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ABSTRACT
In using cokriging to study soil spatial variability, a key step is to

determine cross-variograms. A recently developed approach was uti-
lized to compute pseudo-cross-variograms, from which cross-vario-
grams can be formulated. The approach does not require a large
number of common locations where data are available for all variables
used in the cokriging modeling and estimation processes. In this study,
with only one-thirteenth of the original data for NO3 and Ca, valid
cross-variograms, each with the electrical conductivity (EC), were
obtained by using pseudo-cross-variograms. Based on the cross-var-
iograms, cokriging with EC improved the estimation of NO3 and Ca
significantly. Cokriging yielded a smaller mean squared error (MSE)
and kriging variance, and a higher correlation between estimates and
measurements. Using 20 points of NO, and 130 points of EC, cokrig-
ing provided a similar distribution pattern for NO3 as that generated
with 100 points of NO.,. Cokriging with EC reduced MSE and the
mean kriging variance of the estimated Ca up to 78 and 85%, re-
spectively, compared with kriging.

variograms or cross-covariances of two random vari-
ables (or more). Standard approaches for modeling
cross-variograms are usually based on sums or differ-
ences of the two random variables, which are mea-
sured at the same locations. One disadvantage to the
standard approaches is that only common locations
can be used. Estimating the cross-variograms requires
a large number of locations where data is collected
for both variables, a condition that is frequently not
satisfied in practice. For cases in which this type of
information is not available, cokriging cannot be used
to improve estimation. Clark et al. (1989) presented
a variation of cokriging, using pseudo-cross-vario-
grams, which did not require that both variables be
measured at the same locations. Our objective was to
apply pseudo-cross-variograms and cokriging to im-
prove estimations of the spatial distribution of soil
chemicals over relatively large areas of land.

SOIL SPATIAL VARIABILITY can be a frustrating is-
sue in the field-scale description of soil physical,

chemical, and hydrological parameters. Geostatistics
is a helpful tool to study the spatial distribution of soil
properties (Yost et al., 1982a,b; Burgess et al., 1981;
Hatfield et al., 1984; Morkoc et al., 1985; Warrick
et al., 1986). Most geostatistical research in soil sci-
ence has been based on determinations of the spatial
correlation function, i.e., the variogram, and a variety
of linear estimators such as kriging.

Cokriging is an extended technique of kriging, which
incorporates both spatial and intervariable correlation.
Cokriging can estimate all or some variables using the
same coefficient matrix. Several applications of cok-
riging for describing soil-water phenomena have been
reported during the past 10 yr. For example, Vauclin
et al. (1983) used kriging and cokriging to predict
available water content and sand content. McBratney
and Webster (1983) applied cokriging to interpret the
topsoil silt content, using subsoil silt or subsoil sand
as joint variables. Carr and Myers (1984) studied the
application of cokriging to the analysis of satellite data.
Yates and Warrick (1987) and Mulla (1988) estimated
soil water content using a cokriging procedure in which
the bare soil surface temperature and the sand content
were used as auxiliary functions. Using soil-map de-
lineations, Stein et al. (1988) pointed out that the use
of cokriging resulted in an average increase in preci-
sion of about 10% in 30-yr average moisture deficit
maps. Zhang et al. (1992) improved the estimation of
soil texture by using cokriging with spectral proper-
ties.

The key step in cokriging is to formulate cross-
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THEORY
Pseudo-Cross-Variograms

Cokriging is a method for estimating one or more vari-
ables of interest using data from several variables by in-
corporating not only spatial correlation but also intervariable
correlation. Let Zj(jc), ..., Zm(x) denote the value of the
variables Z15 ..., Zm at location*, and Z(x) = [Z^(x), ...,
Zm(x)]. If*!, ..., xn are sample locations with data Zfo),
..., Z(xn), then the cokriging estimator can be written in
the form

[i]
where F,.s are weight matrices. In many applications, the
data may not include values for all variables at all locations.
This is called the undersampled problem. The estimator
adapts to this case by inserting zeros in the appropriate
places of the weight matrices. It is shown in Myers (1984)
that the undersampled case is a special one both in terms
of the estimator and the set of equations used to determine
the weight matrices.

To determine the weight matrices, the variables (Z, (/ =
1, 2, ..., m) atx, Zj(x), are considered to be random func-
tions and statistical conditions are imposed on the cokriging
estimator. The estimator is required to be unbiased and the
sum of the variances of the estimator errors (of the respec-
tive variables ) is minimized. As shown in Myers (1982)
this leads to a linear system of matrix equations. To quan-
tify the spatial correlation of each variable and also the
intervariable correlation, either variograms and cross-var-
iograms, or covariances and cross-covariances are used.
These statistical techniques are used to compute the vari-
ances of the errors of estimations. Covariances and cross-
covariances can be used when the random functions are
second-order stationary, i.e., when

(i) E{Zj(x)} = nij, a constant depending on/,
(ii) Cov {Z, (x + h), Zj (x)} = (yu (h) exists and depends

only on h and /,
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where E denotes the expected value and Cov denotes the
convariance. These conditions are sufficient for the cross-
covariances to exist

Cov{Z/* + h),Zk(x)} = Cjk(h) [2]
Alternatively, the weaker assumption called the Intrinsic
Hypothesis could be used

(i') E{Z (*)} = mfe), a function of j and x,
(ii') 0.5Var{Z/je + h) - Z/*)} = y^h) exists and de-

pends only on h and j,

where Var denotes the variogram. These conditions are suf-
ficient for the cross-variogram to exist:

0.5Cov{Z/* + h) - Zj h) - Zk(x)}

= yjk(h) [3]
Whichever of these combinations is used, it is necessary to
estimate and model correlation functions using the data.
The advantage of using variograms and cross-variograms is
that it is not necessary to separately estimate m. To estimate
yjk(h), it is necessary to find many pairs of sample locations
with a separation h (or nearly so) such that there are data
for both Zj and Zk at the locations. However, in the under-
sampled case, there may not be enough data pairs at sample
locations. In an extreme case there may not be any such
pairs. This problem can be alleviated by the use of the
pseudo-cross-variogram, since it can be estimated even
without such pairs. When using variograms and pseudo-
cross-variograms, only minor changes are needed in the
cokriging equations. In some cases the pseudo-cross-var-
iograms can be used to model the cross-variograms.

Clark et al. (1989) and Myers (1991) defined the pseudo-
cross-variogram of Zj and Zk as

gjk(h) = 0.5E[Z/*) - Zk(x + h)]2 [4]

It is assumed that this function depends only on the sepa-
ration h. The pseudo-cross-variogram is not necessarily
symmetric, may not be zero at h = 0, and is not a variogam
or a covariance. When j = k and the function satisfies the
Intrinsic Hypothesis, Eq. [4] becomes the variogram. Since
in general the two random functions Z, and Zk do not have
the same means, Eq. [4] is not the same as one-half the
variance of the difference, even if both random functions
separately satisfy the Intrinsic Hypothesis. A more general
definition of the pseudo-cross-variogram is given as fol-
lows:

gjk(h) = gkj(-h) = 0.5Var[Z,(*) - Zk(x + h)] [5]

Since the translation of a second-order stationary random
function is also second-order stationary, Eq. [5] is the var-
iance of a random function and depends only on h. How-
ever, the equation is not the covariance or the variogram
of a random function unless; = k. If Z(x) = Y(x) + m(x),
where Y(x) is second-order stationary and m(x) is the mean
ofZ(x), and if the pseudo-cross-variogramsg^, gkj are sym-
metric, Eq. [5] may be rewritten as (Myers, 1991)

gjk(h) = 0.5(o; - trk) + yjk(h) [6]

where cr, and ak are the variances of variables j and k,
respectively, ajk is the covariance between variables j and
k at h = 0, and yjk(h) is the cross-variogram. Equation [6]
demonstrates that the pseudo-cross-variogram differs from
the cross-variogram by a positive constant.

Cokriging Equations
The cokriging equations are normally obtained and ex-

pressed in terms of the variograms and cross-variograms
or, alternatively, the covariances and cross-covariances. The
following section provides a brief overview of how to adapt
the cokriging equations to the pseudo-cross-variograms and
details are given in Myers (1991).

If each component of Z(x) satisfies the Intrinsic Hypoth-
esis, then Eq. [1] is unbiased if

I r, = [i,o,..-,or [7]

where T indicates a transpose (in Eq. [7] and in the follow-
ing discussion, all single sums are taken from i — 1 to i
= n and the double sums are from i = 1 to i = n and j
= 1 to j = n). The variance of the error for variable Z,
can be written in the form

where

W, = Zife) - Z,^),..., Zm(Xi) -

j [8]

By use of

E{[Zj(x) - Z»][Z4(y) - Z»]} = g-p(u - x)

+ «£(« - y ) - && -x)
and

Z*(y) - Z»]} = gjp(u - x)

(u - y) - gjk(y - x) [ii]
the "covariance" matrix in Eq. [8] can be written in the
form

[12]
where

G;(X -y) =

and

-y) =

- y) —

- y) ...

- y )

"- y)

-y)

[13]

[14]

Using Eq. [7], the right-hand side of Eq. [8] can be written
as

j [15]

To minimize the variance of the error of an unbiased esti-
mate, m Lagrange multipliers /*„ ..., fj.m are introduced.
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The cokriging equations are then

= t?n(*b ~ o - *,)]T [16]

for / = 1, ..., n. Unlike the matrix variogram function used
in Myers (1982), G"(h) does not need to be a symmetric
matrix. For the special case where gjk(h) = gjk(h) + ajk
with a^ = 0, the above equations are the same as the usual
system of co-kriging equations in terms of variograms and
cross-variograms.

METHODS
The sample pseudo-cross-variograms for Variable 1 (Zj)

and Variable 2 (Z2) are computed by means of

A)]2 [17]

and

where N is the number of sample pairs for lag h. Ifgi2*(h)
andg21*(h) are symmetrical, i.e.,g12(h) = g2i(h), we may
obtain a cross-variogram from the pseudo-cross-variogram
by utilizing the relationship between g12 and -y12 (Eq. [6]).
The nugget of the cross-variogram is determined by cross-
validation. The cross-validation procedure involves taking
the pseudo-cross-variogram with a smaller nugget value as
a cross-variogram, and producing estimates corresponding
to measured locations using the cokriging technique. In this
procedure, every, known point is estimated by using a
neighborhood around it, but not itself. Based on the statis-
tical analysis of the estimates and measurements, an appro-
priate nugget of the cross-variogram can be chosen. The
choice of a nugget of the cross-variogram should result in
a near-zero value of mean error, and near unity for the
reduced kriging variance.

The following methods are used to compare results es-
timated with kriging and cokriging. The MSE is calculated
with

MSE = - £ [Z(x,) - [19]

where Z(xJ and Z*(x,) are the measured and estimated val-
ues at xis respectively. Relative improvement, or relative
reduction, of MSE is defined by

100(MSE* - [20]

where MSB* and MSE,.* are the mean squared error for
kriging and cokriging, respectively. Relative reduction of
krigirig variance is defined in the same way by replacing
MSE* and MSEC* in Eq. [20] with kriging variances of
kriging and cokriging, respectively.

APPLICATION
The estimation procedure using pseudo-cross-var-

iograms was applied to a large data set of soil chem-
ical properties as described by Warrick et al. (1991).
The data were collected in May of 1989 near Marana
in Arizona. The experiment involved 130 measure-
ment points over an area of 1000 by 1000 m. Two

soil series were present, the Mohave (fine-loamy,
thermic Typic Haplargid) and the Tubac (fine, mixed,
thermic Typic Paleargid). Both series are deep, well-
drained soils. Soil texture ranged from clay to sandy
loam. One hundred sampling points were obtained from
a 100 by 100 m grid, whereas an additional 30 loca-
tions were optimally distributed. Optimization was with
respect to fitting a predefined distribution of sample
separation (Warrick and Myers, 1987). Figure la shows
the locations of the 130 points. Samples were air dried
and sieved, and extracts were made from a 1:1 mix-
ture of dry soil to water by weight. Correlations (r2)
between several physical and chemical parameters of
the 130 soil samples are listed in Table 1. The vari-
ables EC, NO3, and Ca were used for the following
analysis. The EC was scaled to the same magnitude
of NO3 by multiplying by 100. The scaling does not
affect accuracy of kriging or co-kriging results, al-
though kriging variances may become larger. The de-
scriptive statistics for the npntransformed and
transformed data are given in Table 2 and include the
mean, variance, minimum, maximum, skewness, and
kurtosis of the data set. The results suggest that the
soil chemical properties are more closely log-normally
distributed. Therefore, a log transformation was per-
formed on the variables. In the following discussion,
all results were based on the log-transformed data.
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Fig. 1. Locations of the (a) 130 soil samples and (b) 80 soil

samples at the Marana Farm.
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Table 1. Correlations (r2) of physical and chemical parameters of 130 soil samples from the Marana Farm.
Gravel Sand

Gravel 1 0.612
Sand 1
Silt
Clay
PH
ECt
Cl
NO3
SO4
Na
Ca
Mg

Silt
0.359
0.613

1

Clay
0.545
0.871
0.258

1

pH
0.028
0.068
0.074
0.041

1

ECt
0.077
0.106
0.055
0.099
0.166

1

Cl
0.064
0.133
0.048
0.143
0.061
0.662

1

N03

0.014
0.017
0.043
0.004
0.197
0.689
0.317

1

SO4

0.134
0.272
0.040
0.210
0.106
0.524
0.441
0.096

1

Na'
0.114
0.166
0.036
0.207
0.106
0.785
0.699
0.333
0.773

1

Ca
0.053
0.076
0.064
0.055
0.159
0.949
0.561
0.750
0.416
0.615

1

Mg
0.059
0.077
0.042
0.071
0.183
0.959
0.558
0.693
0.492
0.679
0.956

1

t Electrical conductivity.

Cokriging between Nitrates and Electrical
Conductivity

As shown in Table 1, NO3 has a relatively high
correlation with EC (r2 = 0.689), and EC is much
more easily measured than NO3. It seems reasonable
to try to improve the estimation of NO3 by using in-
formation of EC with relatively few measurements of
NO3. We assumed that 130 EC and 80 NO3 data points
were available and used them to compute the pseudo-
cross-variogram and variograrhs. The locations of the
80 points chosen randomly from the original 130 points
are shown in Fig. Ib. Plotted in Fig. 2 are the sample
variograms for EC and NO3, along, with the fitted
variograms, which are determined with cross-valida-
tion. The fitted variograms are linear models of the
forms

y1(h) = 0.08 + 1.8(10)-4/z [21]

y2(h) = 0.23 + 4.7(10)-4fc [22]

for EC and NO3, respectively. The sample pseudo-
cross-variograms for Variable 1 (EC) and Variable 2
(NO3), gi2*(h) andg21*(h), are plotted in Fig. 2c. The
sample pseudo-cross-variograms are quite symmetri-
cal, as illustrated by the fact that the two sets of results
fall on nearly the same line in Fig. 2c. The fitted
pseudo-cross-variogram is also a linear model,

130 EC points, the variograms of Eq. [21] and [22],
and a cross-variogram of the form

gl2(h) = 0.15 + 3.0(10)-4/t [23]

The nugget of the cross-variogram of EC and NO3
was determined by cross-validation, while its slope
was taken from Eq. [23]. Table 3 presents results of
cross-validation, using the data sets of 80 NO3 and

Table 2. Descriptive statistics for the electrical conductivity
(EC), and NO3 and Ca contents (130 soil samples).

Variable Mean . Variance Min. Max. Skewness Kurtosis
Nontransformed data

EC
N03
Ca

0.694
96.60
57.0

0.126
8720
1510

0.280 3.45
13.1 844
18.7 380

3.92
4.53
4.88

29.6
33.5
38.7

Transformed data
EC
NO3
Ca

4.15
4.31
3.91

0.161
0.474
0.223

3.33 5.84
2.57 6.74
2.93 5.94

0.564
0.402
0.791

4.24
3.47
4.65

= 0.055 + 3.0(10)-4/z [24]

For comparison, the results of cross-validation for the
variogram of NO3 (Eq. [22]) are also shown in Table
3. The entries in Columns 2 and 4 indicate that sup-
plemental information of EC improves the estimation
of NO3, resulting in a smaller mean error (27% re-
duction), a smaller mean sum of square error (43%
reduction), and a lower mean kriging variance (25%
reduction), as well as a higher correlation (r2) between
the estimates and the actual measurements.

Using the same approach with only 20 NO3 data
points, as shown in Fig. 3a, and again all 130 EC
measurements, we obtained a pseudo-cross-vario-
gram

gl2(h) = 0.075 + 3.25(10)-4/i [25]

which is shown in Fig. 3b with the sample pseudo-
cross-variograms. The cross-validation results for this
data set and the variogram models of Eq. [21] and
[22] are summarized in Table 4. The cross-variogram
model in this case was

y12(/z) = 0.05 + 3.25(10) ~4h [26]

based on the pseudo-cross-variogram (Eq. [25]).
Using the 20 NO3 data and the 130 EC points, and

the variograms and cross-variogram, we cokriged and
kriged 100 NO3 data points on the 100 by 100 m grid
where measured data were available. The MSE be-
tween predicted and measured values for cokriging
and kriging were 0.297 and 0.463, respectively. Thus,
cokriging reduced the MSE by 36%.

The estimated errors and kriging variance using
kriging and cokriging are illustrated in Fig. 4a and 4b
for the 87 estimates (the 13 data points out of 100
estimates that were estimated exactly with both tech-
niques were not plotted). The results clearly show that
kriging has a larger estimated error, and a larger krig-
ing variance than cokriging. The contour maps of NO3
shown in Fig. 5a, 5b, and 5c were generated using
information from the original 100 measurements, the
100 cokriging estimates, and the 100 kriging esti-
mates, respectively. Cokriging gives a similar pattern
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Fig. 2. Variograms of (a) electrical conductivity (EC) using

130 data points, (b) NO3 using 80 data points, and (c) the
pseudo-cross-variograms of NO3 and EC using 80 NO3 and
130 EC data. The asterisks and open circles in (c) represent
the sample pseudo-cross-variogram g,2* andg21*, respectively,
whereas the solid line represents the fitted pseudo-cross-
variogram.

Table 3. Summary statistics of cross-validation for the cross-
variogram (80 NO3 and 130 electrical conductivity [EC] data
points) and variogram of NO3.

Cross-Variogram Variogram

Number of validation points
Mean error
Mean square error
Mean kriging variance
Reduced kriging variance
Correlation of estimates and error
Correlation of estimates and measurements

NO3 EC
80 130

-0.024 0.003
0.217 0.097
0.229 0.088
0.948 1.032

-0.164 0.050
0.708 0.630

NO3

80
-0.033

0.378
0.307
1.213
0.048
0.426
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Fig. 3. (a) Locations of the 20 soil samples and (b) pseudo-

cross-variograms of NO, and electrical conductivity (EC)
assuming 20 NO3 and 130 EC data. The asterisks and open
circles in (b) represent the sample pseudo-cross-variograms
g12* and £21*, respectively, whereas the solid line represents
the fitted pseudo-cross-variogram.

of the NO3 distribution as the original data. On the
other hand, kriging smoothes the estimates and gives
a quite different pattern of the NO3 distribution.

It should be noted that, with the 20 pairs of NO3
and EC as shown in Fig. 3a, the cross-variogram is
not well defined if standard methods are used to com-

pute their cross-variogram. The sample variograms of
the sums and differences for the two variables are
shown in Fig. 6a and 6b, respectively, with a maxi-
mum sample pair of 17. The irregular behavior and
deficient sample pairs make it impossible to fit theo-
retical models. Therefore, cokriging could not be per-
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Table 4. Summary statistics of cross-validation (20 NO3 and
130 electrical conductivity [EC] data points).

NO3 EC
Number of validation points 20 130
Mean error -0.069 0.004
Mean square error 0.255 0.123
Mean kriging variance 0.280 0.101
Reduced kriging variance 0.934 1.194
Correlation of estimates and error 0.114 0.138
Correlation of estimates and measurements 0.426 0.495

0-0 0.5 1.0 1.5 2.0 25
0.0

Error of Cokriging

0)o

BOa:§>

0.5-

0.4-

0.3-

0.2-
0.2 o!3

— 1:1 LINE
T
0:4 0:5

Cokriging Variance
Fig. 4. Plots of (a) estimated error, and (b) kriging variance

with kriging and Cokriging.

formed. In contrast to the standard methods of
computing cross-variograms, pseudo-cross-vario-
grams can be computed with even fewer data pairs at
the same sample locations. Figure 6c presents sample
pseudo-cross-variograms computed with 10 NO3 and
130 EC points (only 10 pairs of NO3 and EC at com-
mon locations), and a fitted model.

Cokriging between Calcium and Electrical
Conductivity

This second example shows that estimates of Ca are
improved significantly by cokriging using pseudo-cross-
variograms of Ca and EC. The following analyses
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Fig. 5. Contour maps of NO3 calculated from (a) 100 data
points, (b) 100 estimates by cokriging with 20 NO3 and 130
electrical conductivity (EC) data points, and (c) 100 estimates
by kriging with the same 20 NO, points as cokriging.
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electrical conductivity (EC), (b) the difference between NO3
and EC using 20 pairs of NO3 and EC data, and (c) pseudo-
cross-variograms of NO3 and EC using 10 NO3 and 130 EC
data. The asterisks and open circles in (c) represent the
sample pseudo-cross-variograms glz* and g2i*, respectively,
whereas the solid line represents the fitted pseudo-cross-
variogram.

were based on a linear variogram of Ca, having a
nugget of 0.06 and slope of 4.8 x 10~4, which was
computed using 50 data points randomly chosen from
the original 130 points. The choice of the variogram
was considered in two aspects. First, computation of
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Fig. 7. Pseudo-cross-variograms of Ca and electrical conductivity

(EC), based on (a) 80 Ca and 130 EC data, (b) 50 Ca and
130 EC data, and (c) 10 Ca and 130 EC data. The asterisks
and open circles represent the sample pseudo-cross-vario-
grams g,2* and £2i*» respectively, whereas the solid lines
represent the fitted pseudo-cross-variograms.

the sample variogram only requires a small fraction
of the total number of available data (in terms of lower
sampling cost). Second, the kriging interpolation
processes are not very sensitive to the model param-
eters in terms of accuracy (Warrick et al., 1988). By
assuming different "known" data points, seven sub-
sets of Ca were randomly selected from the original
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Table 5. Summary statistics of cross-validation for Ca; the cross-variograms were selected based on the pseudo-cross-variograms
computed from 130 electrical conductivity (EC) data points and different numbers of data points of Ca.

Number of validation points
Statistic
Mean error
Mean square error
mean kriging variance
Reduced kriging variance
Correlation of estimates and error
Correlation of estimates and measurements

80
-0.007

0.074
0.072
1.022

-0.391
0.867

60
0.003
0.028
0.031
1.012

-0.354
0.943

50
0.002
0.040
0.039
1.057

-0.316
0.931

40
0.001
0.093
0.089
1.226

-0.178
0.795

30
0.008
0.026
0.027
1.236

-0.216
0.934

20
-0.082

0.124
0.112
1.183

-0.067
0.594

10
-0.062

0.038
0.042
1.090
0.318
0.799

data set. These data sets consisted of 80, 60, 50, 40,
30, 20, and 10 data points. Using these subsets and
130 EC measurements, we computed sample pseudo-
cross-variograms. All of the sample pseudo-cross-var-
iograms' gl2* and g2i* were symmetrical and linear.
Results of the pseudo-cross-variograms are shown in
Fig. 7a, 7b, and 7c for 80, 50, and 10 known Ca data
points, respectively. The cross-variograms were mod-
eled based on the pseudo-cross-variograms. Nuggets
of cross-variograms of the data sets were determined
by cross-validation. Table 5 presents the summary sta-
tistics of cross-validation for Ca. The results again
show that a valid cross-variogram can be obtained
with a dramatically reduced data set. Table 6 sum-
marizes the intercepts (a) and the slopes (b) of the
pseudo-cross-variograms and the nuggets of the cross-
variograms. For instance, the pseudo-cross-variogram
between Ca (80 data points) and EC (130 data points)
is

gl2(h) = 0.10 + 2.4(10) ~4h

while the cross-variogram is

•y12(/i) = 0.04 + 2.4(10) ~4h

[27]

[28]

The nuggets of the linear cross-variogram range from
0.03 to 0.07, and the slopes range from 2 to 3. Using
the variograms of Ca and EC and their cross-vario-
gram, as well as each subset, kriging and cokriging
were carried out to estimate the 100 points on the 100
by 100 m grid. The MSE, the correlation between
estimates and measurements (r2), and the mean krig-
ing variance were calculated from the predicted and

measured values. Cokriging always gave a smaller
MSE, a lower mean kriging variance, and a higher
correlation between estimates and measurements than
kriging. These results are presented in Table 6. For
cokriging, the kriging variance is not fully related to
the number of Ca points because EC plays an impor-
tant role in the estimation of Ca. The improvement
obtained by cokriging may be quantified by the dif-
ference in the kriging variances for kriging and cok-
riging. As shown in Table 6, the relative reductions
in MSE and in mean kriging variance by cokriging
are up to 78 and 85%, respectively, compared with
kriging.

We also estimated 625 points on a 50 by 50 m grid
by kriging with 30 Ca data points, and by cokriging
assuming the same 30 Ca and 130 EC data points.
Cokriging reduces the kriging variance by up to 40%,
compared with kriging. For most of the estimates, the
reduction is about 20%.

For this example, the correlation between Ca and
EC is high; therefore, simple linear regression may
give satisfactory estimates of Ca by using information
on EC. Based on the 30 Ca and 130 EC data points,
linear regression gives an MSE of 0.040 and a cor-
relation between estimates and measurements of 0.917
for 100 Ca estimates on the 100 by 100 m grid. The
results are comparable to those in Table 6 (MSE =
0.033 and r2 = 0.928). In general, however, much
more accurate results are obtained by cokriging than
by linear regression if the correlation of two variables
is not so high. Additional advantages to using cokrig-
ing include an estimation that can be carried out any-
where in a studied domain, and a kriging variance that
is provided in the estimation process.

Table 6. Estimated parameters of pseudo-cross-variograms of Ca and electrical conductivity (EC) (130 points), mean squared
error (MSE), correlation between estimates and measurements, and mean kriging variance of 100 estimates of Ca by kriging
and cokriging.

Data points
ofCa

80
60
50
40
30
20
10

Pseudo-cross-variogram

at
0.10 (0.04§)
0.125 (0.068)
0.115 (0.065)
0.15 (0.04)
0.11 (0.07)
0.145 (0.03)
0.10 (0.07)

b x 10-4t
2.4
2.05
2.15
2.2
2.5
3.0
2.8

MSE
kriging
0.055
0.104
0.202
0.153
0.151
0.246
0.195

cokriging
0.026 (531)
0.033 (68)
0.046 (77)
0.054 (65)
0.033 (78)
0.085 (65)
0.079 (59)

Correlation of estimates
and measurements

kriging
0.875
0.743
0.635
0.613
0.616
0.405
0.573

cokriging
0.942
0.928
0.902
0.891
0.928
0.847
0.850

Mean kriging variance
kriging
0.0059
0.0082
0.0100
0.0136
0.0200
0.0227
0.0509

cokriging
0.0029 (51#)
0.0015 (82)
0.0019 (81)
0.0065 (52)
0.0030 (85)
0.0112 (51)
0.0135 (73)

f Intercepts of the linear pseudo-cross-variograms.
t Slopes of the linear pseudo-cross-variograms.
§ Values in parentheses in this column are nuggets of the linear cross-variograms of Ca and EC; theu1 slopes are the same as those of pseudo-cross-variograms.
11 Values in parentheses in this column indicate relative reductions in MSE.
# Values in parentheses in this column indicate relative reductions in the mean kriging variance.
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CONCLUSIONS
In this study, pseudo-cross-variograms were used

to compute the spatial distribution of NO3 and Ca
across a 1000 by 1000 m field. The results suggest
that the approach using pseudo-cross-variograms
overcomes several of the shortcomings in the standard
methods for computing cross-variograms. The main
advantage of the pseudo-cross-variogram approach is
that the computation of sample cross-variograms does
not require that all variables be measured at the same
locations. Therefore, the method maximizes the use
of available information.

For our examples, valid cross-variograms of NO3
and EC, as well as Ca and EC, were obtained based
on their pseudo-cross-variograms. The pseudo-cross-
variograms were computed from one-thirteenth (10 vs.
130) of the original NO3 or Ca with the EC data.
Using the reduced NO3 data set, cokriging gave more
accurate predicted results for NO3 than kriging, as
shown by the smaller MSB and kriging variance. Es-
timation of NO3 from 20 data points using cokriging
correctly showed the measured pattern of the chemical
distribution contoured from 100 data points, whereas
kriging produced a much smoother pattern. For dif-
ferent Ca subsets, cokriging always provided more
accurate estimates for Ca than kriging. In general, as
the number of data points increased, MSB and kriging
variance decreased, and the correlation between esti-
mates and measurements increased. The relative re-
ductions in MSB and mean kriging variance were as
much as 78 and 85% when cokriging was used.

Cokriging with the help of pseudo-cross-variograms
may be performed in a similar way as discussed above
to predict other soil chemicals, such as Cl, SO4, Na,
and Mg in the data set, using the information of EC.
Cokriging can also be employed to estimate NO3, using
other chemicals besides EC as auxiliary variables to
compute pseudo-cross-variograms.

When sample pseudo-cross-variograms are not
symmetrical, the representation for pseudo-cross-var-
iograms is more complicated than for cross-vario-
grams. The conditions for verifying positive-definiteness
are also more complicated. Further research is being
carried out in such situations.
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