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Multivariate Correlation in the Framework
of Support and Spatial Scales of Variability1

J. A. Vargas-Guzmán,2 A. W. Warrick,2 and D. E. Myers3

This paper extends the concept of dispersion variance to the multivariate case where the change of
support affects dispersion covariances and the matrix of correlation between attributes. This leads
to a concept of correlation between attributes as a function of sample supports and size of the
physical domain. Decomposition of dispersion covariances into the spatial scales of variability
provides a tool for computing the contribution to variability from different spatial components.
Coregionalized dispersion covariances and elementary dispersion variances are defined for each
multivariate spatial scale of variability. This allows the computation of dispersion covariances and
correlation between attributes without integrating the cross-variograms. A correlation matrix, for
a second-order stationary field with point support and infinite domain, converges toward constant
correlation coefficients. The regionalized correlation coefficients for each spatial scale of variability,
and the cases where the intrinsic correlation hypothesis holds are found independent of support
and size of domain. This approach opens possibilities for multivariate geostatistics with data taken
at different support. Two numerical examples from soil textural data demonstrate the change of
correlation matrix with the size of the domain. In general, correlation between attributes is extended
from the classic Pearson correlation coefficient based on independent samples to a most general
approach for dependent samples taken with different support in a limited domain.

KEY WORDS: dispersion covariances, Pearson correlation, multivariate geostatistics.

INTRODUCTION

Regionalized random functions describing the behavior of spatial dependent
attributes may be multivariate. The collected data will be in ℜd physical space
represented by n sampling locations with p attributes (e.g., soil variables). The
space of the attributes has a dimension less than p because of their correlation.
A p × p correlation matrix of the Pearson correlation coefficients is classically
computed as an estimate of the population correlation between attributes. Such
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an approach assumes independent samples or a pure nugget variogram. From
geostatistics, each of the n sampling locations or any other point in the studied
field is considered as a multivariate random variable. Then random variables
are governed by a random function which following a linear decomposition into
spatial scales of variability can be considered as the sum of q independent ran-
dom functions each governing one scale of variability (Journel and Huijbregts,
1978; Wackernagel, 1985, 1988). In this paper, we are concerned with the role of
spatial scales of variability, sample supports, and size of the domain when com-
puting classic correlation matrices for attributes. We also clarify the difference
between the size of the domain and spatial scale of variability.

Univariate autocorrelation for second-order stationary random functions can
be computed from the variogram model. The normalized autocovariance is the
autocorrelation function which is equivalent to the correlogram that quantifies
the similarities between point locations separated by a vector h. The univariate
correlogram can be used to find an integral scale in ℜ1 for a normalized r(h)
(Russo and Jury, 1987):

J1 c ∫
∞

0
r(h)dh (1)

Such an approach provides information from the average correlogram between
pairs of samples from zero to infinity.

In the multivariate case the correlation between attributes is classically esti-
mated in statistics with the Pearson correlation coefficient:

rij c sijf
siisjj

(2)

where i and j are two attributes with sample variances sii, sjj, and with sample
covariance sij. The Pearson correlation coefficients consider independent sam-
ples taken with point support.

A regionalized correlation coefficient is given by Wackernagel (1985) and
(1988) as a spatial approach for the correlation between two attributes

r u
ij c bu

ijg
bu

iib
u
jj

(3)

where u is a particular spatial scale of variability and bu
ij the elements of the

matrix of coregionalization Bu
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p1 · · · bu
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

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
(4)

In the multivariate geostatistics approach, coregionalization matrices from the
linear model of coregionalization are the sills for bounded components of a
nested multivariate variogram which can be computed by the iterative algo-
rithm of Goulard and Voltz (1992) or simultaneous diagonalization explained
by Myers (1994) and Xie and Myers (1995). For cross-covariograms, coregion-
alization entries can be interpreted as covariances between two attributes (e.g.,
soil variables). As in the case before, point support and infinite domains are
assumed.

As can be observed from the explanation above, regionalized correlation
coefficients depend on computed scales of variability (Myers, 1997). They pro-
vide information that can be computed from the model matrix variogram but
they cannot be measured directly from unfiltered data from the field. Filtering
of the spatial scales is sometimes applied to get data in the required spatial scales
of variability (Wackernagel, 1985). Such filtered data has spatial components zu:

z c
q

∑
u c 1

zu (5)

Components zu should show a correlation for the attributes which is equal to the
regionalized correlation coefficients r u

ij.
To understand spatial scales of variability as a different but related con-

cept to size of a domain, dispersion variances should be analyzed. It is common
practice to think that changing the sample support and the size of the domain is
directly equivalent to changing spatial scales of variability. This is not true. In
the present paper, we will show how sample support, size of the domain, and
spatial scales of variability are related. Also we show how these considerations
are directly related to correlation matrices between attributes. For such a goal,
dispersion variance is invoked as an approach to the problem. Finally, the paper
addresses the effect of change of support in the estimation of correlation between
attributes.

Linear Coregionalization

The multivariate linear model of coregionalization allows a better under-
standing of multivariate spatial variability by decomposing it in some indepen-
dent spatial scales of variability (Journel and Huijbregts, 1978; Wackernagel,
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1985, 1988). The multivariate variogram of the sum of independent processes
is equal to the sum of the variograms. Then

Gz c
q

∑
u c 1

Gu
z (6)

or

Gz c
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(7)

Applying the linear model of coregionalization

Gz c
q

∑
u c 1

Bugu(h) (8)
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Dispersion Variances

Dispersion variance is a central topic in geostatistics. It rises from the basic
fact that variance between dependent samples is reduced when a larger physical
size of each sample (sample support) is taken. Fundamental explanations based
on the works of Krige and Matheron can be found in Journel and Huijbregts
(1978) and Rendu (1978). A discussion is provided by Zhang, Warrick, and
Myers (1987) and Myers (1993). Analytical procedures and numerical methods
for computing dispersion variances are also provided by Journel and Huijbregts.
An early work by Smith (1938) demonstrates practically that variance is lost
through the mechanical averaging produced by increasing the physical size of
the samples v called the size of nonpoint support. An example of the effect of
size of domain is found in Miesch (1975), where Krige’s formula is experimen-
tally demonstrated. All these studies have restricted the analysis of dispersion
variances to the univariate case. Thus, total variance in a large domain or block
V can be considered fixed and invariant for constant size V . Dispersion variance
is the difference between total variance in a domain and variance lost by tak-
ing nonpoint samples. However, when sample support v is held constant and the
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domain V becomes larger, dispersion variance is expected to increase. Depending
on the stationarity of the field, such an increase might lead to a limit. Variance
inside a volume is computed by the mean variogram inside a volume. From the
work of Krige and Matheron, it is common knowledge that dispersion variance
for the univariate case is:

D2(v|V ) c g(V , V ) − g(v, v) (10)

where

g(V , V ) c 1
V2 ∫V

dx∫V′
g(x − x′)dx′ (11)

The support of block or domain V and the support of the pixel elements or
samples v belong to a physical ℜd space of dimension d.

THEORY

Multivariate Dispersion Covariances

Now we extend dispersion variance to the multivariate case. To compute the
dispersion covariance matrix for the p attributes from the multivariate variogram
Gz we define a multivariate dispersion covariance matrix D2(v|V ) by

D2(v|V ) c Gz(V , V ) − Gz(v, v) (12)

where Gz(v, v′) is the mean value of the function multivariate variogram Gz(h)
when one extremity of h moves in a volume v and the other extremity moves
in v′. Then, D2(v|V ) can also be written:

D2(v|V ) c 1
V 2 ∫V

dx∫V′
Gz(x − x′)dx′ − 1

v2 ∫v
dx∫v′

Gz(x − x′)dx′ (13)

The diagonal entries of matrix D2(v|V ) correspond to the univariate disper-
sion variances computed for each attribute. However, the off-diagonal entries
correspond to a new definition that we call dispersion covariances between
the attributes. In this way, the concept of regularization of variograms can be
extended to regularization of cross-variograms.

Dispersion Covariances and Spatial Scales

To examine what happens when decomposing the dispersion variance
matrix into spatial scales of variability, we invoke the linear model of coregion-
alization and substitute (8) into Equation (13). The result is:
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D2(v|V ) c 1
V 2 ∫V

dx∫V′

q

∑
u c 1

Bugu(x − x′)dx′

− 1
v2 ∫v

dx∫v′

q

∑
u c 1

Bugu(x − x′)dx′ (14)

For q spatial scales of variability, this is:

D2(v|V ) c 1
V 2 ∫V

dx [ B j ∫V′
g j(x − x′)dx′ + · · · + Bq ∫V′

gq(x − x′)dx′]
− 1

v2 ∫v
dx [ B j ∫v′

g j(x − x′)dx′ + · · · + Bq ∫v′
gq(x − x′)dx′]

(15)

Coregionalization matrices are constant so they can be moved out of the integrals
to give:

D2(v|V ) c [ B j

V 2 ∫V
dx∫V′

g j(x − x′)dx′ + · · · +
Bq

V 2 ∫V
dx∫V′

gq(x − x′)dx′]
− [ B j

v2 ∫v
dx∫v

g j(x − x′)dx′ + · · · +
Bq

v2 ∫v
dx∫v′

gq(x − x′)dx′]
(16)

or

D2(v|V ) c
q

∑
u c 1

(Gu(V , V ) − Gu(v, v)) (17)

We define coregionalized dispersion covariance matrices for each spatial scale
by Du2(v|V ) with

Du2(v|V ) c Gu(V , V ) − Gu(v, v) (18)

From Equation (17), the multivariate matrix of dispersion covariance for a
domain or block V is the sum of the dispersion covariances for the spatial scales
of variability, i.e.,
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D2(v|V ) c
q

∑
u c 1

Du2(v|V ) (19)

Elementary variograms gu(h) from the coregionalization model can be used to
compute dispersion covariances with d u2(v|V ) as the difference between mean
elementary variogram functions, to give from Equations (16)–(19) the result

Du2(v|V ) c Bu(gu(V , V ) − gu(v, v)) c Bud u2(v|V ) (20)

Thus, the ratio between the coregionalized dispersion covariance and the core-
gionalization matrix for scale u is given by d u2(v|V ). It will be called elementary
dispersion variance because it is computed from the elementary variogram.

Correlation Coefficients Under Varying Support

Dispersion covariances are the difference between average cross-vari-
ograms computed for supports v and V . Therefore, D2(v|V ) can be normalized:

R(v|V ) c ((D2(v|V ))(S2)−1/ 2)T (S2)−1/ 2 (21)

where (S2)1/ 2 is a dispersion standard deviations diagonal matrix constructed
with the root square of the diagonal terms of the dispersion covariance matrix
D2(v|V ). When computed for the Z global random function, R(v|V ) is a matrix
estimator of correlation that accounts for sample support and size of domain.
Therefore, Equation (21) is a general form of the classic Pearson correlation
coefficient. Also R(v|V ) is an estimator closer to reality than the traditional esti-
mator which is a particular case where samples are point support and indepen-
dent. For second order stationarity, R(v|V ) converges towards a constant corre-
lation coefficient as the domain gets much larger than the largest range scale.
If cross-variograms do not reach a sill or the drift is not proportional for the
attributes, the correlation does not reach a constant. If an element of matrix
R(v|V ) is plotted as a function of V for a constant v, we get a correlation graph
as a function of size of domain V . As will be shown later, the correlation struc-
ture changes as V increases except for the case when the intrinsic hypothesis
holds for correlation between attributes.

Now we can compute the dispersion covariances and a restricted regional-
ized correlation Ru(v|V ) for each individual scale. At first glance, the regional-
ized correlation coefficients ru

ij defined by Wackernagel (1985) look like Ru(v|V )
when V is a domain much larger than the correlation length and v is point support
Ru(0|∞). The result is

Ru(v|V ) c ((Du2(v|V ))(Su2)−1/ 2)T (Su2)−1/ 2 (22)
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From Equation (20), Ru(v|V ) is

Ru(v|V ) c ((Bud u2(v|V ))(d u2(v|V )bu)−1/ 2)T (d u2(v|V )bu)−1/ 2 (23)

where (bu)−1/ 2 is the diagonal matrix of dispersion standard deviations for each
scale of variability. As the d u2(v|V ) terms cancel out, Ru(v|V ) is reduced to the
constant matrix of coregionalized correlation independent of support:

Ru(v|V ) c (Bu(bu)−1/ 2)T (bu)−1/ 2 (24)

This leads to:

Ru(v|V ) c Ru(0|∞) c Ru (25)

for any v < V . Thus, the interesting result is that correlation at each spatial scale
of variability is independent of the size of domain and support.

The next step is of course to find the relationship between the regionalized
correlation coefficients Ru and the general support dependent correlation R(v|V )
for Z. From Equations (19) and (21)

R(v|V ) c 1
q

∑
u c 1

Du2(S2)−1/ 22
T

(S2)−1/ 2 (26)

Computing Du2(v|V ) from Equation (22) leads to

Du2(v|V ) c [Ru(v|V )(Su2)1/ 2]T (Su2)1/ 2 (27)

R(v|V ) c
q

∑
u c 1

[[[Ru(v|V )(Su2)1/ 2]T (Su2)1/ 2](S2)−1/ 2]T (S2)−1/ 2 (28)

Computing the standard deviations from the coregionalized dispersion matrices,
Equation (20) gives

R(v|V ) c
q

∑
u c 1




d u2(v|V )[[Rubu(1/ 2)]T bu(1/ 2] [ q

∑
u c 1

d u2(v|V )bu] −1/ 2


T

. [ q

∑
u c 1

d u2(v|V )bu] −1/ 2

(29)

Note that this time the dispersion variances do not cancel out. Introducing the
last two terms into the summation and defining “weight” matrices Wu gives
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Wu c (d u2(v|V )bu)1/ 2 [ q

∑
u c 1

(d u2(v|V )bu)] −1/ 2

c SuS−1 (30)

and

R(v|V ) c
q

∑
u c 1

[(RuWu)T Wu] (31)

From these equations, we observe that R(v|V ) depends on dispersion variances
but not on total dispersion covariances. So sample support does not affect the
correlation structure inside each spatial scale u but it does affect the correlation
for the combined random function Z. Note this result may allow computation of
the correlation after mixing independent populations u. So, the attributes could
be measured in separated physical domains as well.

R(v|V ) does not depend on dispersion variances when the random func-
tion follows the intrinsic correlation hypothesis. From Sandjivy (1984) the linear
model of coregionalization becomes

Gz c B
q

∑
u c 1

cu
z gu(h) (32)

This means all the coregionalization matrices are proportional and a single corre-
lation structure between attributes occurs independently of the spatial correlation.
From Equation (20), Du2(v|V ) is

Du2(v|V ) c Bu(gu(V , V ) − gu(v, v)) c Bcu
z d u2(v|V ) (33)

Ru(v|V ) is found equal to the intrinsic correlation Rint by applying Equation
(24)

Ru(v|V ) c (B(b)−1/ 2)T (b)−1/ 2 c Rint (34)

Note that cu
z cancels out; the correlation matrix would be the same for any scale

at any support v and size of domain V . Substitution of this result into Equation
(29) and factoring out Rint leads to

R(v|V ) c Rint
q

∑
u c 1

d u2(v|V )cu [ q

∑
u c 1

d u2(v|V )cu] −1

c Rint (35)

The cross-variogram of an attribute with itself is the variogram. So highly
correlated variables should show similarities in shape between their variograms
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at each lag distance. This occurs if variograms are proportional. If the correlation
vs. support diagrams are not horizontal lines, the intrinsic correlation hypothesis
does not hold.

It is important to observe that support considerations for computing corre-
lations are not necessary if the intrinsic correlation holds. Equation (34) can be
demonstrated easily if measured attributes come from samples at different sup-
port. Under the intrinsic correlation hypothesis, samples may be taken at larger
or smaller support without altering the correlation between attributes. It is obvi-
ous that in all cases spatial information about sample correlation is lost because
of large sample support.

An interesting situation occurs when the structure of variables does not fol-
low the intrinsic correlation hypothesis. In the case of nonintrinsic correlation,
support and size of domain are critical for mixing the spatial scales. If domains
are too small or too large, support of sample affects correlation between attributes
on the total random function. In such a case, Equation (30) can be generalized to
predict the effect of different support. Elementary dispersion variances in Equa-
tion (30) are scalar because they are the same for all attributes at spatial scale
of variability u. In the case of different support, Equation (20) is modified by
changing the scalar elementary dispersion variance by a diagonal matrix of ele-
mentary dispersion variances.

Du2(vi |Vi) c Bu(gu(Vi, Vi) − gu(vi, vi))

c Budu2(vi |Vi) (36)

where an element of du2(vi |Vi) is the elementary dispersion variance computed
for specific vi |Vi. So Equation (30) becomes

Wu c (du2(vi |Vi)bu)1/ 2 [ q

∑
u c 1

(du2(vi |Vi)bu)] −1/ 2

c SuS−1 (37)

Then, Equation (31) can be applied to compute such correlations. The computed
values would be the correlations for attributes from samples at different sup-
port and even at different sizes of domain. However, in most cases, we might
like to avoid such computations and proceed with samples at the same support.
A useful tool is the traditional regularization of variograms. The methods for
regularization of variograms are rather simple. Each time the sample support
is increased, the dispersion variance is reduced according to Krige’s formula.
Subtracting such reduction from the variograms is a good approximation (e.g.,
Journel and Huijbregts, 1978, p. 78). However, for our purpose, we need regular-
ized cross-variograms as a consequence of our multivariate extension of disper-
sion variances. After some analysis, it has been found that a regularized cross-
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variogram is found by computing a reduction of the dispersion covariance as
defined by the matrix in Equations (18), (19), and (20). Suppose attribute A
has been measured on samples support vi and domain Vi. On the other hand,
attribute B has been measured on samples support vj and size of domain Vj .
The regularized variograms gAvi (h), gBvj (h), and cross-variogram gAviBvj (h) are
approximated by:

gAvi (h) c gA0(h) − gA0(vi, vi) c
q

∑
u c 1

bu
Agu(h) −

q

∑
u c 1

bu
Agu(vi, vi)

gBvj (h) c gB0(h) − gB0(vj , vj) c
q

∑
u c 1

bu
Bgu(h) −

q

∑
u c 1

bu
Bgu(vj , vj)

gAviBvj (h) c gAB0(h) − gAB0(vi, vj) c
q

∑
u c 1

bu
ABgu(h)

−
q

∑
u c 1

bu
AB

f
gu(vi, vi)

f
gu(vj , vj) (38)

In practice, we might like to do the opposite procedure, i.e., compute all vari-
ograms at point support gA0(h), gB0(h), and gAB0(h).

Krige’s Formula and Spatial Scales of Variability

In practice, we can split the field (G) into domains (V ), and the domain
into blocks (v), and the block into samples (0). In such a case, Krige’s formula
can be applied. Krige’s formula becomes multivariate as dispersion covariance
matrices are defined:

D2(0|G) c D2(0|v) + D2(v|V ) + D2(V |G ) (39)

This formula can be expressed as a function of the spatial scales of variability
in the same way as explained with Equation (20).

D2(0|G ) c
q

∑
u c 1

Bud u2(0|v) +
q

∑
u c 1

Bud u2(v|V ) +
q

∑
u c 1

Bud u2(V |G ) (40)

Dispersion (cross)-covariance and correlation between attributes classically
computed within each domain carries the contribution of all the spatial scales
of variability and the effect of sample support and size of the block and
domain. However, for stationary fields, correlation approaches a constant when
the domain is much larger than the larger range scale. If such a larger spatial
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scale of variability is not bounded within the field of study, weaker stationar-
ity and even drift may occur. If the nonstationary attributes do not follow the
intrinsic correlation hypothesis, correlation between paris of soil attributes or the
studied variables continues to change with the size of the field.

Finally, the effect of anisotropy on univariate dispersion variance is known.
Shape of the samples, blocks and domains affects the computations, (Zhang,
Warrick, and Myers, 1987). In the multivariate approach, the problem becomes
more complicated because anisotropy can show different behavior for different
attributes. This topic is, for the most part, case specific.

FIELD CASE EXAMPLES

Two multivariate variograms for clay, sand, and silt have been modeled
with the linear model of coregionalization. The two datasets come from stud-
ies in soils of the Maricopa Agricultural Center of the University of Arizona
(MAC). The size of the domains studied in both datasets are very different. In
both cases, the sample support may be considered close to point because of the
small size relative to the size of the domain. However, results for small domains
have been avoided. The first data set called MAC Fields 28-31 has an area of
1000 m by 1400 m (Warrick and others, 1990). The second dataset is from a
50 m long trench sampled at a depth around 1.5 m at horizontal intervals of
0.5 m. This dataset is called MAC EMS (Environmental Monitoring Site). From
previous exploratory data analysis, it is known that each dataset corresponds to
an isotropic single multivariate population. Additionally, MAC Fields 28-31 is
known to approximate second-order stationarity.

The sample variogram for MAC Fields 28-31 was computed from 182 sam-
ples in the upper 0.25 m of soil. Such samples were taken is such a way that
they report information at almost all lag distances (Warrick and Myers, 1987).
The model for clay, sand, and silt obtained is

Gz(h) c [ 7.098 −7.820 0.721
−7.820 8.616 −0.794

0.721 −0.794 0.073 ] g1(h)

+ [ 15.336 −23.182 8.303
−23.182 36.096 −12.928

8.303 −12.928 4.631 ] g2(h)

+ [ 1.918 −4.086 3.281
−4.086 20.918 −16.797

3.281 −16.797 13.489 ] g3(h)

where the elementary variograms g1(h) c (1 − d(h)) is nugget with (d(h) c 1 if h
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Figure 1. Elementary dispersion variances d u2(0 | V ) MAC Fields 28-31.

c 0 and d(h) c 0 otherwise), g2(h) c spherical range 150 m, and g3(h) c spherical
range 365 m have unit sills. The regionalized correlation matrices for clay, sand,
and silt are calculated by normalizing the coregionalization matrices. Equation
(31) is applied to compute the correlation for different sizes of domain.

R(0|V ) c [ [ 1 −0.9999 0.9994
−0.9999 1 −0.999

0.9994 −0.999 1 ] W0] T

W0

+ [ [ 1 −0.9853 0.9853
−0.9853 1 −1

0.9853 −1 1 ] W1] T

W1

+ [ [ 1 −0.645 0.6451
−0.645 1 −1
0.6451 −1 1 ] W2] T

W2

The “weight” diagonal matrices W for each V are computed with Equation (30).
The required elementary dispersion variances d (1)2(v|V ) and d (2)2(v|V ) (Fig. 1)
for square domains have been computed analytically with the method of auxiliary
functions described in Journel and Huijbregts (1978). From Equation (31), Figure
2 shows correlations between two attributes as a function of size of domain V .
The support of samples has been held to a constant point support.

Figures 3 and 4 for MAC EMS are obtained by applying the same procedure
for clay, sand, and silt on the next multivariate variogram:
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Figure 2. Correlation between attributes MAC Fields 28-31.
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Figure 3. Elementary dispersion variances d 2(0 | V ) MAC EMS.

Gz(h) c [ 4.085 −6.003 1.925
−6.003 22.724 −16.754

1.925 −16.754 14.857 ] g1(h)

+ [ 3.724 −3.789 0.096
−3.789 10.4359 −6.679

0.096 −6.679 6.586 ] g2(h)

+ [ 2.312 −0.394 −1.931
−0.394 0.067 0.329
−1.931 0.329 1.613 ] g3(h)

where g1(h) c (1− d(h)) is nugget with (d(h) c 1 if h c 0 and d(h) c 0 otherwise),
g2(h) c spherical range 5 m, and g3(h) c gaussian practical range 30 m are the
elementary variograms. Correlation between clay, sand, and silt attributes as a
function of size of domain is given by the following relationship:
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Figure 4. Correlation between attributes MAC EMS.
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R(0|V ) c [ [ 1 −0.623 0.247
−0.623 1 −0.9118

0.247 −0.9118 1 ] W0] T

W0

+ [ [ 1 −0.6079 0.0193
−0.6079 1 −0.8056

0.0193 −0.8056 1 ] W1] T

W1

+ [ [ 1 −1 −1
−1 1 −1
−1 −1 1 ] W2] T

W2

Figure 3 shows the values of the spatial mean function of the elementary vari-
ogram or elementary dispersion variances d2(0|V ) for square 2-D domains and
point support. The rate of increase of dispersion variances depends on the range
of the variograms and model of the elementary variogram; d 2(0|V ) may or not
reach a constant inside the boundaries of the domain studied. Elementary dis-
persion variances for nonpoint support can be computed from Figures 1 and 3
by applying Krige’s formula.

From Figures 2 and 4, the values of correlation between attributes are shown
to be dependent on the size of the domain and may approach constant values
for stationary fields (Fig. 2). Correlation between pairs of attributes can increase
or decrease depending on the contribution of total dispersion variances. The
shape of the curves depends on Equation (30), where the “weights” depend
on the diagonal of coregionalization matrices and elementary dispersion vari-
ances but not on dispersion (cross)-covariances. This is an important observa-
tion, because regionalized correlations Ru(0|∞) are independent of the size of
domain but allow the computation of total correlation R(v|V ) dependent on the
size of domain.

In general, for both datasets, MAC Fields 28-31 and MAC EMS, the cor-
relation values computed from data with the classic Pearson correlation formula
give similar results as R(0|∞) predicted with Equation (31).

CONCLUSIONS

The approach presented here extends dispersion variance to the multivariate
case. Regionalized dispersion covariance matrices were defined for each spatial
scale of variability. Depending on sample support and size of the domain, such
covariances have been found to represent the contribution of each scale of vari-
ability and each attribute to the total dispersion. This approach allows general-
ization of the Pearson correlation coefficient to a relationship that accounts for
support and size of blocks and domains. The intrinsic correlation hypothesis and
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the coregionalized correlation coefficient have been demonstrated analytically to
be independent of support. Krige’s formula and the linear model of coregional-
ization have been related in terms of spatial scales of variability. This approach
offers practical applications for utilizing data obtained at different support. It also
provides the reader with more tools to work with spatial scales of variability at
different sizes of domains.
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