem is not so 

s.lmple. One may utilize a sample cross-variogram to estimate the off-diagonal entries but now the 

question is, what does a valid cross-variogram look like? In a number of instances, authors have 

used variogram models for cross-variograms, in general this will lead to an invalid model in view 

of the first definition of positive definite given above. Moreover that approach would asume that 

the correlation between the two components is always positive, that is, while variograms arP 

always positive cross-variograms could be negative. Msreover variograms except possibly for hole- 

effect. models are non-decreasing functions but clearly the cross-variogram need not be either 

non-decreasing or non-increasing. 

From the first definition of positive definiteness given above we see that there are 

three equivalent general forms of the cross-variogram 

t - 
where yij , y . .  respectively are the variograms for Zi(x)+Z.(h), Zi(h)-Zj(h). In general a 

1 I 3 
cross-variogram does not look like a variogram but rather like the difference of two variograms. 

+ 
In Myers (1982) it was suggested that cross-variograms be modelled by modelling yij ,yii 

,yjj then using the first form given in (28). The dis-advantage of this is that the three 

variograms are modelled independently and one is still not assured of having the correct model. If 

all three relations given in (28) are used then this problem is cvercome. This process does not 

avoid the fact that for m components there are m variograms and m(m-1)/2 cross-variograms, this is 

not an impossible task as is seen in Myers and Carr (1984) where eleven variables were considered. 

If the relations given in (28) are combined with the integral representation formumla given by 

Matheron (1973) then an integral representation is obtained for the cross-variogram but this is of 

more theoretical interest than practical. The key point about models for cross-variograms is that 

they must always be considered in connection with the variograms for the two components. 

3 - THE LINEAR MODEL 

The construction that has received perhaps the most attention is the linear model. 

Suppose that Yl (x) , . . . ,Y (x) are uncorrelated random functions and that Z . (XI= 1 a. .Y. (x) or P 3 13 1 
i(x) = Y(X)A. Then F ~ ( ~ ) = A ~ F ~ ( ~ ) A  with yy a diagonal matrix of variograms. This suggests a way to 
construct general variogram matrices. By using Version 1 of the definition of positive definite- 

ness we see that for any choice of A yZ is a valid model. The problem of course is to, determine 
the Y's or rather their variograms and the entries in A when we begin with z(x). In some instances 

the decomposition has a physical interpretation such as for geochemical variables, Wackernagel 

(1985) has exploited this possibility together with the use of Principal Components to model' both 

A and Ty. Note that such a representation is eqli'ivalent to diagonalizing yZ, this is analogous to 



the use of principal Components on a correlation matrix except that the factors are required to be 

the same for each choice of h. In the case of a multivariate gaussj.an this decomposition is 

reasonable since it corresponds to a rotation but In general one would not expect such a decompo- 

sition. In all of the early applications only the 1ine.r model was used which is very restrictive. 

E - PRACTICAL ASPECTS 

1 - PROBLEMS AND DIFFICULTIES 

Most of the problems encountered In the practice of cokrlging are the same as those 

encountered in the practice of kriging but perhaps magnlfled by the number of variables 

incorporated. With respect to the variograms there are no new problems except there are multiple 

variograms to model. 

The problems are essentially of two types both relating to the estimation and modelling 

of cross-variograms or cross-covariances 

a. No matter which estimator is used nor how the cross-variograms are modelled, it is 

necessary to have a sufficient number of sample locations where both variables are sampled (for 

each pair of variables). At least in theory the supports should be the same as well. This 

condition is frequently not satisfied if the form of the analysis is decided after the sampling is 

complete. Where the condition is not satisfied one sometimes uses an ad-hoc process of kriging one 

variable at the sample locations of the other variable and estimating the cross-variograms using 

the kriged data. This should always be done in connection with some form of cross-valid?.tion using 

cokriging. 

b. In the case of variograms or covariances it is easy to ensure that the positive defini- 

teness condition is satisfied by using nested models, i.e., positive linear combinations of valid 

models moreover the parameters of the models are at least partially identifiable from the graph of 

the sample variogram. However positive definiteness is not a property of a cross-variogram rather 

it is a property of the triple of two variograms and the associated cross-variogram. As shown 

above the cross-varlogram has a more complex structure and one can not easily ideiitify the 

components or the -parameters from the graph of the sample cross-variogram. One should follow 

several approaches i. compute and plot the sample cross-variogram (or cross-covariance) ii. model 

the variograms of each variable separately and cross-validate iii. model the variograins for the 

sum and difference of each pair of variables then compute and model the cross-variograms using the 

relations in ( 281 ,  this later step will likely require sequential adjustments to get a match 

between the three representations of the cross-variogram. It should be noted that in the case of 

one variable the variogram generalizes the covariance but in the case of cross-variograms where 

the cross-covariance is not symmetric then they do not necessarily coincide in the case of second 

order stationarity. A sufficient condition is given in Myers ( 1 9 8 2 1 ,  in particular it may be 

preferable to use cross-covariances in some cases since the variograms,cross-variograms are always 

symmetric. 



While cross-validation does not lead to tests of hypotheses in a strong statistical sense 

it does provide a mechanicism for ascertaining whether the variogram model reproduces the charac- 

teristics of the data, in the case of cokriging however the problem is more complex. It is 

possible to use cokriging to cross-validate in exactly the same way the univariate krlginq is used 

but the question of which statistics to use to select the better model has not been resolved as 

yet. 

2 - SOFTWARE 

Proto-type general cokriging and co-coditional simulation programs are given In Carr, 

Myers and Glass ( 1 9 8 5 )  and in Carr, Myers ( 1 9 8 5 1 .  Sample variogram and sample cross-varlogram 

programs are given in Journel and Huijbregts ( 1 9 7 8 )  and are generally available in a number of 

commercially available packages or the public domain STATPAC available from the USGS. At the 

University of Arizona newer versions of the cokriging programs including dual cokriging and 

cross-validation using cokriging have been written in FORTRAN 7 7  and implemented on PC 

compatibles, the same source codes are useable on VAXs. A program for testing the Cauchy--Schwartz 

inequality has also been written and is being altered to incorporate graphics. The availability of 

high resolution color graphics and version 4 . 1  of the Microsoft FORTRAN compiler which allows 

much larger source codes and data sets makes the micro quite adequate both for computation and for 

display of results. There is a considerable in savings in capital investment in comparison to the 

use of the mainframe. 

3 - EXTENSIONS 

Because of the weaknesses associated with interpolating or estimating non-linear 

functions such as probability distributions by linear combinations, Matheron introduced 

Disjunctive Kriging. Myers ( 1 9 8 6 )  has shown that the multivariate form of Disjunctive Kriging is 

easily obtained using the general form of cokriging, this extension is in the process of being 

implemented by software. Disjunctive Kriging incorporates a strong gaussian distribution 

assumption and Journel has proposed the use of Indicator or Probability Kriging which uses a 

non-linear transformation. In its most general form the weights are obtained as the solution to a 

cokriging system. It was noted above that univariate kriging incorporates thin plate splines as a 

special case via the dual form of the kriging estimator, dual cokriging provides a way to define 

multivariable splines and this connection is currently be developed. 

In that kriging allows the computation of the variance without knowledge of the data 

values, a number of authors have dealt with the possibility of the design of an optimal sampling 

plan where the function to be minimized in some combination of kriging variances or is the kriging 

variance associated with the estimation for a region. In the case of environmental monitoring 

similar problems arise but the loss function will now be much more complicated including 

components such as the overhead on the sampling process, costs for individual sites, costs 



associated with particular types of samples, type of laboratory analysis to be used (i.e., 

pollut-ants or indicators to be sampled for), costs (health, social, etc) associated with Type I, 

Type I1  errors. It is important to recall that sampling designs in this sense refer to the 

cc~llection cpf data for cokriginy (in one of its various forms) not. for the purpose of estimat-ion 

of varioqrams or cross-variograrns. General software for the former is under development and unlike 

prevlous examples in the univariate case does not select new sample locations from a pre-specified 

qrid, this requires a different search/optimizatlon technique. 
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