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CO-KRIGING: METHODS AND ALTERNATIVES

Donald E. Myers
Department of Mathematics, University of Arizona, Tuscon, Arizona 85721, U.S. A.

Co-Kriging is a linear estimation or contouring method for vector random functions
which incorporates both spatial and intervariable correlation. A brief survey of
Co-Kriging and types of applications will be given. Co-Kriging utilizes intervariable
correlation for each pair of variables of interest and hence the number of variograms
required increases rapidly, variogram and cross~variogram modelling will be discussed.
Examples will be given for earthquake data from the Los Angeles basin and Bentonite
deposits in Wyoming. Alternatives to Co-Kriging have been explored by several
authors. Theoretical and empirical comparisons with Co-Kriging are given.

1. TINTRODUCTION

The use of a linear estimator to interpolate or
contour spatially distributed data is well-known
for applications in mining, geology, soil
science, hydrology, atmospheric sciences.
Kriging, a regression method, is a minimum
variance unbiased linear estimator (BLUE) and
has received wide use for ore reserve estimation
applications in mining. The theory and practice
of Kriging is found in Journel and Huijbrechts
(1978), Matheron (1971) as well as in numerous
papers in MATHEMATICAL GEOLOGY, WATER RESOURCES
RESEARCH, ECONOMIC GEOLOGY.

Kriging utilizes the spatial correlation, of the
variable of interest with itself, to determine
the weights in an optimal manner. There are at
least two applications wherein intervariable as
well as spatial correlation is relevant. When
the data is sparse for the variable of interest
but is readily available for a correlated
variable it is desired to use the latter to
improve the estimation of the former. A recent
paper by Aboufirassi and Marino (1984)
illustrates this "under sampled” problem. 1In
other instances where there is not a single
variable that is of primary interest, it may be
relevant then to consider a linear combination
of several variables. For each of these
examples, joint estimation of several variables,
using both spatial and intervariable
correlation, is required. As was noted by
Borgman and Frahme (1976), the number of
variables may be large and this can create
notational and computational problems. The
objective of this paper is to review the theory
of Co—Kriging (linear joint estimation),
describe applications and consider alternative
methods that have been used.

2. CO-KRIGING: A BRIEF REVIEW

Recall that in Kriging the sample data Z(xl),
cee Z(xn) is considered as taken from one
realization of a random function Z(x), X
being a point in 1,2 or 3-space. The random
function Z(x) is assumed to have certain
statistical properties, in particular a form of
stationary. The spatial correlation of Z(x)
is represented by the variogram

(1) ¥(h) = 3 Var[z(x + ) - 2(x)]

The linear estimator for Z(x) at an unsampled
location Xq is given by

n
@) z*(xy) = 121 A 2(x))

where
n
(3 T vty - x) = vGyp - x);
i=1 .
n J=1l,eee,n
) Ay =1
i=1

The linear system is obtained by minimizing the
variance of the error of estimation. In order
to determine the weights in a joiant linear
estimation either a scalar valued error or a
scalar valued variance of the error must be
identified since one can not minimize a vector
quantity. PFor the “"under sampled” problem and a
single variable of primary interest, one may
consider only the error of estimation of that
variable. For the general problem the approach
given in Myers (1982) is the relevant one and is
described herein.

Let Zy, eee , Z be the variables of interest
for example the eleven characteristics for
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Bentonite considered by Borgman and Frahme
(1976), Myers and Carr (1984) or topsoil silt,
subsoil silt, and subsoil sand as in McBratney
and Webster (1983) or sulphur, ash, BTU as
considered by Davis and Greenes (1983). Denote

by

4)y Z(x) = [Zl(x), e Zm(x)]
The data for locations Xy, ... , X is given
by the n m~column matrices

Z(Xl)’ cee Z(xn). For an unsampled

location x;, the linear estimator for E(xo)
is

n

(5)  zZ*(xy) = ] Z(x T,

where Fi = [A% ] .is the weight matrix
for location il A'k is the weight assigned
to Zj(xi) in estimating Zk(xO)'

The Fi 's are obtained as the solution to the
system

n
(6) )
-

which is obtained by minimizing
— -— T — —
- 7% - 7%
(7) Tracz E [Z(xo) Z (XO)] [Z(xo) Z (xo)]
2
= -7 %
121 ElZ, (x5) — 2.*(x)]
In (7) Y(h) denotes the matrix with entries

1

(8) Yij(h) =3 Cov(Zi(x + h) - Zi(X)’
_ Z2.(x), z.(xth) - Z.(x))

and u 1is an mx m matrix of Lagrange

multipliers.

In the application of Kriging a first step is to
model the variogram from the data. For Co-
Kriging a variogram must be modelled for each
variable as well as a cross-variogram for each
pair of variables.

As is shown in Myers and Carr (1984), modelling
a large number of variograms and cross-—
variograms is quite feasible. Those results are
described later. For n sample locations

and m variables an (m + l)n system of
equations must be solved. Carr, Myers and Glass
(1984) have given a computer program which shows
that solution of the large systems is quite
feasible.

3. MULTIVARIATE METHODS

When data are obtained for a large number of
correlated variables it is frequently desirable
to consider whether this information can be
expressed by a smaller number of uncorrelated
variables. Consider the data set

Z(Xl)’ vee 5 Z(x ). Each Z is an m~column
mat¥ix and might be interpreted as a point in
m~space. For the collection of such points it
is reasonable to ask about the center of gravity
and the principal directions of this cloud of
points as characteristics to describe the

cloud. Principal Component Analysis (PCA) is
the method for extracting the principal
directions of the cloud. It characterizes
angles by a scalar product which is equivalent
to the Pearson Correlation Coefficient. After
proper normalization of the data, the
eigenvectors of the correlation matrix provide
the desired uncorrelated new directions, the
corresponding eigenvalues determine which
directions are most important. Borgman and
Frahme (1976) used PCA to reduce eleven
characteristics for Bentonite to only five and
an explained variance of 88%. Davis and Greenes
(1983) used PCA for coal quality
characteristics. PCA is not an estimation or
contouring method but rather is primarily
intended to reduce the number of variables under
consideration.

PCA could be viewed as a method to obtain the
representation by uncorrelated variables
referred to in the previous section. The use of
PCA does not ensure that all cross—variograms
are zero. It should be noted that PCA does
incorporate the position coordinates unless they
are incorporated as additional variables. Davis
and Greenes utilized the cross-—-variograms:to
show empirically that the coefficient functions
were uncorrelated for that application.

Benzecri (1973) has given another form of
principal component analysis. The data is
viewed as an n x m array. If each entry is
non-negative then the array may be considered as
a contingency table, that is, if each entry is
normalized by dividing by the sum of all the
entries then each entry might be interpreted as
a probability. It is this interpretation which
motivates the use of a chi-square metric.

Unlike PCA where rows and columns are treated in
a non-symmetric manner, in Correspondence
Analysis the factors are extracted
simultaneously for rows and columns. Hill
(1974) has provided a survey of these methods
and their theoretical relationships. There is
as yet not a large literature in English on the
use of Correspondence Analysis in place of or in
addition to PCA or Factor Analysis. None of the
statistical packages such as BMDP, SSPS, IMSL
incorporate CA. The numerical results for the
use of CA given later in this paper were
obtained with a version of the program by David,
Dagbert and Beauchemim (1977) adopted for use on
a CDC 6400.

EARTHQUAKE DATA
Following the event in Long Beach, California,

building regulations provided for the
installation of recording accelerometers in
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buildings of more than one story especially in 163.430 108.810 5.602 5.911 15.470
the Los Angeles region. While a great deal of 58,920 169.670 4,133 5.738 12,943
attention has been given to possible methods for 130,080 189.820 6.181 5,782 15.234
prediction of earthquakes, somewhat less has 63.370 132,550 5.051 5.879 15.217
been devoted to predicting velocity and 93.390 220.260 5.847 5.652 15.726
intensity of ground motion at different 135.640 0.000 3.701 5.625 17.832
locations for events of a given magnitude. The 141,200 97.860 5.673 5.776 14,990
design of buildings is dependent on such 152.310 143.470 5.474 5.654 15.176
information. Carr, Myers and Glass (1984) have 44,470 72.370 5.985 5.982 16.234
given an example of the use of Co—-Kriging to 57.810 248.490 2.334 5.205 17.722
simultaneously contour both of these 98.950 44,410 6.092 5.801 15.420
variables. Co-Kriging is especially appropriate

for multi-variate data, on a non-uniform grid, TABLE 2

which is both spatially and inter-variable
correlated. Table ! tabulates the data for an
event in the Los Angeles basin. Table 2 gives BENTONITE DATA
the results from Co—Kriging the data.
In the Northern Blackhills District of

INPUT DATA Northeastern Wyoming and South Dakota, there are
deposits of Bentonite. This clay is used for a
X-COORD Y-COORD VELOCITY INTENSITY number of purposes such as in mud for oil
drilling. Unlike many metallic deposits, the
132.360 91.170 10.200 7.000 economic value of the deposit is not
133,210 102.280 15.600 7.000 characterized by an ore grade. Xnetchel and
71.850 182.890 1.000 5.000 Patterson (1956) reported measurements on as
76.490 173.440 3.800 5.000 many as 29 characteristics at some locations.
141.490 94.500 8.200 7.000 Borgman and Frahme (1976) considered only eleven
167.240 - 71.710 2,300 6.000 characteristics all of which were observed at 43
119,210 92.611 5.100 7.000 locations in the Clay Spur beds. Although no
108.810 163.430 11.700 6.000 specific linear combinations were given, Borgman
169.670 58.920 3.900 5.000 and Frahme suggested that linear combination of
189.820 130.080 2,000 5.000 these eleven is the appropriate proxy for ore
132.550 63.370 6.100 5.000 grade. It is well-known that Kriging of linear
220.260 93.390 1.500 5.000 composites is sub-optimal compared to forming
0.000 135,640 1.700 5.000 linear combinations of Co-Kriged variables.
97.860 141.200 6.200 6,000 Matheron (1979) has given a procedure for
143,470 152.310 7.600 6.000 estimating the error resulting from Kriging
72.370 44 470 3.500 6.000 linear composites. Although Borgman and Frahme
248.490 57.810 2.300 5.000 did not report the results of Kriging the
44,410 98.950 3.200 6.000 coefficients in the PCA representation, sample
variograms were given and variograms modelled.
TABLE 1
Myers and Carr (1984) have utilized Borgman and
Frahme's results to provide a comparison with
CO~KRIGING PROGRAM direct Co-Kriging. Variograms were modelled for
: the eleven variables as well as 55 cross—
SINGLE VARIABLE (VARIOGRAM) PARAMETERS variograms. Although the results were not used
VARTABLE NUGGET STLL RANGE in the Kriging, CA was also applied to the
Bentonite data, three factors were sufficient to
1 1.500 12,000 30.000 explain 887 of the variance as compared with
2 0.500 1.800 30.000 five factors for 887% for PCA. It should be
noted that Co—Kriging results in a computed
INTER-VARIABLE (CROSS-VARIOGRAM) PARAMETERS variance of the error(s). The(se) variance(s)
NUGGET SILL RANGE are determined solely by the variograms, cross-—
variograms, the sampling grid but not the
0.050 2,000 30.000 data. The representations obtained by PCA or CA
are data dependent and even if all factors are
NORTH WEST VELOCITY INTENSITY VARIANCE used the error variances are not determined in a
comparable way. A complete discussion of the
91.170 132.360 8.191 7.010 9.327 : relationship of linear combinations of Co—Kriged
102.280 133.210 6.962 6.750 10.843 values to Kriged linear combinations is given in
182.890 71.850 5.005 5.256 12,109 Myers (1983). Finally it should be noted that
173.440 76.490 4,446 5.232 11.927 the multi-variate methods such as PCA, CA
94,500 141.490 9.647 6.878 10,376 incorporate intervariable correlation but not
71.710 167,240 -4.885 5.348 12.877 spatial intervariable correlation nor spatial

92.611 119.210 8.069 6.427 12.666 correlation of individual variables. Table 4
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gives a comparison of Co—-Kriging with the

results using Kriging applied to the

Borgman/Frahme model. Since Kriging and Co- 51

Kriging are unbiased exact interpolators, cross—
validation can be used to quantify the
estimation reliability.

[6]
TABLE 3 /

Mean Square Error Estimation Results
(Kriging for 42 sample locations)

[71

KRIGING
Variable Co- Myers/ Borgman Borgman
Kriging Carr data approx. [8]
1 6.69 6.33 6.79 6.79
2 2.04 1.76 1.92 1.73 [9]
3 0.52 0.32 0.32 0.32
4 54,20 48.85 48.72 48.79
5 47,37  45.65 45.92 47,97 [10]
6 276.01 283.95 283,81 291.85
7 0.54 0.55 0.60 0.56
8 122,86 124.02 124.08 124,10
9 25.61 27,03 27.23 26.69 f11]
10 324,61 326.92 326.92 327.23
11 2037.27 2098.17 2098.17 2127.50
TABLE 4
[12]
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