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A New Form of  the Cokriging Equations 1 

Andrew E. Long 2 and Donald E. Myers 2 

Myers developed a matrix form o f  the cokriging equations, but one that entails the solution o f  a 
large system of  linear equations. Large systems are troublesome because o f  memory requirements 
and a general increase in the matrix condition number. We transform Myers's system into a set of  
smaller systems, whose solution gives the classical kriging results, and provides simultaneously a 
nested set of  lower dimensional cokriging results. In the course of  developing the new formulation 
we make an interesting link to the Cauchy-Schwarz condition for the invertibility of  a system, and 
another to a simple situation of  coregionalization. In addition, we proceed from these new equations 
to a linear approximation to the cokriging results in the event that the cross-variograms are small, 
allowing one to take advantage of  a recent results of  Xie and others which proceeds by diagonalizing 
the variogram matrix function over the lag classes. 
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INTRODUCTION 

The (univariate) universal cokriging estimator for the intrinsic vector-valued 
random function z is given by the equations 

N 

z*(xo) = Z rTz(xi) 
i = l  

where the weight matrices I'i satisfy the conditions 

N 

f t ( x ~ ) I ' i  = F t ( x o ) ,  l = 1 . . . . .  p (1) 
i=1 

where the p matrices F t are given by 

El(X) = f l ( x )  * I 
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and where thefl(x) are independent functions forming a basis for the drift surface 
(Myers, 1982). The weight matrices are determined by the N + p sets of 
equations given by the constraints (1), and the sets of linear equations 

N p 

Z V(X i - x j ) r j  dr ~ Fl(Xi)~l = V(X i - x) ,  
i=1 /=1 

i = 1 . . . . .  N (2) 

V is the variogram matrix function, and the #l are matrices of Lagrange multi- 
pliers. Note that this is precisely the form of the universal kriging equations, 
where scalar quantities have been replaced by matrices. 

The practitioner's role is to model the variograms and cross-variograms, 
select the degree of drift (in the situation of polynomial drift, or the type of drift 
functions otherwise), and to determine the size and degree of anisotropy of the 
cokriging neighborhoods. The estimates then are given by the classical equations 
as given, formulated as a matrix system by Myers (1982, 1992). 

MOTIVATION: WHY A NEW FORMULATION? 

The issues that dictated a new form for the cokriging equations were pri- 
marily issues of linear algebra. How could we reduce the size of the matrices 
involved? How could we improve the condition numbers of our systems? 

The most important single element in the solution of the cokriging equations 
is the matrix solver. Carr and Myers (1990) discussed different equation solvers 
for cokriging programs, and decided (at that time) on Gaussian elimination. In 
their first cokriging code, Cart, Myers, and Glass (1985) used a slower, iterative 
algorithm which minimized memory use (which was more important at that time 
than it is now). The program "cokrige,"  which was developed by the Geo- 
statistics Group of the Mathematics Department, University of Arizona, for 
adaptation into the Geo-EAS pantheon of programs (but never formally incor- 
porated into the Geo-EAS package), used Gaussian elimination. (It is available 
from the authors.) 

Early in a recent study of our own, we encountered trouble when generating 
maps with "cokrige:"  it seems that we were using " too many variables" or 
"too many sites," which led to estimates which were obviously poor (e.g., 
estimates many orders of magnitudes higher or lower than any data values); yet 
there was no indication from the program of any problem. Gaussian elimination, 
although a good method in many instances, was a poor selection for us because 
of the dangers posed by both the size and the conditioning of the matrices we 
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needed to (formally) invert. Because the modeling process is understood poody, 
and the risk of creating large ill-conditioned matrices sufficiently high, we were 
inspired to write a new program, selecting another and safer algorithm for the 
matrix inversion: the SVD, in double precision. 

McCarn and Carr (1992) compare Gaussian elimination, LU decomposi- 
tion, and, to a lesser extent, the SVD, in the computation of the kriging weights, 
as well as the effect of numerical precision used and the advantages of  iterative 
improvement. They give the number of operations for the three methods (Table 
1). They also discuss the value of using only a small number of neighbors, to 
reduce round-off error, suggesting 10-20 neighbors for local neighborhoods. 

They note that the SVD gives results identical to those using Gaussian 
elimination or LU decomposition for ordinary kriging, but state that " for  uni- 
versal kriging . . .  there is a large difference in the solution yielded by SVD 
from that yielded by either Gauss elimination or LU decomposition." This is 
evidently the result of a failure to address an issue of scaling in their code, that 
is, the functions used to model the drift were not scaled properly. Note that the 
two parts of the cokriging matrix in (3), 

are independent: scaling the variables related to V does not affect F, and v ice  

versa. If rows and columns corresponding to F, say, are allowed to get larger 
than the V portion of the matrix, the condition number will increase artificially 
(in the sense that scaling would have prevented any problems). This could 
happen if the functions used were simple monomials (like xy), and the geo- 
graphical coordinates were orders of  magnitude larger than the variogram values 
contained in V. The drift functions and the variogram matrix values should be 
scaled so as to be on the same order of magnitude. 

This scaling problem is the same as that identified (but not pursued) by 
O'Dowd (1991), when he reported that the condition number of the ordinary 
kriging system went up with a linear increase in the sills of the variogram 

Table 1. Operation Counts for Different Equation Solvers (McCam and Carr, 1992) 

Gaussian elimination LU decomposition SV decomposition 

2N 3 N 3 2N 3 
- -  < ops  < o p s  > N 3 ops - 3 3 - - T 
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models. This is simply a result of having a column (and row) of fixed values 
(ones) in the F portion of (3), while the V portion is scaled linearly. Poor 
conditioning in this example is not a fundamental characteristic of the kriging 
system, as it can be removed by scaling. 

One advantage of using the SVD as a solver is that the condition number 
of the coefficient matrix shows up immediately as the ratio of the largest and 
smallest singular values: if A is N • N, then 

Condition (A) = I Xi, XN ~ 0 

~ u ,  )~N = 0 

The condition number should be reported, especially when it is high, because 
it serves as a handy diagnostic to indicate whether the results may be useful. If 
the coefficient matrix is noninvertible to machine precision, then the option 
should be given to proceed with the pseudo-inverse (which is obtained from the 
SVD, and leads to a least-squares solution for the projection of the right-hand 
side onto the residual column space of the matrix). 

THE NEW FORMULATION IN TH E TWO VARIABLE CASE 

First consider the case of cokriging with two variables. Myers's formula- 
tion, that is the system of size 2 (N + p) x 2 (N + p), is given explicitly in 
this case by 

0 lI l -- (3) 

where the elements of V are the block variogram matrices (which, at the risk of 
confusion, also will be termed V) made up of the variograrns and cross-vario- 
gram of the two variables for each pair of data locations, and F is the matrix 
function of p linearly independent Fl matrix functions (whose coefficients are 
determined in the cokriging process). V is only conditionally positive definite 
(and hence not invertible, in general) (Myers, 1992). 

On the fight-hand side is the "column matrix" of variogram matrices ref- 
erenced to the site Xo, the location at which the estimate is desired; and similarly 
for Fx. This is represented by 



Cokriging Equations 689 

V(x l  - x l )  V ( x l  - x2) �9 

V(x2 - x O  V(x2 - x~) �9 

V(XN - x])  V(XN - x2) " 

Ft(Xl) F ( x 2 )  

�9 V ( x l  - XN) F l ( % )  " ' "  F p ( x l ) -  

V(x2  - XN) F l ( x z )  " " " Fp(x2)  

V ( x  N - XN) F I ( X N )  �9 . . F p ( X N )  

�9 Fl(xN) 0 ... 0 

_G(x,) G(x9 .G(xN) o . . .  o 

- V ( x l  - Xo)- 

V(x2 - Xo) 

V(XN - -  Xo)  

F~(xo) 

Fp (Xo) 

I ' ,  I 

1"2 i 

r N  ' 

_~)_ 

(4) 

where the subscripts refer to the data points determining the distance used by 
the matrix variogram function. 

The trick to transforming these into the new formulation was discovered 
by inspecting the cokriging system in the situation of  zero cross-variograms. It 
is clear in this special case that the columns and rows can be  permuted so as to 
separate the system into two kriging systems (which would be better solved 
separately, from the standpoint o f  memory,  efficiency, and matrix condition; 
furthermore, the inversion could be carried out in parallel).  

Thus, we simply permute the rows and colunms of  this large matrix (4) so 

that the variograms (diagonal elements of  the block matrices o f  V) and cross- 
variogram (off-diagonal elements) get separated. For  two variable cokriging, 
define a permutation matrix P such that 

1 0 0 0 0 0 . . .  0 0 

0 0 1 0 0 o - . .  o 0 

0 0 0 0 1 o - . . o  o 

0 0 0 0 0 o . . .  1 o 
p_= 

o 1 o 0 0 o . . .  0 0 

0 o o 1 o 0 . . .  o 0 

o o 0 0 o 1 . . .  o o 

0 0 0 0 o o - - . o  1 
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o r  

p _= [e  1 e N + p + l  e2 e N + p + 2  �9 . . eN+ p e2(N+p) ]  

where e i is the Euclidean unit vector with 1 in the ith place, and zeros elsewhere. 
The generalization is obvious for other numbers of variables, and the result is 
the same, in the sense that the variables are separated similarly. 

Define 

X - P  p r =  i C 

F r 1(2 

where K 1 and K z represent the coefficient matrices of the kriging systems for 
the two variables, and C represents the cross-variogram matrix given by off- 
diagonal terms of the variogram matrix model. The inverse of the matrix X is 
given simply in terms of the matrix inverses of K1 and K2 (which are needed to 
get the kriging results) and the matrix inverses of two other (N + p) x (N + 
p) matrices: 

and 

M 1 - I - K ~ I C K ~ : C  (5) 

M2 =- I - K ~ I C K { 1 C  (6) 

The form of these matrices and their consequences of their invertibility suggest 
a link to the Cauchy-Schwartz condition, which, for a pair of variables, is 

2 2  a~z ~ olo2 

where o12 is the covariance of the two, and on the right-hand side are the 
variances o 2 and az 2. Rewrite that as 

m 1 m 1 - (02)-l(o-lz)(o-gZ)-l(o-12) 

with the condition that 

m l > _ 0  

Comparing mx and (5) shows that the kriging matrices are playing the roles of 
the variances (appropriately enough, as the variogram is the decomposition of 
the variance) and the cross-variogram matrix is playing the role of the covari- 
ance. The Cauchy-Schwartz condition, reflected in the inequality guarantees 
strict positive definiteness in a 2 • 2 matrix, which guarantees unique solvability 
of the system. How is the inequality reflected in this matrix case? 

M1 is noninvertible if and only if there exists nonzero x such that 
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Mix = 0, if and only ifK(1CK21Cx = x 

This does not happen if 

1 -IIg-f 'cg~'cII2 >-- 0 

and similarly for the case of (6). Hence, the coefficient matrix is invertible 
(provided the kriging systems are invertible) only if the largest singular values 
of the matrices K~1CK~IC and K~ICK~-1C are less than 1. 

One can gain some appreciation for this by starting with two independent 
variables, where C is zero; then the two matrices K(~CK2~C and K2~CK~-~C 
also are zero. Now, as correlation is "increased," via the cross-variogram, 
resulting in an increase in the matrix norm of C, the singular values of 
K{ICK{1C and K~ICK-{~C move continuously on the real line, out from zero 
(the degenerate "singular value" of the zero matrix). At some point, the largest 
singular value (and hence the norm of these matrices) may increase beyond 1, 
at which time the system will no longer be invertible for all right-hand sides. 

If the kriging matrices and M~ and Mz are invertible, then inverting X is 
easy: 

Let 

and 

then 

0 C I 1 

I I 0 

A 1 - K~IC and A 2 - K~lC (7) 

M21 -A  z I K21 

COMPUTATION OF ESTIMATES 

The kriging estimates are 

0 V~o /~-~ a2 

whereas the cokriging estimates are given by 
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Co T V2TOJ M21 --A 2 

In either situation, one must compute 

PI-[Y ~ 
~2 K2 -l d2 

Then the kriging results are given by the simple dot products 

zk(xo) = V~o ~2 V~o ~2J 

and the cokriging estimates can be simplified further: 

z, xo,:rv o ;, o][,  _,,,][,,] 
Lc~ V;o] M ; '  - A  2 I 3 2 

where 

LcoT V2roJ -B2A2 B2 (52 

Long and Myers 

7] 

A2 - B2 A2 B2 -~ ~2 

One of the advantages of this scheme is that the inversion of the 
2 (N + p) • 2 (N + p) matrix is replaced by the inversion of four (iV + p) • 
(N + p) matrix [the "Cauchy-Schwartz" matrices M~ and ME in addition to the 
(N + p) • (N + p) kriging matrices]. The kriging matrices may be calculated 

B 1 - Mi -1 and B 2 - M21 

All this can be stored in the same size matrix as originally given, once the matrix 
products have been computed. 

That is followed by one last multiplication, so that, in the end, cokriging 
at a particular site will take twice the computation that kriging requires: 

Zc*(Xo) = LcoT V~oJ A2 

in a form entirely analogous to that of the kriging estimates, with 
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anyway, however, in order to compare the kriging and cokriging results; so this 
is a savings. 

This also suggests that experimenting with various cross-variograms is eas- 
ier than before: the kriging systems are solved once and for all, and then several 
cross-variograms of interest can be tried for comparison, with much less addi- 
tional computation than before. 

We give a Maflab example in the Numerical Results section, demonstrating 
that cokriging using Myers's approach involves the inversion of a large matrix 
with high condition number, whereas the procedure described here requires the 
inversion of the kriging systems (presumably necessary anyway), which may 
have condition numbers on the same order, but somewhat smaller, followed by 
the inversion of two matrices with small (approximately equal to 1) condition 
numbers. 

FIRST-ORDER APPROXIMATION OF COKRIGING 
IMPROVEMENT 

In this section we develop a first-order approximation to the cokriging 
results which is valid when cross-variograms are relatively small. This may have 
important consequences when combined with a recent technique of Xie and 
Myers (1995) and Xie, Myers, and Long (1995); they attempt to diagonalize 
the variogram matrix, effectively making a change of variables so as to minimize 
the cross-variogram terms. This has one consequence they mentioned, namely 
making the cross-variograms easier to model; and, in addition, it makes the 
system appropriate for the following linear approximation (which is useful with 
or without their technique). 

If IIA1Aell and ]]A2A1H are each much less than 1, then 

Bz = M ~  -1 = ( I  - A1A2) -1 ~ I + A 1 A  2 

and similarly for B 2. Then 

[V o cg] 
r = ECo  Vo 3 

[I+AA20 I+0]E 2A2A ;1]E l ~ ] 
K~- 1 d2 
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0 0 

+ _A2( I - A1Az) AzA1 _J/ 

A1A2 -AI(I  - A2A1 )- 

-A2(I - A1A2) AzAI 

0 0 

r VTO cT][KIoI 
= z~'(Xo) + Leg V~o] 

I CK~l C 

- C ( I  - K{lCK~1C) 

0 

= z~ (Xo) + L c~K?'  d, 

0 0 

o] 
K~ -~ 

[c ~ 
+ I V'~~ ~1  

LCo ~ V~o] 

K~ 1 - C ( I  - K~lCK~lC) 

~ K~ 1 d2 

0 

Long and Myers 

0 

- C ( I  - Kf tCK(~C)  - 

CK(I C 

, 1 K ;  I dz 

- C ( I  - Kz~CK-(IC)] 

CK{1C ] 

Keeping only the terms linear in C (or Co), 

[ d r K 2 ' ( C K I ' V , o -  Co)] 

z*(xo) = z~(xo) - [_dT(K{l(CKz1V2o Co)d 

or, recalling that the kriging weights are I'; = K[~Vio, 
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-(dE)rK21(Crl - Co)] 

z*(xo) = z~(xo) - (di)rK~l(Cr2 Co)l 

Making use of the transformed data (d/) r = (di)rK71, 

z: xo) z: xo)- 1 
L (d;)T(CK21V2o (7o)3 

I(d~')rVlo -- (d;)rCo - 

-- z~'(Xo) - [_(dl,)rv2 ~ (d~)rCo_ 

Thus, a calculation of the cokriging approximation requires storing another form 
of transformed data, but only two vector inner-products for an actual estimate 
of the cokriging results (with no additional matrix inversions). 

This approximation implies that to first order it is the extent to which CF i 
differ from Co that determines whether it is worthwhile to cokrige. If 

CF1 = Co and CI' 2 = C O 

that is, if 

C K I l V I o  = C O and CK~IV2o = Co 

then cokriging may provide no improvement. Although it will be interesting to 
consider under what conditions these hold, we have not yet done so. 

THE ELEMENTAL COREGIONALIZATION CASE 

The new formulation of the cokriging equations also gives some insight 
into a simple form of coregionalization. Start with the form of the variogram 
matrix in the case of a one-structure "coregionalization" (there are quotes around 
coregionalization because this is "trivially" coregionalized: there is only a sin- 
gle structure): 

where the matrix V on the right-hand side is nonnegative definite, and 3' is a 
standard variogram model (conditionally negative definite function). Variables 
with this type of model are said to be "intrinsically coregionalized" (Helter- 
brand and Cressie, 1994). 

A striking result made obvious by this new formulation is that cokriging 
variables modeled as the elemental constituent of the coregionalization case 
gives the same result as kriging. Matheron (1965) termed this "intrinsic cor- 
relation," and also showed that cokriging reduces to kriging (Matheron, 1979). 
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The form of Myers 's  equations in this special case is 

m 

0 7(Xl - x2)V Y(Xl - xa)V " 7(xl - xN)V F1 
~ ( X  2 - -  X l ) V  0 " ~ ( X  2 - -  x 3 ) V  " y ( X  2 - -  XN)V F 2 

y (XN - x~ )V  y(XN - x 2 ) V  y(XN - x 3 ) V  �9 

_ F, F2 F3 

0 FN 

FN O_ 

which one can permute to 

D 

a[  FKr FOI c[  KO ~1 

C[o :] 7] 
whereas the swapped form of the equation is 

cK bK 0 bF 
aFr 0 0 
0 bF r 0 

Let 

A -- a b - c  2 

(8) 

To invert (8), apply the following operations on the left: 

00 1 K 1 K - l  0 

0 I 

0 0 
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b l  - c I  0 0 
A A 

I 0 

0 I 

- c  a I 0 0 

0 0 I 0 

_ 0  0 O I _  

~176 'o , o 
r 0 I 

- b F  r 0 

0 0 

0 0 

- A  tF)_ 1 o o --~ (FTK - 0 

- A  
0 0 0 - -  (FTK-1F) -1 

ab 

I 0 0 0 

0 I 0 0 

b I  -~ I o o - 2  

C a 
0 0 - - I  - - I  

A A 

m 

- a b  cb 
I 0 K-1F - -  K-1F  

A A 

0 I ca K-1F t,-a.____~ K_1F 
A A 

0 0 I 0 

0 0 0 I 
m 

which gives the identity matrix; then the inverse is 
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D 

b 
-~ (K - l  - M) 

--C 
( K  -1  - -  M )  

1 (K_ iFD)  r 
a 

1 - - c  
l E D  -7- (K - M) - K 0 

z~ a 

a 
(K -I - M) 0 K - i F D  

- - 1  - - c  
0 - - D  - - D  

a ab 

where 

and 

- c  - 1  
1 (K_IFD)  r - - , D  - -  D 

0 -~ ab b _ 

D = D r -- ( F r K - 1 F )  -I  

M = M T - K - I F D F r K  -1 

(both are nonnegative definite, at least). 
Now consider the estimates, which is where this case gets interesting (or 

rather, so uninteresting, as the cokriging results reduce to the kriging results!): 

"YI Iacl 

~11 ~12 l 
t---/d'21 ]~22 _J 

B 

b - c  
( K - '  - M) ~ ( K - '  - M) K - i F D ,  

- - c  
( K  - I  - M )  

1 (K_IFD)  r 
a 

0 

Faro 1 ./<.o  o-O/ 
~ . 

0 

a 1 
-~ ( K - '  - M) 0 -~ K-XFD 

--1 - - c  
0 - - D  - - D  

a ab 

1 (K_IFD)  r - c  D - 1  D 
b ab b 
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This reduces to exactly the kriging weights, for example, 

becomes 

lab - -  c 2 

[I'cl ")/2] = T (K-1 -- M)Ko + K-1FDFo 

-be 1 A (K-1 _ M ) ( K o -  Ko) 

[I'cl "Y2] = [( K-1 - M)Ko + K-1FDFo 0] 

= [K-1((I - FDFTK-1)Ko + FDFo) 0] 

= [K-1Ko - K-1FDFrK-1Ko + K-1FDFo 0] (9) 

Note the first term in the vector right-hand side: it is the kriging weight, which 
is seen by solving just one block of the cokriging system: 

I'cl = K-1Ko _ K-1FIx 

where 

Ix = -D(Fo - FK-'Ko) 

which gives a result identical to the first element of (9). 
Thus, there is absolutely no change in the estimates by cokriging in this 

case, as the weights do not change. That is especially interesting and important 
because one method proposed for determining a valid model for the cross- 
variogram of two variables is to use a model which is a nested combination of 
models of the variograms: if the variograms have the same models (type and 
sill), however, the situation reduces directly to this case, and one sees imme- 
diately that cokriging need not be attempted at all. 

One can reach the same conclusion (with a lot less calculation!) via an 
argument about the form of the variogram matrix function: recall that the 
variogram estimator can be written as: 

1 
V* (h) = Dr(h) D (h) 

2Nh 

where D is the dataset of paired differences. In this simple case that indicates 
that 

1 D r ( h ) D ( h ) = 3 ' ( h ) I :  : ]  =2/(h)QAQ r 
XNh 

This says that by merely transforming the pair difference data via 

D' = DQ 
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(which is equivalent to the same transformation on the original data, as the D 
are just linear combinations of the original data vectors), the sample variogram 
matrix will have been diagonalized, that is the sample variogram matrix for the 
transformed data will have the form 

V'*(h) = -y(h)A 

Oddly enough, Helterbrand and Cressie (1994) report differences in esti- 
mates in the situation of an intrinsically coregionalized cokriging, citing similar 
claims in the Summer 1992 issue of Geostatistics: An interdisciplinary Geo- 
statistics Newsletter (available from the authors). 

GENERALIZATION: MORE THAN TWO VARIABLES 

The new formulation of the cokriging equations generalizes, but nQt ele- 
gantly. For example, in the three variable situation, one may permute as before 
and multiply through by the kriging system matrix inverses to get 

I I  AI: AI3-] 

A 2 1 I  ;23J 
[_A31 A32 

Multiplying through by the inverse in the first two variables, as given, 

 lA2ill, A12A3 j I:0 l 
-B2A21 B 2 A21 I A23 / = I ~2 

0 0 [/131 A32 I A31 A32 I 

followed by 

['0 0il[:0 : l, , ii 0, ] 
-A31 -A32 A31 A32 0 I - A310 q - A320/2 

so that one must invert the matrix I - A31c q - A320t2, which is again (N + p) 
• ( N + p ) .  

Induction on this process implies that in each situation one gets the solution 
of a single chain (1, . . .  , k - 1, k-way) of cokriging equations, from the 
kriging example all the way up to the k-way situation, each of which usually 
will be of interest. 
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Table 2. Comparison of (Co)-Kriging Weights 

Cokriging System Kriging System First-order 
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System 

- 1.1323 -0 .0228  - 1.1205 0 - 1.1205 -0 .0225 
0.2238 -0 .0039  0.2559 0 0.2259 -0 .0039  
1.9085 0.0267 1.8946 0 1.8946 0.0264 
0.0002 0.0001 - 0 . 0 0 0 l  0 -0 .0001 0.0001 
0.0114 0.0055 0 0.0052 0.0113 0.0052 
0.0020 0.4208 0 0.4208 0.0019 0.4208 

-0 .0133 0.5737 0 0.5740 -0 .0132  0.5740 
0.0001 0.0102 0 0.0102 0.0001 0.0102 

NUMERICAL RESULTS 

The following results are taken from a Matlab script (available from the 
authors) that demonstrates the ideas in this paper. We computed the cokriging 
weights for a small example case comparing Myers's system and our new for- 
mulation. The cokriging weights obtained from both systems were exactly the 
same. In the following table (Table 2) we also give the kriging weights for this 
small sample system, followed by the weights obtained using the linear approx- 
imation (we used small cross-variograms so that we could demonstrate this 
approximation in a situation where its use is appropriate). 

In Table 3, we show that the similar matrices were actually better condi- 
tioned than the matrix (C) used in Myers's system: 

Table 3. Better Conditioned Small Matrices 

Matrix Condition number 

C 3578 

K l 3267 
/('2 35.3597 

I - A B  1.0181 
1 - B A  1.0181 

CONCLUSIONS 

This new formulation of the cokriging equations has the following features, 
which we feel justify its study and use: 

�9 simultaneous kriging estimates; 

�9 a chain of  (sub-)cokriging estimates; 
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�9 ease of comparison of, and experimentation with, different cross-vario- 

gram models; 

�9 a linear approximation to cokriging, requiring no additional matrix in- 

versions; and 

�9 smaller and better conditioned systems of equations in intermediate steps. 

We have not discovered yet the ideal cokriging method, which would per- 

mit the solution of a k - way cokriging system by giving the results of all 
(k - 1)-way, (k - 2)-way . . . . .  and 1-way (kriging) systems as well. In that 

situation, one might simply cokrige all variables, and, based on cross-validation 

results of  each subset of cokrigings, select that combination which does best 
according to some a priori criterion. Although short of  that goal, this new 

formulation leads to one set of k - 1, k - 2 . . . . .  k - w a y ,  and all kriging 

solutions in the process of cokriging a set of k variables. If the goal were, say, 

the estimation of the concentration of nitrates (nl) in groundwater, and there 

were k - 1 other variables (such as sodium and chloride) which one suspected 

might help improve the estimates of nitrate via cokriging, then one could order 

them as n 2, n 3 . . . . .  nk and cokrige with this method so as to get the results of 

�9 kriging for nitrate (as well as kriging for each of the ni); 

�9 cokriging for nitrate with sodium; 

�9 cokriging for nitrate with sodium and chloride; 

�9 and cokriging for nitrate with sodium, and all other variables. 
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