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An interpretation of the area of a set D as the probability
that a point chosen at random from R will be in D

CONSIDER THE FOLLOWING probability
problem. Let R be a unit square, that is,
with sides of length one and denoting
both the ecurve or perimeter and the area
enclosed. Divide R into two parts, E; and
R,, by constructing a line parallel to one
pair of sides and bisecting each of the
other sides. Suppose a point p is chosen at
random from R, a reasonable intuitive no-
tion of the probability that p is in R, is
1. Alternately construct the diagonal of
R and obtain two “equal” parts, R, and
Ry. Again intuitively the probability that
pisin Ry is . For an elementary area B,
(for example, a circle, triangle, rectangle)
enclosed in R the probability that the
point p is in the elemental area R; would
be the value of the area A(R:). In the
usual introduction to probability in an
algebra course the probability, P(E), of an
event, E, is defined to be the ratio of the
number of ways E can occur to the num-
ber of ways ‘“‘something’’ can happen. This
definition yields only rational numbers for
probabilities. In the preceding example,
however, irrational P(E) will result easily.
If a circle with a rational radius is used
the area is irrational and hence so is the
probability of the point randomly chosen
occurring in the circle.

The word area has been used in two
ways, (1) to denote a set of points and (2)
to denote a number associated with the
set of points. In this paper only the latter
usage will occur. To relieve the necessity
for the ambiguity a coordinate system
will be utilized. This enables us to distin-
guish easily between a ‘“‘square,” meaning

* Presented at the annual meetiﬁg of the NCTM
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the curve, and “square,” meaning the
points “enclosed” by the square. The
former is denoted by

bd(R) ={(z,v) | a<x<b,y=c}\V
{(z,9)]| aga<b,y=d}J
{(x, ) l T=a, cgygd}u
{@ )| z=becSy<d},
and the latter by
int(R) = { (z, ) | a<z<b, c<y<d};

in each case b—a=d—c¢. bd(R) is read
“poundary of R’ and int(R) is read “in-
terior of R.”

The coordinate system also allows us to
avoid the word “enclosed’”” when referring
to a set of points. The pitfalls inherent in
the intuitive usage of “enclosed” are il-
lustrated by Figure 1. The point p is not
“enclosed” by the closed curve, although

Figure 1
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it appears to be. With the distance for-
mula from analytic geometry, the distance
between Pi:(x1, y1) and Pg: (2, y2) 18

V(@i —22) 2+ (Y1—y2)?
= l (xla 1/1)—(-702; y2)| = l P1_P2l .

An e-neighborhood of a point p: (x1, y1) is
the set of points interior to a circle center
at p radius ¢ or analytically N,(¢) = {(z,
y)[ [ (z, y) —p| <e}. Using neighborhoods,
interior and boundary points can be de-
fined. Let R be an arbitrary set of points
in the plane, then p is an interior point of
R if there exists an e-neighborhood of p
contained in R.p is a boundary point of
R if every eneighborhood of p contains
points in R and points not in R. The sets
_referred above as bd(R) and int(R) are

seen to be sets of boundary points and

interior points respectively.

To construct a theory of area for planar
sets area must be an undefined concept
for some sets. In particular if S is a rec-
tangular set, ie., S={(z, y)|a<z<b,
c<y<d}, then A(S)=(b—a)(d—c). The

usual process of subdividing S into unit
squares to compute the area of S simply
implies that area should be additive for
sets which pairwise have no interior points.
Since we are interested in area as a prob-
ability measure, all sets will be assumed
to be contained in the unit square. That
is, all points will have coordinates (x, y)
which are subject to the general restric-
tion 0<x<1, 0<y<1. If the coordinates
are not subject to additional restrictions
then the set of such points is the unit
square. Let R denote the unit square and
D an arbitrary subset of R. Let B be
partitioned into subrectangles by the
construction of lines parallel to one or the
other of the pairs of opposite sides of R.
This is determined analytically by letting
0<a<a< » - - <ap=1land0<h< - - -
<bwm=1 and then for each j=1,2, - - - | n
connect the points (0, a;) and (1, a;); for
each j=1,2, - - ., m connect (b;, 0) and
(b;, 1). The rectangles are numbered from
the lower left-hand corner across the bot-
tom to the right, then left to right in the
next to bottom row, ete., as in Figure 2.

(0’ 1) | | 1 I H 1 (1, 1)
DRSS ) S o
Ra | Re | Bs | Ra IR | Re | Ra
It i i St S mind min Rl
| | I I I
Ra | Re | Ra : Ry lR4s : Ry : Ry
| |
o e et S e e e L
Ra | Be | B ! Ra IRa! Ra | Ry
AN IS NN R P S S P
- ( ] a2)
| | P [
Ru | Bu | B | Ru |Rsl Rs | Ru
| [ I I I
- — et — == = (8
Ry | R | Ris ] Ry i Ris | R i Rur
{ | i | | 1
©, 0) (b, 0) (b, 0) (b5, 0) (bsy 0) (b5, 0) (bs, 0) 1, 0)
Figure 2

204 The Mathematics Teacher | April, 1964



Call this partition N, then N; is another
partition obtained from N; by the con-
struction of additional lines. Continue this
to obtain a sequence of partitions {N,}
such that the length of the maximal diag-
onal of the subrectangles — 0 as n—w.
Each succeeding partition is said to refine
the previous ones. The requiring of the
maximal diagonal to go to zero assures
two things, the maximal area of the sub-
rectangles will go to zero and the lengths
of both sides of all subrectangles will go
to zero. Increasing the number of lines
does not necessarily insure either of these.
Denote by {R;} the subrectangles in the
partition N, where R;»= {(x,‘ Y) | Qi1
<z<a,, and bjn_1<ySb,~,,}. With respect
to the set D, each is in one and only one of
the following categories:

i Those R;;* not containing any points
of D or its boundary.
ii Those R, containing only interior
* points of D.
ili Those R, containing at least one
boundary point of D. -

For each partition, then, there is an outer
sum A,(D), namely the sum of the areas
of the rectangles in categories (ii) and
(iii). The inner sum A4,(D), is the sum
of the areas of the rectangles in category
(ii). Obviously, 4.(D)<4,(D); less obvi-
ous is the relation 4,(D) < A4..(D)<4,.(D)
<4,(D) for m>n. Even if one partition
N’ is not obtained from another N’
by constructing additional lines, there
is a partition N’/ such that its inner and
outer sums bear the preceding relation to
the inner and outer sums of the partitions
N', N, separately. Utilizing the com-
pleteness property of the real numbers
we know there is a number A (D), such
that A(D)<4,(D) for all » and is the
greatest number satisfying that inequal-
ity. 4(D) then is the greatest lower bound
for the outer sums of D and similarly
A(D) is the least upper bound of all the
inner sums; if 4(D)=4(D) this common
value is the area and is denoted A (D).
Consider the following examples:

a, ]

@GOG G0 G0 @, 0)

Figure 3

Ezxample 1. Let (1, y1) be any point in
R and N a partition of B as previously de-
scribed but including lines through the
point (z1, y1). Considering (1, ¥1) as a set
consisting of one point it is seen that there
are no members of category (ii), exactly
one in category (iii) and all the rest are
in (). A(D)=0 and 4(D) also is zero be-
cause the outer sums can be made arbi-
trarily small. Hence the area is zero and
this extends easily to any finite set of
points.

Ezample 2. Let Q be the set of points in
R with rational coordinates. That is,
Q= {(33, y)lx:_;ﬁ, y=%) n#(); q#())
m=<mn, p<q positive integers}. The inner
sums are always zero and outer sums one,
hence area is not defined for Q.

Example 3. Let W be the subset of
Q obtained by setting m=p=1 or
W= {(xi y)lx_%n y=%7 n, ¢ positive
integers } . The inner sums are all zero and
hence the inner area is zero. We will show
now that A(W)=0 also and hence
A(W)=0. Let N, be obtained by con-
structing the bisecting lines, z=1, y=%
and the lines 2=1—¢, y=1—¢ 1>¢>0.
There are nine rectangles, three of which
are in category (i); the area of these three
is 1—e, hence 4,(W)<24¢&. Now con-
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struct thelinesz=%and y=%. If %>€>0,
then there are five rectangles in category
(i) with a total area of 1—e—3; another
three rectangles contain only five points
of W, (1,1), (1, %), (1, %), (3,1) and (3, 1),
the area of these three is e>-+3, hence
A (W)<i+e+35 In general, construct
the additional lines

1 1 1 1
.’E=§;; $=§'—€k, y=2—k; y—'2“1;_'€k
where
Py > >0;

in this way it is seen that A(W)=0 and
therefore A (W) =0.

In more intuitive terms we have con-
structed circumscribing and inscribed sets
of rectangles. Several properties are ob-
tained from the method of construction:

a. If Dy and D, are sets in R, the union of
the circumscribing regions is a circum-
scribing region for the union of D, and
D,, similarly for the inseribed regions.

b. Further, if A(D,) and A(D,) both exist
then 4 (D,\UD,) exists and is less than
or equal to A(Dy)+A(D;). Equality is
obtained if D; and D, have no common
interior points.

¢. Denoting by Cr(D) the set of points in
R but not in D, read the complement
of D with respect to. R, then we have
gshown that a circumscribing region
for D is an “inscribed” region for
Cr(D) and vice versa. Using the rela-
tions 1 —4,(D)<1—4,(D), 1—4,.(D)
=4,[Cr(D)], 1-A.(D)=4.[Cr(D)]
the existence of A(D) implies the exist-
ence of A[Cz(D)] or conversely.

d. Finally, if A(Di) and A (D;) both exist,
A(DMDy) exists, DiMD, being the
intersection of Dy and D, or set of
points common to both.

When the ‘“‘completeness’” property is
used to obtain the existence of 4 (D) and
A (D), the possibility of irrational numbers
occurs even if all the lengths of the sides
of the subrectangles are rational. In fact,

all the irrationals between zero and one
can be obtained in this way. This allows
us to make a correspondence between ir-
rational numbers and planar sets of points.
The number 7 is represented by the set
C={( )| (@1~ 5| <t} Some am-
biguity is present, since for C, above, the
equality may or may not be left off with-
out changing the area. Contracting or ex-
panding sequences of sums of rectangles
illustrate rational approximation to irra-
tional numbers. Furthermore, an intuitive
proof of what is known in the advanced
courses as the Nested Set Theorem is
immediate.

As mentioned previously, the usual in-
troduction to probability implies the exist-
ence of only rational values for prob-
abilities. Some of the other principal re-
sults are independent of this, but some-
times have only trivial illustrations. Re-
call our interpretation of the area of a set
D as the probability that a point chosen
from R will be in D. In a probability space
there must be a collection of admissible
events. The definition of area given pro-
vides a criteria for admissibility, such that
if E;, E, have area E,\JE, ENE,
Cr(E1), Cr(E,) all have area. Further, the
empty set has zero area and R has area
one, the latter two being the “impossible”
and “‘certain” events, respectively. Exam-
ples 1 and 3 illustrate that an event can
have zero probability and still not be the
“impossible” event. By considering the
complements of such sets we have exam-
ples where the probability is 1, but neither
is the “certain” event. Many of the prob-
lems of constructing a satisfactory theory
of area are séen to be the same or related
to the problems of a theory of probability
and the extension of the rational number
system to all of the reals.

Many of the important results of mod-
ern probability theory are due to the in-
troduction of random variables. Briefly, a
random variable is a function whose values
are determined by probabilities rather
than values of the independent variable.
Using these we construct a final example
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relating area, probabilities, and irrationals.
Denote by X, a random variable associ-
ated with each positive integer =, as fol-
lows, let D be a subset of R such that A(D)
is assumed to exist but is unknown, a
point p is selected from R and X;is 0 or 1
according as p is not in D or pisin D. Re-
peating X, is 0 or 1 according as the n'
point selected is not in D or is in D. For
each X, the probability that X,=1 is
A(D). Let
S X1+X2+ ttt +Xn

n )

n

this is the relative frequency of the number
of successes to the number of trials. S, is
an approximation for A(D), and in fact a
theorem of probability theory known as
“Strong Law of Large Numbers”’ asserts
that with probability 1, S,—A(D)— 0 as
n—oo . If A(D) isirrational, we again have
rational approximations to an irrational.
Mechanically two things are needed, a
method for choosing the points “ran-
domly” and a method for determining
whether or not a selected point is in D or
not. The former problem is essentially
solved: tables of random numbers to use
for coordinates are available and programs
have been written to generate random
numbers on digital computers. Two exam-
ples will be given to illustrate how the

second of these problems can sometimes be
solved.

Ezample 4. Let T={(z, y)l()_éx_<_y,
0<y<1 } As a subset of the unit square
R, T is the set of points of B on the di-
agonal connecting the lower left-hand
corner to the upper right corner and those
lying above and to the left of it. For any
point p in R, pis not in 7" if 2>y. So that
if pis selected by a pair of random numbers
a simple comparison of the two determines
the value of X,.

Ezample 5. C={(z, y)l|(z, )=, b
<i } . Again determining whether p is in D
or not reduces to an arithmetic compari-
son; either (z, y) satisfies the distance re-~
lation above or it does not. With respect
to Example 4, it might be remarked that
the formula for the area of a triangle does
not result from that for a rectangle by
piecing together two such triangles. That
would be assuming that any subset of a
set having area itself has area defined.
Ixample 2 refutes this conjecture; how-
ever, the difficulty is easily surmounted by
complementation.

Nearly every statement in the preceding
can be extended to volume instead of area.
Whether or not this interpretation of area
as a probability is correct or not cannot
be answered, but for some applications it
seems to work quite well.

Letter to the editor
Dear Editor:

My thanks for printing the fine article
“Some thoughts about curriculum revision’’ by
Irving Adler in the November, 1963, issue. The
thoughts expressed have significance in the edu-
cation of the handicapped.

I teach mathematics to deaf students who
are preparing for college. The ability of these
students, most of them deaf from birth or in-
fancy, to master not only mathematics but also
English and all other subjects required for col-
lege entrance is in itself an amazing accomplish-
ment, but on top of that we are continually find-
ing untapped resources and unreached limits.
In switching from traditional to modern math
(UICSM) I find I am gaining two to three years
in this subject. Mr. Adler’'s penetrating state-
ments on the “possible’ and the “impossible’”
and his remarks on the disastrous effects of low

1Q ratings illuminate some of our successes and
failures. In the education of the deaf it is so
eagy for poor initial performance and low men-
tal ratings to lead to lower expectations, lower
performance, and the vicious circle Mr. Adler
deplores. Yet these ‘“‘special”’ students leave
school when they have “reached the limit of
their potential” only to find good jobs, some-
times to make more than their teachers, and
often to return to school years later with a
greatly improved command of English gained
in a different environment than the schoolroom
in which they could learn no more. The “im-
possible’’ often becomes ‘‘possible” with a
change in techniques and motivation in any
subject, not just mathematics.

Davio MupGETT
Illinois School for the Deaf
Jacksonville, Illinois
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