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Some Aspects of Multivariate Analysis

Donald E. Myers
Department of Mathematics
University of Arizone
Tucson, AZ 85721 U.S.A.

ABSTRACT. C(lassical multivariate methods for analyzing data tableaux
do not explicitly incorporate spatial correlation. In contrast geo-
statistical techniques such as kriging, dual kriging and cokriging are
primarily estimation methods. The multivariate formations of duai
kriging and disjunctive kriging, dual cokriging and co-disjunctive
kriging, provide methods which bridge the gap between the two
approaches. Basic properties of both are presented.

INTRODUCT 10N

The importance of multivariate techniques has been recognized for a
numtier of years. In particular, Cluster Analysis, Principal
Lomponents and Discriminant Analysis have had widespread use,
However, these tools which had their origin in other disciplines
other than the geosciences do not fully respect some characteristics
of multivariate data sets arising out of problems in the geosciences,
Mining, environmental monitoring, hydrology and remote sensing. In
Particular the models underlying these do not specifically
incorporate spatial correlation. The dichotomy between these
techniques and estimation techniques such as kriging can be seen in
the context of two perspectives of a data tableau. Consider

Zl(Xl), ceey Zm(Xl)
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In general multivariate techniques iﬁterpret the tableau as a
(random?) sample of size n from a vector valued random variable
whereas geostatistics a la Matheron would model the tableau as a
non-random sample from one realization of a vector-valued random
function where the spatial correlation is of principal interest. The
above multivariate techniques do not require position coordinates and
do not reflect the support of the sample. In general they are not
estimation techniques but rather seek to identify underlying
phenomena or discern patterns. The various forms of kriging have
been developed and used for estimation almost exclusively. There
have been a few instances where a multivariate technique such as
principal components has been applied in conjunction with kriging,
for example Borgman and Frahme (1976), Myers and Carr (1984), Myers
{1984), Davis and Greenes (1983). In each of these the objective was
to simplify or to avoid cokriging, Additional interesting
applications are given in Bopp and Biggs (1981) or Hopke et al (1976)
neither of whom used geostatistics but simply contoured the derived
factors to identify patterns. Although pattern recognition is a tool
much desired it is as yet not fully developed.

The results presented here incorporate some aspects of classical
multivariate methods as well as incorporating spatial correlation and
are intended to stimulate further thought.

I. POSSIBLE GENERALIZATION

A. Consider a data tableau with an infinite number of rows,
i.e. one for each point in a domain of interest, i.e., each column i$
a function, not just a finite number of points and which is written
simply as

2 s Iy

For a finite number of points, i.e. a finite number of lines, a
uniform distribution is assumed, that is each line is equally
weighted. For the infinite case a probability distribution must be
assumed for each column. The analogy to choosing a vector which
carries the largest amount of variance is to choose a random variable
such that the sum of the squares of the projection is maximized. In
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the finite version this is given as the inner product, for random
variables it is the conditional expectation. Let the conditional
expectation E{Z;/U) be written in operator form Dy Z; which
easily extends to the vector 7 = [ZI' cees Zm]. Writing the inner
product of two random variables V, W as <V, W> = E(VW), the
problem is to maximize

which is a positive quadratic form. However, unlike the finite
dimensional case where the bivariate densities are implied by the
data, in this case the operator Dy 1is characterized by bivariate
densities that are unknown. One possible resolution of this problem

is to assume that each pair Z;, U 1is bivariate Gaussian and then it

i
is sufficient to know the corrélation for each pair. This is
essentially the disjunctive kriging approach but recast in
multivariate form, and will be discussed in Section IV,

B. Because the above formulation does not lead to a numerical
solution without the use of strong distributional assumptions it is
useful to re-consider the problem from another perspective.
Principal components produces a representation of the data in the
following form

1=FA (2)

where FIF s diagonal and the columns of F are ordered by percent
of variance explained. One of the objectives of this transformation 5
is to remove inter-variable correlation however this method only |
incorporates the inter-variable correlation at the same location. It

would be more appropriate to remove spatial inter-variable
Correlation.

This suggests the following: if

2(x) = [Z;(x)s «uy 2 (x)] (3)

'S a vector of second order stationary functions, find
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Y(x) = [Yl(x), cees Yp(x)] and C such that varic
- — each
z{x) = v{x)¢C (4) singu
and the components of Y{x) are uncorrelated. Written in terms of
the variograms and cross-varicograms this becomes
_ T _ can t
Yz(h) =C YY(h)C (5)
and ?Y(h) is to be a diagonal matrix. Here 7Z(h)’ vy(h} denote
1 T and h
ks i - 7)1 _ 7
5 E([Z(x +h) - Z{x)1[Z(x + h) - Z(x)]) (6) deter
and Y{x)
decor
Z E(LT0c+ b)) = YOOI + ) - ¥(0)) () the
. ?Z(h) corresponds to a correlation matrix, The representation
b Wacke
¢T3y (h)e (8) Wacke
of th
is analogous to the diagonalization of the correlation matrix as in compo
Princi . Y(x)
rincipal Components Analysis.
the v
If all of the variograms of the components of 2(x) have sills then princ
the total inertia of I(x) 1is the sum of the sills, i.e. range
¥4(h)
- 2 Z
Tr ¥pl=) = I(E O, hvy(=), (9) const
|
. <. is mor
The columns of C can be normalized by requiring
vario«
m IT.
I =1 (10)
. =1 i
; then the component of Y(x) with the largest percent of variance is the f¢
the component of ¥(x) whose variogram has the largest sill. Mot o1
When the objective is pattern recognition as opposed to co- inter(
kriging, then the sample variogram matrix may substitute for the trué the s

variogram matrix.

After the sample variogram matrix is computed for
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terms of
(5)
denote
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1s then
(9)
(10)
ince 1s
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various lags and diagonalized to find the eigenvalues, the sills for
each variogram are estimated by the eigenvalues. When C is non-

singular the equation
Z(x) = Y(x)C (11)
can be solved as
¥(x) = ¢ Z{x) (12)

and hence at least at data locations the values of Y(x) are
determined. This would permit separate kriging of the components of
¥(x) with subsequent reconstruction of kriged values of Z(x). This
decomposition would also allow simulation of f(x) by simulation of
the components of Y(x).

The model formulation given by (11) is similar to that used by
Wackernagel (1985) but the method of achieving it is different. In
Wackernagel the procedure is to model the variogram (or covariances)
of the components of Z(x) by nested models. It is assumed that the
components of these nested models represent the components of

VXx) then the cross-variograms are modeled as linear combinations of
the variogram models. In particular it is often assumed that the
principal difference in the variogram models is reflected in the
ranges, The approach proposed above allows a more general model for
7Z(h). Not all such models can be diagonalized whereas the
construction in Wackernagel ensures a diagonalizable model and hence
is more restrictive in particular it assumes all variograms and cross
variograms are proportional to the same model,

1. DUALITY - AN ALTERNATIVE

Before introducing a multivariate version it is useful to recall
the formulation of the univariate kriging estimation in dual form,
Not only is this form analogous to the use of splines for
interpolation but it also provides a method for removing or reducing
the spatial correlation.

Recall the equations determining the ordinary Kriging
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estimator. Let X}> «wey X, be data locations with data Z(xl),

.y Z(xn). Then the kriging equations are written as

« n
ACHEIRRER(CH (13)
where
n
121 Apov(xg - ) = vxg - o)
(14)
LA, =1
j
In matrix form we have
KX + Fu = K
0
(15)
T =1
which we can write as
K F X K
0
. - (16)
F 0} lu 1
where
Y o Y
11 In
K = , = y{x, -~ x;)
[Ynl Ynn] il ! J
(17)
| Y01
F=duls A= s [ Ko= 1| :
L An YOn
(xg) = [Z(x))s vouy Z(x,)s 0T |X (18)
u
(19)
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(16)

TR
F' 0] |b 0

If unique neighborhood kriging is used then [? b]T need only be
computed once since all the information about the point to be
eitimated is contained in [Kg 1]. Y is a data vector "dual" to
Z. First introduced by Matheron, Dubrule (1983) showed that this
formulation allowed for the use of a unique neighborhood in cross-
validation and more recently Dubrule and Kostov (1986) have shown how
it facilitates the incorporation of inequality constraints. Royer
and Vieira {1984), Galli, Murillo and Thomann (1984) have suggested
interpretations ¢of 9.

9, b have some properties which have perhaps not been
noted. For example

-

YF =0 and E(Y) = [0, 0,++0, 0]

So that Y s centered in two different senses,

If E{Z(x)) = m then E(i) = mFT and E{(b) =m hence b is

an unbiased estimator of m. By writing

U=k, v=cklF

W=ty @)
then we obtain
Var(b) = o2 - (FTN)'1
= 02 - (2 V)_1 (22)

In a crude sense I s replaced by new vector in which each entry is
3 linear combination but the components of Y are less correlated,
If we compute

2

(2727 = (o + nd)FF - K (23)
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then

R A A (2¢)

which is analogous to a correlation matrix.

ITI. CO-DUALITY

AYthough dual kriging is not quite a multivariate technique it
suggests an extension of Cokriging that can properly be called multi-
variate.

Recall from Myers (1982, 1983, 1984) the general form of

cokriging. As above X1s eees X denote sample locations,

- o n
Z(xl), eees Z(xn) are the data vectors where o
- en
(x) = [Zl(x), cees Zm(x)]. Then the cokriging estimator is given by
P n -—
2 (xO) = .Z Z(xi)ri (25)
i=1
where
no. - - We h.
jzl YOG = x0Ty + = lxg = xy)
(26)
n
p T.=1
; J
J=1
wher¢
and
F(h) = 3([Z0x + h) - Z)TTLZ(x + h) - 0T (27)
A L. . * ~* Let
Unlike the kriging estimator Z (xg), I (xo) is not a scalar and
hence is not equal to it's transpose but since with
T
-k T -k ¢
[T (x)T'] = T (xg) (28)
we shall work with [f*(xo)]T using notation analogous to that above
for dual kriging
Then
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F\‘r(xl-xl)'--?(xl-xn)

K= : : (29)

(Y O=xy e e (o -x )

I

F = E » each I an mxm identity matrix
!

i P:l Y()’(D'xl)

r=1s1, KO = ) . (30)
T Y(xo—xn)

then the cokriging system becomes
K F} IT K
0
T A ° (31)
F' 0] Ju I

We have then

-1 47
T T K F 2
Z = [k, I 32
(2" (xg)1" = K] [:FT D] i (32)
where
Z=[2x)), ooy 2Ux, )] (33)
Let Ys [V(xg)s s V(x )]
with

Tl [ar
TR
F ol "[s 0

Then ¥ 4s the “dual“ to 7 in that it is a vector obtained from

>

Z by incorporating the spatial and intervariace correlation
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quantified by the variogram matrix. We see immediately that

A

FAE S S P VAR et (35)
C
and
B = (F KR IETk1TT (36)
e
or alternatively ]
7=« - KT hyETy by (37) v
The original date tableau is then given as a linear combination of
the entries in the new data tableau. Moreover, B is an estimator
of E[f(x)]T when Z(x)}) 1is second qrder stationary and
Trace E[B - E(ZN)I0B - E(Z1)] = Tr[C(0) - kY F(FTk1E) Yy (38) w
is the sum of the variances of the estimation errors.
IV BIVARIATE GAUSSIAN MODEL
The first model proposed to generalize principal components o
would require minimizing the quadratic form given by equation (1)
which is determined by the conditional expectation operator. In turn
this would require knowledge of (at least) bivariate densities.
Matheron (1976) extended the kriging estimator from a linear to a for
non-linear form by utilizing a bivariate Gaussian density function. the
Specifically the disjunctive kriging estimator is written in the form fun
* n in -
Zolxg) = jzl fj(Z(xJ.)J (39) .
The fj's are obtained by Hermite polynomial expansions which in
turn are the eigenfunctions of the conditional expectation ramn
operator. By utilizing the general cokriging formulation given in dis
Eq. (26), the DK estimator can be fully generalized, is
A. Preliminaries tha
2 ) for
Let Lij denote the space of functions f, such that
f(zi(xj)) is square integrable, i.e. E[f(Z;(x;))12 < =. Then form
are
for
[
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m n

the sum L% = ) Lf., which is not a direct sum since the

i=1 j=1
constant functions are in each ij. 1 || fly; s the norm in

m 1/2
L2, then [} T || ||?_] is a norm on LZ. The non-linear

1 i=1,j=1 Y

estimator for Zj(xo) is then the projection of Zj(xo) onto the

linear subspace of L2 generated by the elements of the Lfk, that
is,
LT (g00))
Z.(x,) = fo(Z.(x)) (40)
07 k=1 isr WK

k 2
where fij £ Lik'
B. The Projections

Since Z;(xo) is a projection, the errors Zj(xO) - Z;(XO) are
orthogonal to all the f?[zi(xk)] and hence we have

L2y () (2, (x )] = ELZ ) (2,0 )] (4D

for all i, j, k. Since Z;(xo) is a linear combination, each of
these expectations only requires a bivariate density. However the
functions fﬁj are in general unknown and the problem is insoluable
in this generality.

C. Transformations

As with single variable disjunctive kriging we assume that each
random function may be transformed to one with a Gaussian
distribution. More specifically we assume that for each Zj there
1S a random function Yj which is Gaussian and a function ¢j such
that Zj(x) = ¢.(Yj(x)] for each j, x. Moreover, we assume that

J
for each i, J and each pair x, y

i), Y5

are bivariate Gaussian. If i = j then this is the usual assumption
for disjunctive kriging.
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D. Hermitian Expansions

If Y(x) {s a Gaussian random function and f s a function

Usi
such that E[f(‘((x))]2 ¢ = then f may be represented by an
expansion in terms of Hermite polynomials. In particular if f%. is
a function in Lfk then
Sin
k Tk *
£ (Y(x)) = T 6P n (Y(x)) {42) i
1 -0 13 p are
p_
where £ 2 ELFR (YOO )R (V)] (43)
1) 1] p
This provides a method for representing the unknown functions
or
f?j' Moreover the functions ¢j can be represented as
o (Y(x)) = 5 R w (v(x) (44)
J - J P
p=0
. : e If we
E. Bivariate Densities
Under the assumptions that each pair V;(x), Yj(y) is bi-
variate Gaussian, the joint densities can be written in the form
b 5 Xy’
R 955, xy vy = 1 (53] ()i (v)g(udg(v) (45)
L;‘ Py p=0 p
&
iﬁ% where a(x), y(y) are standard Gaussian densities, p?§ is the
53- correlation coefficient of Yi(x), Yj(y). As with univariate
5
N disjunctive kriging we could also consider more general bivariate o
ey en
%%; densities such as the Hermitean modeils.
k) F. The Orthogonality Conditions
Combining Eq. (41), (42) we will have
ﬁﬂ. Tk (46) where
B[z, (xlz, (x )] "L kgllfij(zi(xknlzztxr)l

B




is

for all j, g2, r
Using the transformations Zj(x) = ¢j(yj(x)) we obtain

m n

ELo; (Y (xg) ¥, (x )] = 121 kzl E[fsj(¢i(vi(xk)))‘yz(xr)] (47)

Since both the ¢.'s and the f?.'s are unknown we replace
k . k k
fij(¢j[YJ(xk))) by simply fij(Yj(xk)) where of course the fij s

are not the original ones and then Equation (40) becomes

n m
ZJ(XO) = kzl izl 1j(Y1(Xk)J (48)
or
N nome
AU ok i3 M) )

. *
If we write 7 (xo) = [Zl(xo), eees Zm(xo)] and

then we have

where
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2()(0) = [¢1(Y1(XO)J’ e ¢(Ym(x0))]

o«

= pzo ﬁp(xo) cg. 0 (53)

Now if we let Ff be written ag

bkP. L kP cP

117" "0y 1 0
: o | =8PcP (54)
kp, .. kp 0 p
bml bmm cm
then
—%
Z(x,) - 7' (xy)
LIf(xg) - § 7 (x,)8P)cP (55)
= H (x - H {x )B 55
pe0 P00l PRk

and the estimation variance in L2 s given by

Trace E[f(xo) -2 (xo)] [f(xo) - E*(xo)]

o T
= ] Trace (cP) Np cP (56)
p=0

)

M

Bu

as f
For

wher(

migsq



(53)

(54)

(55)

n n T T

+ 121 kzl (8)) E[(A (x,)) H (x,)]8] (57)

Since the CP's are determined only by the transformations $5o to
minimize the estimation variance it is sufficient to minimize, for
each p separately,

Tr(cP)Twp gp (58)

Moreover, for each p, it is sufficient to consider

But minimizing

is exactly the problem of cokriging Hp(xo) using the data
ﬁp(xl). . ﬁp(xn). Hence the matrices B?, s Bg are the
solutions of the (simple) cokriging systems

p P _ AP
kzl ij By GOJ. (59)
p T T
GJk = E[(Hp(xJ)) Hp(xk)] (60)

as formulated in Myers (1982)
For the bivariate Gaussian case the entries in G?k are

ig P
12
(pjk)

is -
where ik = correlation of Yi(xj), Yz(xk)
G. The Undersampled Case

If 7 is under-sampled, i.e. if for i and some k, Zi(x) s

missing then in equation (10) for all 3. F?j = 0 and hence for all
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o, f?? = 0. In the context of equation (27) this is exactly the
under-sampled formulation of the cokriging problem as given in Myers
(1984) and in Carr, Myers and Glass (1985)
given there still suffices.

V. DATA or MODEL DRIVEN

hence the algorithm

Principal Components is essentially a data driven technique,
that is, no parameters need be separately fitted nor are there

assumptions such as normality or stationarity. Some of the

interpretations of these components and their eigenvalues follow only
from the geometric formulation without the use of external models.
Cokriging, dual kriging and cokriging in contrast require fitting
variograms and cross-variograms, these fitting techniques are not on
completely solid ground statistically and also require implicit

modelling of the phenomena by random functions and the varograms must

satisfy certain conditions. The extension from 1linear to non-linear

techniques require very specific statistical models and assumptions

these additional conditions are often untestable., It would appear,

that multi-variate techniques that truly iﬁcorporate spatial

correlation are either not possible or at least not as yet developed.
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