ON THE EXPONENTIAL FUNCTION
AND PÓLYA'S PROOF (1)

BY DONALD E. MYERS

University of Tucson, Arizona — U. S. A.

Let \(a_1, \ldots, a_n \) be positive numbers. Denote by
\[
A = \frac{1}{n} \sum_{i=1}^{n} a_i
\]
and
\[
G = \left[\prod_{i=1}^{n} a_i \right]^{1/n}.
\]
Pólya [1, pp. 108] has given an elementary proof that
\(A \geq G \) as follows
\[
1 = e^0 = \exp \left[\sum_{i=1}^{n} \left(\frac{a_i}{A} - 1 \right) \right] \geq \prod_{i=1}^{n} \frac{a_i}{A} = \frac{G^n}{A^n}.
\]

Wetzel [2] pointed out the two properties essential for the proof characterize the exponential function namely

(1) \(f(x + y) \geq f(x) f(y) \)

(2) \(f(x) \geq 1 + x \).

THEOREM (Wetzel). Let \(f \) be defined on an interval containing the origin and such that \(f \) satisfies (1) and (2) on \(I \) then \(f(x) = e^x \).

If we consider functions of several variables then the analogues of (1) and (2) are

(3) \(f(x + y) \geq f(x) f(y) \)

(4) \(f(x) \geq \prod_{i=1}^{n} (1 + x_i) \)

(1) Received April, 1974.
where \(x = (x_1, \cdots, x_n), \; y = (y_1, \cdots, y_n), \; x + y = (x_1 + y_1, \cdots, x_n + y_n) \). Unfortunately these are not sufficient for Pólya's proof and we replace (3) by

\[
(5) \quad f(x) = 1 \quad \text{for all} \quad x = (x_1, \cdots, x_n)
\]

with \(\sum_{i=1}^{n} x_i = 0 \).

From (5), with \(x_i = \frac{a_i}{A} - 1 \) we have \(1 = f(x) \), then from (4) we have \(1 \geq \prod_{i=1}^{n} \left(1 + \frac{a_i}{A} - 1 \right) = \frac{G^n}{A^n} \). It seems natural to ask whether (4) and (5) characterize the \(n \)-variable exponential function \(\exp \left(\sum_{i=1}^{n} x_i \right) \). The answer is no as is shown by the following lemma.

Lemma. Let \(-1 < x_i < 1 \) for \(i = 1, 2, \cdots, n \) and

\[
1 - \left(\sum_{i=1}^{n-1} x_i \right) > 0
\]

then

\[
(4) \quad f(x) \geq \prod_{i=1}^{n} (1 + x_i)
\]

\[
(5) \quad f(x) = 1 \quad \text{for} \quad x_1 + \cdots + x_n = 0
\]

\[x = (x_1, \cdots, x_n)\]

where

\[
f(x) = \frac{1 + x_n}{1 - \sum_{i=1}^{n-1} x_i} \neq \exp \left(\sum_{i=1}^{n} x_i \right).
\]

Proof. We proceed by induction. Consider \(n = 2 \), since

\(-1 < x_1 < 1, \; 1 > 1 - x_1^2 > 0 \) and \(1 + x_2 > 0 \) hence \(\frac{1}{1 - x_1} > 1 + x_1 \)
and \(\frac{1+x_2}{1-x_1} \geq (1+x_1)(1+x_2) \). If \(x_1 + x_2 = 0 \) then \(x_1 = -x_2 \) and \(1-x_1 = 1+x_2 \) hence \(\frac{1+x_2}{1+x_2} = 1 \). Suppose now that
\[
\frac{1+x_k}{1-\sum_{i=1}^{k-1} x_i} \geq \prod_{i=1}^{k} (1+x_i) \quad \text{or equivalently} \quad \frac{1}{1-\sum_{i=1}^{k-1} x_i} \geq \prod_{i=1}^{k-1} (1+x_i)
\]
for all \(k \leq n \), all \(-1<x_i<1, i=1,2,\ldots,k \) and \(1-\left(\sum_{i=1}^{k-1} x_i\right)>0 \).

Rewrite
\[
\frac{1}{1-\sum_{i=1}^{k} x_i} = \left(\frac{1}{1-x_k}\right) \left[1-\sum_{i=1}^{k-1} \frac{x_i}{1-x_k}\right].
\]

Since
\[
1-\sum_{i=1}^{k-1} \frac{x_i}{1-x_k} > 0, \quad \text{i.e.} \quad 1-\sum_{i=1}^{k} x_i > 0
\]
by the induction hypothesis
\[
\frac{1}{1-\sum_{i=1}^{k} x_i} \geq \frac{1}{1-x_k} \cdot \prod_{i=1}^{k-1} \left[1+\frac{x_i}{1-x_k}\right].
\]

But \(\frac{x_i}{1-x_k} \geq 1+x_i \) and \(\frac{1}{1-x_k} \geq 1+x_k \) hence
\[
\frac{1}{1-\sum_{i=1}^{k} x_i} \geq \prod_{i=1}^{k} (1+x_i) \quad \text{or} \quad \frac{1+x_{k+1}}{1-\sum_{i=1}^{k} x_i} \geq \prod_{i=1}^{k+1} (1+x_i).
\]

Clearly (5) is satisfied by \(f \) for \(n \geq 2 \).

We should note at this point that even (4) and (5) are stronger properties that are necessary for Pólya's proof. All that is really needed is the inequality
\[
1 \geq \prod_{i=1}^{n} (1+x_i)
\]
if \(x_1 + \ldots + x_n = 0 \). This of course is a simple consequence of

\[
1 = e^0 = \exp \sum_{i=1}^{n} x_i \geq \prod_{i=1}^{n} \exp x_i
\]

\[
\geq \prod_{i=1}^{n} (1 + x_i).
\]

However we can also give an elementary proof without using the exponential function.

Lemma. Let \(x_1, \ldots, x_n \) be real numbers such that \(x_1 + \ldots + x_n = 0 \) then \(\sum_{i=1}^{n} (1 + x_i) \geq 1 \).

Proof. Since \(x_1 + \ldots + x_n = 0 \) if not all \(x_i \)'s are zero, there is one such that \(x_i < 0 \). Without loss of generality assume \(x_n < 0 \). Consider \(n = 2 \) then \((1 + x_1)(1 + x_2) = (1 - x_1)(1 + x_1) = 1 - x_1^2 \leq 1 \). Suppose then that for all \(k \leq n - 1 \) and \(x_1 + \ldots + x_k = 0 \), \(1 \geq \prod_{i=1}^{k} (1 + x_i) \). Then \(1 \geq \left(\prod_{i=1}^{n-2} (1 + x_i) \right) (1 + x_{n-1} + x_n) \) but \(1 + x_{n-1} + x_n = (1 + x_n) \left(1 + \frac{x_{n-1}}{1 + x_n} \right) \). Since we also assume without loss of generality that \(-1 < x_n \), we have \(\frac{x_{n-1}}{1 + x_n} > x_{n-1} \), hence \(1 + x_{n-1} + x_n \geq (1 + x_n)(1 + x_{n-1}) \) and \(1 \geq \prod_{i=1}^{n} (1 + x_i) \).

Hence we now could prove that \(A \geq G \) without using the properties of the exponential function.

In conclusion we return to the characterization of the exponential function.

Theorem. Let \(f \) be defined on an open rectangle \(I \) in \(\mathbb{R}^n \) such that the origin is in \(I \). Suppose further that

\[
f(0) = 1 \quad 0 = (0, \ldots, 0)
\]

\[
f(x + \hat{h}_i) \geq f(x)(1 + h_i)
\]
where \(\hat{h}_i = (0, \ldots, h_i, \ldots, 0) \) for \(i = 1, \ldots, n \) and \(x, \hat{h}_i, x + \hat{h}_i \) in 1. Then \(f(x) = \exp \sum_{i=1}^{n} x_i \).

Proof. We consider first the case where \(h_i > 0 \). From (7) we have

\[
f(x) \geq f(x + h_i)(1 - h_i)
\]

or

\[
f(x) \frac{1}{1 - h_i} \geq \frac{f(x + h_i) - f(x)}{h_i}
\]

and also \(\frac{f(x + h_i) - f(x)}{h_i} \geq f(x) \). If \(h_i < 0 \) both inequalities reverse. In either case we conclude that \(\frac{f(x)}{x_i} = f(x) \), hence \(f(x) = C \exp \sum_{i=1}^{n} x_i \). From (6) \(C = 1 \).

Note that (6) and (7) are «weaker» than (3) and (4).

References
