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Fitting Matrix-Valued Variogram Models by 
Simultaneous Diagonalization (Part h Theory) 

T a i l i a n g  X i e  z a n d  D o n a l d  E .  M y e r s  3 

Suppose that Z(.r 0 . . . . .  Z(.L,) are ,,hservations ,!f vector valued random f im, t i ,n  Zt.~J. In fin. 
isotrol~ic situation, tits' sample variogrtml "f *(h)./or a given lag h i.~ 

~*(h)  = 1 X (Z(.r,) - Z(.r,))(2(.~,) Z(x,)) r 
2 N ( h )  , , .  

where s(h) is a set o f  paired points with distance h and N fit) is tits, number o f  pairs in slh). 
For a selection o f  la_gs I h,  Ib . . . . .  h~ such that N (h,) > O. we obtain a k-mple o f  (semi) 

positive definite matrices ".t*(lh) . . . . .  ~*(Ih).  We want to determine an orttumormal matria B 
which simultaneously diagonalizes the ~ *(t h) . . . . .  ~ *(ht) or nearly diagonalizes them in the l~e~]l~e 
that the sum of  squares o f  off-diagonal elements is s_rnall conlpared t(Lthe sum o f  squares ~f  diagonal 
elements. I f  such a B e_rists, we linearly tran.s~rm Z6~) by Y(x) = BZ (x L Then, the res dtin~ vector 
funs Y(.r) has less spatial correlation a .  ong its components than Z(x) does. The components 
of  Y (x) with little contribution to the variogram structure may be dropped, and small t'ro.~s-vario- 
grams fitted by straightlines, Variogram models obtained by this scheme preserve the negative 
definiteness propero' of  variograms (in the matrLr-valued function sense). A simplified analysis and 
('omputalion in cokriging can he carried out. 771t, prim'iph.s q f  thi.~ s t h e i n e  art' presente,l m thi~ 
paper. 
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INTRODUCTION 

If Z(x) is an intrinsic spatial random function, then 

y(h) = �89 E[Z(x + h) - Z(x)] 2 

exists and does not depend on x. The y(h) quantifies the spatial correlation of 
Z(x). The sample variogram for a given lag h is 

1 ~ (Z(x,) - z(.b)) 2 
3'*(h) - 2N(h).,'o,I 
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where 

s(h) = {(i, j):dis(xi, xj) = h} and N(h) = Is(h)l 

Of course, the h should be selected so that s(h) #: Q ,  i.e., N(h) > O. Note 
that points with a given distance are clumped together and the estimator is 
unbiased. 

If Z(x) is an intrinsic vector spatial random function, then the matrix sample 
variogram would be 

1 Z ( Z ( x , )  - Z ( x j ) )  ( Z ( x i )  - Z(xj)) 7 
~*(h) - 2N(h).~lm 

Although there are various methods to obtain a sample variogram, the 
sample variogram is not sufficient for spatial prediction schemes, such as kriging 
and interpolation. A functional form that best represents this sample variogram 
could be used. However, not every smooth function passing through or close 
to the sample variogram is a valid variogram model. Recall that the variogram 
should be a conditionally negative definite function of a certain order. The lack 
of this property can result in a negative mean-squared error of prediction (Cres- 
sie, 1991). Therefore, we have to fit a variogram using a class of functions with 
the appropriate negative definiteness property. 

Usually variogram modeling consist of three stages: 

�9 Compute the sample variogram at different lags. 

�9 Correctly identify parametric functions that are conditionally negative 
definite. For a scalar random function, we can plot the sample variograms 
and obtain graphical information on the parametric form of the vario- 
gram. Because the family of conditionally negative definite functions is 
large, correct identification is not easy. In geostatistics, several standard 
models are used, such as the Gaussian model, Exponential model, or 
Spherical model. More complicated models can be obtained by nesting 
these standard models. 

�9 Fit the sample variograms to the parametric form. Different methods 
have been developed for variogram modeling of a scalar spatial random 
function. The most widely used technique in geostatistics is the subjec- 
tive method, by which (with aid of some graphic device) a fit is made 
to the sample variograms, with adjustments to the model parameters 
(such as sill, nugget, and range). Obviously, this method can be inac- 
curate and inefficient. Several goodness-of-fit methods for fitting a best 
variogram model have been proposed. Weighted least-squares method 
may be used (Cressie, 1985). 

For the vector spatial random function situation, the subjective method is 
no longer adequate, because of the lack of suitable graphic aids for plotting 



Matrix-Valued Variogram Models. I 869 

sample variogram matrices. Correctly identifying a parametric form of matrix- 
valued variogram thus is more difficult. The major difficulty comes from insuf- 
ficient knowledge of matrix-valued (conditionally) negative definite functions. 
Even when we select a parametric form of matrix-valued variogram, it is a 
complicated procedure to fit a model, because there are many parameters to be 
estimated. 

It is usual to reduce the matrix-valued variogram modeling problem to a 
scalar variogram modeling problem. Let Z(x) = (z t (x)  . . . . .  z , , (x))  r. Then, the 
matrix-valued variogram is 

~(h)  = �89 E [ ( Z ( x  + h) - Z (x ) )  ( 2 ( x  + h) - Z(x)) r] 

= (3,~(h)), r, s = 1 . . . . .  m 

where 

yr.~(h) = 4 E[(zr (x  + h) - z~(x)) ( z &  + h) - z ,(x))]  

When r = s. 3'rr(h) is the variogram of z~(x) and when r -4: s, 3'r,.(h) is the cross- 
variogram of zr(x) and z.,.(x). It is well-known that "Yrr(h) ( r  = 1 . . . . .  m) are 
conditionally negative definite functions, and the 3,r.,(h) must satisfy the Cauchy-  
Schwartz condition 

]"tr.,.(h)f <_ x/",[r,_(h)3,ss(h) (I)  

Unfortunately, this inequality is only a necessary condition. At this time there 
is no sufficient condition for 3'rs(h) ( r  #: S) tO be valid. Modeling cross-vario- 
grams is even more difficult, because of their incomplete characterization. 

In an attempt to avoid this problem, Myers (1982, 1988) proposed instead 
to model variograms of the sum and difference of Zr(X), Z,(X). 

Define 

"yr+s(h) =- �89 E(Zr(X + h) + zs(x + h) - z~(x) - z , (x))  2 (2) 

yrS.(h) -- �89 E ( z , ( x  + h) - z,(x + h) - zr(x) + z.,(x)) 2 (3) 

r , s =  1 , 2  . . . . .  m 

Note that 3,,.~(h) and 3,r](h) are the variograms of Zr(X) + Z.~(X) and Zr(X) - Z~(x), 
respectively. It is easy to see that 

3,~.,(h) = 4 (2~(h) + y~.,(h) - ~/].,(h)) = ~ (yr+(h) - .y~,(h) - -y,.~(h)) 

7rs(h) = �88 (-yr+(h) - "y~(h)) 
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Thus we can use 3,~ + and 3'r~ to estimate each entry "~rs o f ~  individually. Because 
- ~ ( h )  must satisfy the conditional positive definiteness condition and the Cau- 
chy-Schwartz condition is only a necessary condition for positive definiteness, 
estimating "r~.,(t) by the given method may not guarantee consistently positive 
definiteness (Goovaerts, 1994). 

In this paper, we propose an alternate method for variogram modeling by 
simultaneously diagonalizing the sample variogram matrices. We will see that 
this method guarantees the negative definiteness of the matrix-valued variogram. 

M O T I V A T I O N  

Let Z(x) be an intrinsic random vector function. We only consider the 
isotropic situation. Then its variogram is a matrix-valued function of Euclidian 
distance: 

~(h) = �89 E[(Z(x + h) - Z(x)) (Z(x + h) - Z(x)) 7] 

As a (matrix-valued) function, it is conditional negative definite of order 1. As 
a matrix (for each given h), it is (Hermitian) semipositive definite. 

Suppose that 2(x~) . . . . .  Z(x,,) are observations of Z(x). The sample 
variogram ~*(h) tbr a given lag h is 

I Z ( z ( x , )  - 2 ( x , ) )  (2(x, )  - 2 ( x A )  r 
~*(h) - 2N(h).,~h~ 

For a selection of lags h~, h 2 . . . . .  hk such that N(h i) > 0, we obtain a 
k-tuple of (semi) positive definite matrices q*(h~) . . . . .  ~*(hk). We want to 
determine an orthonormal matrix B which simultaneously diagonalizes the ~*(h~), 
. . . .  ~*(hk), or nearly diagonalizes them, in the sense that the sum of squares 
of off-diagonal elements is small compared to the sum of squares of diagonal 
elements. If such a B exists, we linearly transform Z(x) by Y(x) = BZ(x).  Then, 
the resulting_vector function Y(x) has less spatial correlation among its compo- 
nents than Z(x) does. Components with little contribution to the variogram 
structure may be dropped. The analysis now can focus on ~'(x). The sample 
variogram matrices ~*(hl) . . . . .  ~*(hk), will be in nearly diagonal form. There- 
tore, a simplified analysis and computation can be carried out. 

Let t2~ be a set of matrix-valued functions in which each function is con- 
ditionally negative definite of order 1. For given sample variogram (matrix form) 
of Z(x), ~*(hl) . . . . .  ~ ( h  D and for an admissible candidate ~(h) ~ (2 I, the 
goodness-of-fit can be measured by 

k 

dp(~) = ~ ,  wiTr(~(hi )  - *  - "r~(hi))- 
i=1 
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where c0~ _> 0 (i = 1 . . . . .  k) with Eco~ = 1. Because a matrix-valued variogram 
is symmetric,  we use the square of  ~(h,) - ~ * ( h  i) instead of  (~ (h  i) - ~*(h,)) 
(~(hi)  - ~*(h i ) )  r. In order to determine a best candidate, we minimize qs(~). 
The minimization may occur in two senses: one is to minimize ~(~) for the 
parameter space of  ~, if ~ is specified (for instance, altering nugget, sill, and 

range if ~ is a spherical model):  the other is to minimize qs(~) for the set of  
valid models,  C~. The latter requires some topological properties of  the space 

12~, such as compactness,  which are not clear. From a practical point of  view, 
we may assume that the interesting candidates are in some compact set of  
functions in (2~. We also assume that model ing scalar variograms is workable 

and efficient. Our idea is to rotate ~*(h,) (i = 1 . . . . .  k) by B so that the main 
diagonal elements carry as much information as possible: in other words, the 

off-diagonal elements carry as little information as possible (are minimized):  
then the diagonal elements are modeled as scalar variograms. The off-diagonal 
elements can be dropped (if they are nearly zero), or at most be modeled by 

linear functions. We will show how this idea works and how much loss occurs 
if we use the resulting model for cokriging. 

T H E  P R I N C I P L E  

Suppose that there exists an orthonormal tn x tn matrix B such that 

B ~ - ~ ( h , ) B ' ,  . . . .  B ~ ( h , ) B '  

are nearly diagonal. Denote B ~ * ( I b ) B '  = D(h , )  and let Y(x) = BZ(x). Then 
~ . ( h )  = B ~ ( h ) B '  and sample variograms of  Y(x) at lags h~ . . . . .  hA are 

~ ( h , )  - *  ' = B3,2(h i )B = D(h , ) ,  (i = 1 . . . . .  k) .  Because B is orthonormal,  

k k 

rb(-~) =_ ~ ,  c o i T r ( ~ 2 ( h i ) -  y 2 ( h i ) ) -  ~ w, T r ( B ~ s d h i ) B  - B~-~(h , )B ' )  z 
i = l  i - I  

k k 

-- ~ coiTr(~y(hi) v~(hi))- ~ o~iTr(~T,(h,) - D ( h i ) )  2 (4) 
i = 1  i - I  

Let ~T.(h~) = (3,~(h)) and D ( h )  = (dr.,(h)). Then 

k m k m 

~('~)  = ~ O) i ~aa (y~(h,)~ - d~(h,)) 2 + 2 ~] coi ~, ( y ~ ( h , )  - d~,,.(h,)) 2 
i = l  r = l  i = 1  I < _ r < s < _ m  

Let k 

~ r r  = ~ eoi(Y~r(hi) - d~(h i ) )  2, r = 1 . . . . .  m 
i = 1  

k 

= w i ( 3 " r s ( h i )  - d r s ( h i ) ) - ,  1 <- r < s <_ m 
i = l  
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In order to minimize ,I,(~), it is sufficient to minimize the ,I, . . . . .  1 -< r _< s -< 
m. Note that 3,~(h) is the variogram of the rth component  yr(X) of  Y(x)  and the 
drr(hi) are the sample variograms. Minimizing @rr (r = 1 . . . . .  m) is the same 

as modeling the variogram of  yr(X) based on its sample variograms dr /h i ) ,  (i = 
1 . . . . .  k). This can be done in the same way as for a scalar random function. 

Similarly, minimizing 'I'r. , (1 --<- r < s _< m) is the same as modeling the 
cross-variogram of yr(x) and y~(x). We may require some smoothness property 

? 
for ~r.,.(h). Hence the 3,~.(h) could be any smooth functions such that ,I% is 
minimized and "yr,(h) along with "),~(/l) (r = 1 . . . . .  m)  (obtained by modeling 

yr(X)) constitute a conditionally negative definite matrix-valued function of  

order 1. 
-y~.Jh) (1 _< r < s _< m), look Before trying to model the cross-variograms 

at the data {dr,.(hi)} (that is, the sample variogram values) more closely. 

Because the D(h~) (i = 1 . . . . .  k) are simultaneously nearly diagonal,  

k 

~], ~-a (drs(hi)) 2 = d 
i=L I<_r<.~<_m 

is small compared to the sum of  the squares of  main diagonal elements of  D(h,) .  
k k 

d,., = Z E dr,(hi),  d,.., = E o:id~.~(h ,) (5) 
k i=l  i=1 

When co i = l / k .  then dr, = dry. We call dr, the sample mean and dr.~ the weighted 
sample mean. Similarly we obtain sample variances and weighted sample vari- 
ances 

k k 

aT-.,(d) - ~ ]  (dr.,(h i) - dr.v) 2, a2r~(d) = ~] coi(drs(hi) - drs )- 
k - 1 i=l  , = I  

k k 

1 E (h, - I-7) 2, Oh = E w,(h i - l~) 2 
k - 1 ~=i i = l  

Note that 

k 
_~ ~ k - ~ d k - ~ 
a-r.~(d) - 1 ~" (dr,-(h,))- - - -  (dr.,.)- < - - ( d ~ s ) -  (6) 

k - - l i = l  k - 1  k - I  k - 1  

which implies that Idr.,I < d,4'-~'. Similarly 

and 

k k 

aT.,(d) = ~ o2i(d~,Jhi) )- - (d~,,)- < ~, coi(dr.Jhi) )" 
i = 1  i = 1  

k 

Id~.,I -< E ~,(d~.,(h,)) 2 
i = I  
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These imply that 

and 

k 

~, 62~.~(d) < Z ca, ~, (drs(hi)) 2 < d (7) 

k 

Z Id-;.J ~ Z ca, Z (dr,(h,)) 2 < d 
r < s  i=  I r<.~ 

Therefore, for 1 ___ r < s < m, what we are going to fit is a set of data for 
which the data values are small and their variations are even smaller. This type 
of data may have a horizontally linear tendency. To see this, suppose c~r, + 
/~r.,h is the linear function (regression line) used for fitting {dr.,(hi)} (1 < r < 
s < m). We build a weighted least-squares framework by minimizing 

k 

coi(dr.,.(h i) - a,., -- 13rsh,) 2 
1 2 1  

By a simple calculation, we obtain the estimated intercepts and slopes 

~r,  = dr., 

~ r ,  ~ - - 1  c ~  - ~tr~) (hi - -  h )  

= ~ cai(h, - ~)2 
I 

By Holder inequality, 

i/~r., 1 < (~;~=, ca,(dr.,.(hp - dr,.)2) ' '~ ( ~ = ,  ca,(h, - ~)2),,2 O,.,(d) 
- E ~ = ,  , r  - T~) -~ _< ~-~- ( 8 )  

By (7), we have 
/~2 E~<, aTe(d) d 

It is not easy to perform statistical testing of the hypothesis /3,., = 0, because 
of dependences in {drs(hi)}.  It should be noted that (1) d is small by our as- 
sumption, (2) we can achieve a large variation of {h,} easily. Therefore, the 
quantity d/6~, would be small enough so that I~,.,I is negligible. 

The next question is whether a model generated in this way preserves the 
conditional negative definiteness property. This will be answered by the follow- 
ing Theorem (Xie, 1994, theorem 5.3.1, p. 70): 

T h e o r e m .  

Let h = IIx - yl[ for x ,  5' e R k, where the norm is Euclidian 2-norm. Let 

p - I  

q/(h) = g(h)  + ~ A,,h 2" 
u = 0  
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where A, are any real symmetric matrices. If g(h) is conditionally negative 
definite of  order p, then ",/(h) also is conditionally negative definite of  order p. 

This Theorem suggests that we can construct a (matrix-valued) variogram 
p - I  "~u model in the way that g(h) takes care of  all diagonal parts and E,,_= o A,h" takes 

care of  all off-diagonal parts. Because the sample variograms of  Y(x) are nearly 

diagonal, we simply set g(h) = diag(3,1t(h~ . . . . .  %,,,,,(h)), and A, = (a~"~) with 

a~r = 0 (u = 0 . . . .  p - 1 and r = 1 . . . . .  m). Note that ~y(h) is conditionally 
= o 0 (r  negative definite of  order 1. Then Y~__o I A,h 2" = A o (a~ with art = = 

1 . . . . .  m). The model finally becomes 

~ ( h )  = diag(y II(h) . . . . .  Ymm(h)) + Ao 

From preceding discussion, it is natural to set a~ = 6r,. = dr., (1 < r < s < 
m). 

Let us now return to ,I~(~) 
m m 

r =  I I < - - r < s < - - m  

k m k m 

= • o~i ~ (3,~(hi) - drr(h,.)) ~- + 2 ~ co, ~ (3~i(hi) - d~.,(h~)) 2 
i = 1  r = l  i = l  I - < r < v - - < m  

k m k m 

= ~,, ~ ~ ('r~(h,) - drr(h~)) 2 + 2 ~ c0i ~,, ( d r ,  ,. - -  d~,(h~)) -~ 
i - I  r = l  i - [  I ~ r < . ~ m  

k 1?1 k i l l  

< ~,, o~, ~,, (3"~r(h~) - dr , (h~))  2 + 2 ~, r ~,, (d~.,.(h,)) 2 
i = 1  r = l  i = 1  I < - - r < x < - - n l  

k ill 

< ~,  co i ~,, (~Trr(hi) - drr(hi)) 2 + 2d (9) 
i - I  r - I  

The first part of  the right-hand side of  (9) is the error caused by fitting the main 
diagonal elements. The second part of  (9) is an upper bound on the error caused 
by fitting the off-diagonal elements (which are small by our assumption). 

We remark that this scheme can be extended easily to model ing condition- 
ally negative definite matrix-valued functions of  order p > 1 in the light of  the 

Theorem, fitting the off-diagonal elements {drs(hi) } by even polynomials with 
degree less than or equal to 2(p - 1). If  {dr,(h,)} has small variation, the 
coefficients for the higher degree terms can be neglected. 

The process can now be summarized in the following steps. 

(1) Compute the matrix sample variogram -y~,(h 1) . . . . .  "u for suitably 
selected lags h~ . . . . .  h k. 

(2) Determine an orthonormal m • m matrix B such that 

B'Y-~(hl)B' = D(hO . . . . .  B')'*(hk)B' = D(hk) 

are nearly diagonal. 
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(3) L i n e a r  t r a n s f o r m  Y(x)  = B Z ( x ) .  

(4) M o d e l  e a c h  c o m p o n e n t  yr(x) s e p a r a t e l y .  T h i s  c an  be  d o n e  in the  s a m e  

w a y  as for  m o d e l i n g  s ca l a r  v a r i o g r a m s .  

(5) Se lec t  3'rs(h) = dr., (1 __< r < s _< m) .  T h e n ,  the  e s t i m a t e d  v a r i o g r a m  

m o d e l  o f  ~'(x) is 

~,T(h) = d i a g ( 3 ' ~ ( h )  . . . . .  ~'mm(h)) + Ao 

= o = ~ r ~  1 < r < S < m a n d a r O  O. w h e r e  A o (a~ is s y m m e t r i c ,  a~s _ = 

I f  the  s u m  o f  s q u a r e s  o f  o f f - d i a g o n a l  e l e m e n t s  Y~= i E~ < ~< .~ < , . (d~(h,))  2 is 

c lose  to ze ro ,  we  s i m p l y  u se  the  d i a g o n a l  m a t r i x - v a l u e d  f u n c t i o n  

~,?,(h) = d i ag (7~ l (h )  . . . . .  7.,re(h)) 

as  an  e s t i m a t e  o f  ~'-v(h). 

T h i s  s c h e m e  re l ies  on  a p r o c e d u r e  for  s i m u l t a n e o u s l y  d i a g o n a l i z i n g  severa l  

s y m m e t r i c  m a t r i c e s .  W e  can  u se  a m o d i f i e d  F G - a l g o r i t h m  (F lu ry  and  C o n s t a n -  

t ine ,  1985;  F lu ry  and  G a u t s c h i ,  1986;  C l a r k s o n ,  1988a;  Xie ,  1994) o r  a leas t -  

s q u a r e s  a l g o r i t h m  (De  L e e u w  and  P r u z a n s k y ,  1978;  C l a r k s o n ,  1988b;  Xie ,  

1994) to c o m p l e t e  the  s i m u l t a n e o u s  d i a g o n a l i z a t i o n  p r o c e d u r e .  
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