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Fitting Matrix-Valued Variogram Models by 
Simultaneous Diagonalization (Part II: Application) ~ 

Tailiang Xie 2, Donald E. Myers 3, and Andrew E. Long 4 

As an application, we demonstrate a proposed variogram modeling scheme using a .watial data 
set. Because the scheme relies on a procedure Jor simultane~msly diagonalizin,~ several matrice.~. 
we briefly dcscrihe the FG and h.ast-squares algorithms. lTw model obtained by our scheme is used 
to cokrige the thmt. hi a~hlition, the proposed scheme is compared to more traditiomd methods. 
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S I M U L T A N E O U S  D I A G O N A L I Z A T I O N  A L G O R I T H M S  

Given k p x p symmetr ic  matrices A. . . . . .  A k, there exist k or thonormal  

matrices B~ . . . . .  B~ such that B / A i B  i = A, = diag(X~. ' ' . . . . .  ki:~), for i = 1, 
. . . .  k, where kl i~ are e igenvalues  of  A~. It is well known that A. . . . . .  A k can 

be diagonal ized s imul taneously  if and only if A~ . . . . .  A~ have a c o m m o n  

e igenvector  space: in other  words,  if A~ . . . . .  A k are mutual ly commuta t ive .  
When  the commuta t iv i ty  condi t ion is not satisfied, we seek an or thonormal  

matrix B such that the A~ . . . .  A k are nearly diagonal ized by B: that is, such 
that the squares of  off-diagonal e lements  of  BTAiB are relatively small  (in a 

sense to be defined). 
Two quanti t ies may be used to measure  s imul taneous  diagonal izabi l i ty:  

n / n 

r B , ,  H ~b(BIA i, n,; i = 1 . . . . .  k) = ]-[ (det(diag(B Ai ))) ' (det(Ai))"  (1) 
i = 1  / = 1  

k p 

~(BIA ~, n~; i = 1 . . . . .  k) = ~] Z n~(brA~bt) 2 (2) 
i - - l j ~ l  
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w h e r e B  = (b I . . . . .  bt,) is a n y p  x po r thonorma l  matrix and n i ( i  = 1, 2, 
. . . .  k) are weights. Note that (a) �9 measures the relative deviation from 
diagonality, whereas xI, measures the absolute deviation from diagonality, (b) cI, 
requires A t . . . . .  A k to be nonsingular,  but xI, does not, and (c) r _> 1 and 
_> 0, with exact equality if and only if B simultaneously diagonalizes the A~, 
. . . .  Ak. The goal is to determine an orthonormal matrix B0 such that �9 or xI, 
is minimized. 

Flury and others (Flury and Constantine,  1985; Flury and Gautschi, 1986) 
developed a simultaneous diagonalization algorithm, termed the FG-algorithm, 
by using (1) as the criterion for measuring the simultaneous diagonalizability. 
De Leeuw and Pruzansky (1978) developed another simultaneous diagonaliza- 
tion algorithm, termed the least-squares algorithm, by using (2) as the criterion 
for simultaneous diagonalizability. The idea of the least-squares algorithm is to 
apply Jacobi rotations (Press and others, 1992, p. 94), at each stage minimizing 
the sum of squares of the k off-diagonal elements selected by a rotation pair 
(Flury, 1988). 

Because sample variograms may be singular, (2) will be used in this paper 
for variogram modeling. We briefly introduce this algorithm. 

T H E  L E A S T - S Q U A R E S  A L G O R I T H M  

We denote by O(p)  the group of all p x p orthonormal matrices; " ~ - ' "  as 
assignment. 

step Lo. Select an initial approximation B = (b~ . . . . .  bp) ~ O(p)  to the 
orthonormal matrix minimizing xI, e.g. ,  B ~- lp where Ip is iden- 
tity matrix; and set EL, a convergence tolerance. 

1 ' -  0; A i ~-- BTAi B 

step L~. B a~ ~ B; / .-- 1 + 1. 

s t e p 4 .  F o r j  = 1 t o p  a n d l  = j  + 1 t o p ,  do steps 4 1  and 4 2 :  
step/<_l. Define Q ( j ,  l, 0) = (~.~,) as the identity except for ~jj = cos 

0 = qll, qjl = - 9 0  = sin 0. The angle 0 is selected such 
that the sum_of off-diagonal elements of Q( j ,  l, O) T A i Q(J ,  
I, O) . . . . .  Q ( j ,  1, O) T AkQ( j ,  l, O) is minimized: that is, 

x~(Q(j ,  I, O)lAi, ni; i = 1 . . . . .  k) 

is minimized. 
step 4 2 .  A, ~ Q ( j ,  I, O) ~ A i Q ( j ,  I, 0); B ~ B Q ( j ,  l, 0). 

step L3. If I~(B) - xI'(B"~)l < e l ,  then step: else go to L~. 
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D I A G O N A L I Z A T I O N  E F F I C I E N C Y  

If A~ . . . . .  Ak are not all diagonal and B is an orthonormal matrix used to 
diagonalize simultaneously the A I . . . . .  A k, we employ 

ql (BIA i, ni;  i = 1 . . . . .  k) 
K n = 1 ~ ( I p l A i ,  ni; i = 1 . . . . .  k) 

to measure the diagonalization efficiency of B. We may say that B simulta- 
neously diagonalizes A~ . . . . .  A k with efficiency KB. From a practical point of 
view we think of BrA ~B . . . . .  BTAgB as being in nearly simultaneously diagonal 
form if KB > 90%. 

Both Flury (Flury, 1988) and Clarkson (Clarkson, 1988) pointed out in 
their work that, at the time, convergence of  the least-squares algorithm had not 
been demonstrated. Recently, this convergence problem was proven by Xie 
(1994). 

A P P L I C A T I O N  

In this section, we demonstrate the variogram modeling scheme proposed 
in Part I of the paper (Xie and Myers, this issue) using a real spatial data set 
from a recent study of nitrate pollution of water wells in an area around Phoenix, 
Arizona. This data set contains 171 spatial locations (wells) which were sampled 
for the three variables bicarbonate, calcium, and magnesium, circa 1977. In the 
data set, easting and northing are the spatial coordinates and bicarbonate, cal- 
cium, and magnesium values are given as log-transformed and scaled chemical 
concentrations at corresponding locations. 

We treated bicarbonate, calcium, and magnesium as components of a (spa- 
tial) random vector function. Sample variogram matrices were computed at 50 
lags. Because of symmetry, each sample lag matrix is determined fully as an 
array of six components, composed of the sample variograms and cross-vario- 
grams of the three variables: 

("YIl, "YI2, ']"13, ")"22, "Y23, "Y33) 

The least-squares algorithm was employed to perform simultaneous diagonal- 
ization for the set of 50 sample variogram matrices. An orthonormal matrix B 
was obtained: 

/ 0 . 4 0 1 3  -0 .9145  -0.0502x~ 

B = ~0.6194 0.3114 - 0 . 7 2 0 7 )  (3) 

\ 0 . 6 7 4 7  0.2581 0 . 6 9 1 5 /  
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Table 1. Simultaneous Diagonalization (Before and After 
Diagonal ization)" 

ssd sso ssa 

Before 124.265 83.873 208.138 
After 206.640 1.498 208. 138 

"ssd: sum of squares of diagonal entries, sso: sum of squares of 
off-diagonal entries, ssa: sum of squares of all entries. 

having a diagonal izat ion efficiency of  98 .2%.  We omit  the sample var iogram 

matrices (before and after  d iagonal iza t ion)  because of  space l imitat ions (these 

are available from the authors upon request,  or see Xie,  1994). 

Table  1 summarizes  results from the s imul taneous  diagonal izat ion.  De- 

scriptive statistics for the componen t s  of  the sample var iogram matrices before 
and after diagonal izat ion are given in the Table  2. 

Figure 1 shows scatter  plots of  all six componen t s  (diagonal and off-di- 

agonal) of  the sample var iogram matrices before and after  diagonal izat ion.  Be- 

fore diagonal izat ion the six componen t s  are s imilar  in shape and magni tude.  

Tradit ionally,  one would model  the sample var iograms and cross-vario-  

grams of  the original data (left, Fig. 1), and use these models  in a cokriging 

program. Al though vaf iogram model ing is relatively s t ra ightforward,  cross-vari-  

ogram model ing is not; and it is for this reason especial ly that we seek rather 

to diagonalize the sample var iogram matrices (right, Fig. 1). Nearly simulta-  

neous diagonal izat ion results in an increase in the spatial information carried by 

the var iograms (diagonal components ) ,  and a consequent  reduction in the spatial 

information carried by the cross-var iograms (off-diagonal components ) .  

Table 2. Descriptive Statistics Ibr Off-Diagonal Components (Before and After Diagonalizationl" 

;I mean sld dev rnin max 

"~ J~': 50 0.2679 0. I 127 0.055 0.519 
-y'[, 50 0.0049 0.1 (154 - 0.401 0.208 
-rl, ' ~ 50 0.3347 0.1366 0.080 0.784 
"t'(~ 50 0.0031 0.0542 -0.  146 0.076 
"t~ 50 0.7721 0. 1692 0.274 1.234 
~,',' ~ 50 0.0005 0.0344 -0.133 0.050 

"'yJ': before diagonalization, "y": after diagonalization. 
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Figure 1. Scatter plots of components of sample variogvam matrix, and components of nearly 
diagonalized variogram matrix. 

As shown in Figures 2-7 ,  diagonalization results in a concentration of 
spatial informatton in the first two diagonal components, and a reduction of all 
off-diagonal and the third diagonal components. Based on this result, the original 
data vectors Z were transformed linearly by the orthonormal matrix B, to give 
the transformed data Y: 

Y(_r) = B r z ( x )  = ( .vl(x)  . . . . .  y~(x)) z ( 4 )  

We assumed that the off-diagonal elements were negligible, modeling them 
as zeros, and modeled each of the three diagonal components using least-squares 
methods and standard models. Assuming no spatial cross-correlation (zero cross- 
variograms) indicates that cokriging is equivalent to separate kriging, which is 
less computationally intensive than cokriging, and more stable. The diagonalized 
data {~'(x)} thus were kriged, and the kriging estimates were retransformed by 
B to obtain estimators of the original data. 

o 

5 10 t5 20 25 30 0 fi 10 

lags 

Figure 2. Sample variograms of -/~, and "y'~ 

15 20 

lags 

25 :30 



882 Xie, Myers, and Long 

�9 , �9 . . ' ! 
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lags lags 

Figure 3. Sample cross-variograms of ~2 and ~'12. 
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Figure 4. Sample cross-variograms of ~ and -y'(3. 
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Figure 5. Sample variograms of "r~2 and ~2. 

15 20 

lags 

25 30 



Matrix-Valued Variogram Models. 11 883 
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Figure 6. Sample cross-vafiograms of ~3 and ~ .  

DISCUSSION 

Table 3 summarizes cross-validation results of kriging the original data 
directly, cokriging the original data directly, and cokriging indirectly (using the 
diagonalized data). For all variables, the cross-validation statistics of the kriged 
variable and the estimates obtained by transformation followed by kriging and 
retransformation were extremely similar (note that the kriging variance of the 
diagonalized data could not be retransformed). In this example, we cannot claim 
improvement using this method over separate kriging of the variables, only that 
we did about as well using the diagonalized variables in place of the original 
variables. 

One advantage of the diagonalized variables is that the B matrix introduces 
the potential for some interpretation of the composition of the diagonalized 
variables: for example, the first transformed variable is '~composed o f "  0.4013 
parts bicarbonate, 0.6194 parts calcium, and 0.6747 parts magnesium) This 

~From the equation Y = BtZ (4): the proportions are from the first column of B (3). 

i 
I ~tore disgon~Z 81]0n J 

5 10 15 20 25 30 

lags 

o 

aher dlago naliz a'llo~ ] 

10 15 20 25 30 

lags 

Figure 7. Sample variograms of "t~ and "y'~. 
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Table 3. Cross-Validation Statistics lor Interpolation Results (Long, 1994) from Kriging, Cokriging All Three 
Variables, and All Subcokrigings" 

Statistic 1 :* -  zt (:* z~ -~ \ ~(T,j / P(:*" :) P\~*'  ~(T,~ / 

0 0 1 I 0 0 

Bicarbonate 0.0113 0.5325 0.9238 0.6760 0.0523 0.5827 
trans 0.0087 0.5325 N/A 0.6750 N/A N/A 
bi + ca* 0.0058 0.5224 1.0060 0.6824 0.0065 0.5200 
bi + mg 0.0060 0.5585 1.1004 0.6572 -0.0730 0.5034 
bi + ca + m g  0.0050 0.7323 1.4915 0.5595 -0.2877 0.4948 
Magnesium 0.0104 0.4128 0.7636 0.7603 0.0585 0.5544 
tFans 0.0076 0.4152 N/A 0.7582 N/A N/A 
bi + ca* 0.0033 0.4116 0.8346 0.7599 0.0112 0.4986 
ca + mg 0.0585 2.0629 5.0059 0.4292 -0.6783 0.1619 
bi + ca + mg invalid invalid invalid invalid invalid invalid 
Calcium* 0.0018 0.4466 0.7627 0.741 I 0~0640 0.6037 
trans 0.0080 0.4610 N/A 0.7309 N/A N/A 
bi + mg 0.0031 0.5037 0.9395 0.7009 -0.0527 0.5251 
ca + mg 0.0324 0.6248 2.8418 0.7828 -0.5721 0.1528 
bi + ca + mg 0.0018 0.5229 3.0511 0.7828 -0.4790 0.1510 

"Sums" of variables represent cokrigings. Starred results were judged best tbr that variable. "'trans" results 
are obtained by kriging diagonalized (translkwmed) variables, then linearly retvanslbrming to obtain estimates 
lot original variables. (N/A "Not Applicable"--occurs in table tot these estimates because variance-related 
cross-validation statistics could not be relransformed. "Invalid" occurs in table because of negative cokriging 
variances. 

may  o r  may  not indica te  any th ing  to a r e sea rche r ,  but at least  the i n fo rma t ion  

is avai lable  for  s tudy.  

Note  that cokr ig ing  the or ig inal  var iab les  actual ly  gave  poo re r  resul ts  in 

cer ta in  s i tuat ions ,  us ing c ross -va l ida t ion  stat is t ics  as the j udge :  the m o d e l s  may  

have been  inval id ,  a d a n g e r  w h i c h  inc reases  as the c r o s s - v a r i o g r a m s  do.  

F igures  8, 9, and 10 s h o w  the con tou r  m a p s  for  cokr ig ing  the or ig inal  data  

and kr iging o f  the t r a n s f o r m e d  data.  F o r  b i ca rbona t e  (Fig.  8), it appea r s  that  

the t r ans fo rmed ,  kr iged,  and r e t r a n s f o r m e d  m a p  is c lo se r  to the cok r i ged  map ,  

whereas  in the s i tuat ion o f  ca l c ium (Fig.  9) the kr iged  m a p  o f  ca l c ium i t se l f  

looks s l ight ly more  s imilar .  

W e  have  d e m o n s t r a t e d  m o d e l i n g  ma t r ix -va lued  va r iog ram by us ing the 

s imul taneous  d iagona l i za t ion  t echn ique  de sc r ibed  in Part  I o f  this paper .  The  

advan tages  o f  this m e t h o d  are: (1) a s impl i f ied  ana lys i s  and  compu ta t i on  in 

prepara t ion  for  cokr ig ing ,  and (2) a gua ran tee  o f  the  nega t ive  de f in i t eness  o f  

resul t ing var iogram mode l .  O u r  e x p e r i e n c e  s h o w s  that  the s c h e m e  w o r k s  well  
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in s o m e  s i tuat ions  o f  co reg iona l i za t ion ,  e spec ia l ly  if  there  are  not  m a n y  c o m -  

ponen t s  in the vec to r  r a ndom func t ion  (because  e f f ic iency  o f  d i agona l i za t ion  

relies on the s ize o f  mat r ices ) .  

A F O R T R A N  p r og r a m for  the s i m u l t a n e o u s  d iagona l i za t ion  s c h e m e  is 

avai lable  upon  reques t .  A publ ic  d o m a i n  U N I X  ver s ion  G e o E a s  package ,  de -  

ve loped  by the third au thor ,  w h i c h  used  to p e r f o r m  the m a j o r  c o m p u t a t i o n s  can  

be ob ta ined  a n o n y m o u s l y  t h rough  m a t h . a r i z o n a . e d u .  
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