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Pseudo-Cross Variograms, Positive-Definiteness, and 
Cokriging 1 

Donald E. Myers 2 

Cokriging allows the use o f  data on correlated variables to be used to enhance the estimation o f  a 
primary variable or more generally to enhance the estimation o f  all variables. In tile first case, 
known as the undersampted case, it allows data on an auxiliary variable to be used to make up for 
an insu-ffilcient amount o f  data. Original formulations required that there be su.fficiently many lo- 
cations where data is available for  both variables. The pseudo-cross-variogram, introduced by 
Clark et al. (1989), allows computing a related empirical spatial function in order to model the 
function, which can then be used in the cokriging equations in lieu of  the cross-variogram. A 
number o f  questions left unanswered by Clark et al. are resolved, such as the availability o f  valid 
models, an appropriate definition o f  positive-definiteness, and the relationship o f  the pseudo-cross- 
variogram to the usual cross-variogram. The latter is important for  modeling this function. 
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I N T R O D U C T I O N  

Cokriging is a generalization of kriging in that it uses not only the spatial cor- 
relation of the variable(s) of  interest but also the intervariable spatial correla- 
tion, and allows estimation of  the variable(s) at an unsampled location using 
not only data for variable but also data from the correlated variables. Many of 
the early applications used the so-called undersampled formulation, where the 
data from the correlated variables is used to compensate for a lack of data for 
the variable of principal interest. However, there is no necessity nor advantage 
gained from focusing on the estimation of only one of the variables. All may 
be estimated using all the data with little additional computing. 

With the exception of the formulation used by Clark et al. (1989), all of  
the formulations of  cokriging require the use and hence the estimation/modeling 
of cross-variograms or cross-covariances for each pair of variables used in the 
analysis. If  Z l ( x )  . . . . .  Z , , ( x )  are random functions, where x is in l, 2, or 

~Manuscript received 18 July 1990; accepted 12 February 1991. 
2Department of Mathematics, University of Arizona, Tucson, AZ 85721. 

805 

0882-8121/91/0800-0805506, 50/I © 1991 International Association for Mathematical Geology 



806 Myers 

3-space and the objective is to estimate the point value Zt(xo), then the weights 
for the respective data Zj(xi) are obtained as the solution to a set of  linear equa- 
tions, and the coefficients are the values of  variograms and cross-variograms 
for pairs of data locations. To estimate the cross-variogram of Zi(x), Z,(x) re- 
quires a sufficient number of  locations where data is available for both variables 
of interest, a condition which is frequently not satisfied in practice and in par- 
ticular in an undersampled problem. If the set of locations where data is avail- 
able for Zj (x) is a subset of  the locations for Zk(x), then one ad hoc solution is 
to simply ignore the extra data for Zk(x) (when estimating the cross-variogram). 
In general, this will reduce the information available for estimation and hence 
make the estimation process less reliable; however, more generally, it simply 
does not use all available information. Note that in an extreme case there may 
not be any sample locations where data is available for both variables in a pair. 

Clark et al. (1989) introduced a pseudo-cross-variogram, instead, whose 
estimation does not seem to require that data for Zj (x), Z,(x) both be available 
at any of the same locations. They derived the cokriging equations using these 
pseudo-cross-variograms, although only in an undersampled form, but did not 
deal with a number of important questions such as what are valid models, what 
is the relationship to the usual cross-variograms, and what underlying hy- 
potheses or assumptions are needed. It is shown in Myers (1982, 1984, 1985, 
1988a) that the usual system for estimation in the undersampled case is a special 
case of a more general formulation, and that the computer program can incor- 
porate the undersampling. This algorithm will be extended to a formulation 
using the pseudo-cross-variograms. 

THE PSEUDO-CROSS-VARIOGRAMS 

Let Zj(x), Z,(x) be two random functions of  interest defined in 1, 2, or 
3-space (it could equally well be in higher dimensional space) and h a vector. 
Clark et al. (1989) define the pseudo-cross-variogram of Zj, Z, as 

gjk(h) = 0.5E[Zi(x) - Z,(x + h)] 2 (1) 

where it is assumed that this function depends only on h. If  j = k and the 
random function satisfies the Intrinsic Hypothesis, then Eq. (1) is the usual 
variogram. Note that (1) is not the same as half the variance of the difference 
even if both random functions separately satisfy the Intrinsic Hypothesis since 
in general they may not have the same means. If the random functions do not 
have constant means, then the discrepancy may be more serious and hence we 
begin by generalizing the definition to the following 

gjk(h) = gkj(--h) = 0.5 var [Zj(x) - Zk(x + h)] (1') 
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and in subsequent sections both Eqs. (1) and (1') will be used. Sufficient con- 
ditions for the existence of  (1), (1 ') and the required independence with respect 
to x are easy to formulate. Let Zj(x) = Yj(x) + mj(x), where Yi(x) is second- 
order stationary and rnj(x) is the mean of  Zj(x). As usual, m)(x) will be assumed 
to be a linear combination of known basis functions but with unknown coeffi- 
cients. Since the translation of a second-order stationary random function is 
second-order stationary, and the sum of two second-order stationary random 
functions is second-order stationary, Eq. (1') is the variance of a random func- 
tion and depends only on h. It is not, however, the covariance nor the variogram 
of a random function unlessj  = k. To see the relationship with the usual cross- 
variogram, assume that Zj(x), Z~(x) have the form above and that the cross- 
covariance ofZj(x), Z,(x + h) is symmetric [this will imply that gjk(h) and gjk(h) 
are symmetric]. Then (1 ') can be rewritten as 

g~k(h) = 0 .5[C~(0)  - 2Cj~(0) + C~.k(0)] + 3,~Ah) (2) 

where 72k(h) is the usual cross-variogram. If  moreover mj(x), ink(x) are con- 
stants mj, mk then 

gjt.(h) = &~(h) + 0.5[m~ - 2mjm k + m 2] (3) 

and hence, with sufficiently strong assumptions, the pseudo-cross-variogram of 
Clark et al. differs from the usual cross-variogram by a (positive) constant. The 
usual cross-variogram 3'jk(h) is zero for h = 0, whereas in general ~jk(0) > 0. 
This difference is not just a nugget effect. Aside from the advantage that data 
is not required for both random functions at the same locations, it is also seen 
from Eqs. (2) and (3) that both (1) and (1') do quantify the cross-correlation 
between the random functions Z./, Z k. If  mj = m~, then of course Eqs. (1) and 
(1') coincide. It is also possible to define a symmetric version of (1) or (1'). 
Form a new function Wik(x) = Z~(x) + Zk(x), then let 

g,,~k.,,~,(h) = gjk(h) + g~j(h) - c o v  {Zj(x) - Zk(x + h), Zj(x + h) - Z~.(x)} 

(4) 

The covariance term in Eq. (4) plays the role of  a symmetric pseudo-cross- 
variogram, although it is not clear that this is useful. 

Although Eq. (1') is defined by a variance and (I) by the expected value 
of a certain square, neither is a true variogram or covariance unless j = k. 
Therefore, the question of appropriate models for either is not easily resolved. 
A somewhat similar problem arises in the case of  cross-variograms, but the 
latter is directly related to a certain linear combination of variograms as indi- 
cated in Myers (1982, 1988a) and the modeling is thus somewhat simpler. The 
objective in fitting a valid model is to ensure that the estimation variance re- 
mains positive and that the system of cokriging equations has a unique solution. 
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T W O  USEFUL RELATIONS 

The relations may be stated either in terms of Eq. (1) or (1') 

E { t Z j ( x )  - Zp(u) l [Zk(y )  - Zp(u) ] }  = gjp(U - x )  

+ gkp( u - Y)  - gjt~(Y - x )  (5) 

cov {[Zi(x) - Ze(u)], [Zk(y )  -- Z p ( u ) ] }  = &p(u  - x )  

+ g k p (  u - -  Y) - g ik (Y  --  X) (5') 

Although not explicitly stated there, Eq. (5) is implicit in Clark et al. Both Eqs. 
(5) and (5') are variations of a well-known result for variograms and cross- 
variograms. They are needed in order to write the estimation variance(s) in 
terms of variograms and pseudo-cross-variograms. 

THE COKRIGING EQUATIONS 

For simplicity we begin by considering the problem of estimating Z~(x0) 
using the data Z(x i )  = [Z~(xi)  . . . . .  Z,,(xi)]; i = 1 . . . . .  n. Although Clark et 
al. did not assume data were available for all functions at all locations, that 
assumption has no real impact on their derivation. That special case can be 
obtained from the full sampled problem in a manner analogous to the algorithm 
given in Myers (1984, 1988a,b) and implemented in Carr et al. (1985). More 
recently, this program has been implemented in the Geo-EAS format. For sim- 
plicity and without loss of generality we will consider point estimation. The 
estimator for Z I (x0) is given by 

Z * ( x o )  = ~Z,(xi)P/ (6) 

where r i is a column vector of weights Xi,. If the separate components of Z(x i )  

satisfy the Intrinsic Hypothesis, then for Eq. (6) to be unbiased it is sufficient 
for 

~;I~i = [1, 0 . . . . .  Off (7) 

In that case, the variance of  the error can be written in the form 

var {Z*(x0) - Zt(x0) } = ~ , ~ I ' r E { W T W j } r j  (8) 

where 

Wi = [Zl (x i )  - Z l ( x o )  . . . . .  Zm(xi)  - Zj(xo)] (9) 

The "covariance" matrix in Eq. (8) can be written in a more convenient form 
using the identity (5) 

E { W f W j }  = (~ t (Xo  - xi) + { G , ( x  o - ~ ) ) } r  _ Cr(xj - xj) ( 1 0 )  
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where 

G , ( x  - -  y )  = 

- - g l k ( X  - Y )  . . .  g , , ( x  - y ) - -  

• , . 

- - g m k ( X  - Y )  . . .  g m k ( x  - Y ) - -  

(11) 

f o r k  = 1 . . . . .  p .  

B 

gl l (x  - Y) - - .  glm(x - Y) 

G(x - y) = . . . 

_ g , , t ( x  - y )  . . .  g,, , , , ,(x - y ) _  

The right-hand side o f  Eq. (8) can then be written in the form 

r rTE{ wTwj}rj = 2I;[gt ,(Xo - x )  . . . . .  g, (Xo - x) l r j  

-  crTd% - x ) r j  

(12) 

(13) 

by using (7). To minimize Eq. (8) subject to the constraints given in (7), we 

must introduce m Lagrange multipliers/~1 . . . . .  ~m and form 

)k i q~( , , P - s ; i  = 1 . . . .  n ; s  = 1 . . . . .  m) 

= ~ F ~ r ~ E { W r W j } r j  - 2EE#,(X~ - 6(s - 1)) (14) 

where 6(u) = 1 for u = 0 and = 0 otherwise.  As in all the kriging formulations,  
Eq. (14) is minimized by differentiating with respect to each of  the unknowns 

and setting all derivatives equal to zero. Differentiating with respect to the/~, 
will reproduce the constraints given in (7). Differentiating with respect to each 

the ~,~ gives the set o f  equations 

~ a ( x i  - x j ) I ~ j  "]- [ ~ 1  . . . . .  ~, 'n]  T = [ g l l ( X 0  - -  X i )  . . . . .  g l , ' n ( X 0  - -  Xi  ) I T  

i = 1 . . . . .  n (15) 

It is relatively easy to see how to change the system if  we wish to estimate a 
different component  and at a different place.  It is also easy to see that we can 
simultaneously est imate several  components  and even est imate at different lo- 
cations but using the same data for all the estimations.  The weight vectors l"j 
will have to become matrices ( i .e . ,  a column for each component  estimated),  
l ikewise the column of  Lagrange multipliers will have to become a matrix and 
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the column on the right-hand side of  (15) likewise will become a matrix. This 
simultaneous estimation corresponds to minimizing the sum of estimation 
variances in exactly the same way as in the formulation given in Myers (1982, 
1988a,b). I f  the entire system is written in matrix form, these properties are 
more evident and likewise the appropriate conditions on the matrix function 
G(h). Let G~(Xo - xi) = [g~l(Xo - xi) . . . . .  ~km(XO - -  Xi)] r for k = 1 . . . . .  
p,  then the system can be written in the form 

- d ( x ,  - x , )  . . .  d ( x ,  - x,,) l -  

• . . ] 

d(x , ,  - x l )  . . .  ~ ( x ,  - x,,) I 

_ I  . . .  I 0 _  

I"  n 

__l.Z - . . I  

m ^ m 

Gio(Xo - x O  

Gio(Xo - x,,) 

where I is an m × m identity matrix, I 0 is the column on the right-hand side of 
Eq. (7) and # is the vector of  Lagrange multipliers. Unlike the matrix variogram 
function used in Myers (1982), (~(h) need not be a symmetric matrix. To extend 
the system so that all variables can be estimated, it is only necessary to adjoin 
additional columns to the weight and Lagrange multiplier vectors, and similarly 
to adjoin columns on the right-hand side of the system of equations correspond- 
ing to each of the variables being estimated. Sufficient conditions for the in- 
vertibility of the coefficient matrix will be given subsequently. 

The similarity with the system given in Myers (1982) is reenforced if we 
consider the special case resulting in Eqs. (2) and (3) [i.e., gik(h) = 7jk(h) + 
ajk with a/j = 0]. In fact, the constants aj~ have no effect on the solution of the 
system given in Eq. (15). If this simplification is used in Eq. (15), then the 
usual system of cokriging equations in terms of variograms and cross-vario- 
grams is obtained. 

POSITIVE-DEFINITENESS 

Let G(h) be an m × m matrix valued function with G ( - h )  = G(h) r, de- 
fined on 1, 2, or 3-space (or higher dimension). G is said to be conditionally 
(strictly) positive-definite if 

F,~FfG(xi - x j ) F  i > 0 (16) 

for all points x~ . . . . .  x,, and all weight vectors I '  M . . . . .  I ' ,  not all identically 
zero but whose sum is the zero vector. As shown in Myers (1988c), this is 
exactly the right condition to ensure that the coefficient matrix for the system 
of co-kriging equations is invertible. While this definition of positive-definite- 
ness provides a sufficient condition, it does not directly indicate how to model 
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the individual entries in the matrix function except that the diagonal entries are 
variograms and can be estimated/modeled in (one of) the usual way(s). Clearly, 
the pseudo-cross-variograms cannot be modeled independently of the associated 
pair of  variograms. To see that conditional positive-definiteness as given above 
is sufficient for the invertibility of the coefficient matrix to abbreviate the coef- 
ficient matrix as follows 

where E is a column of identity matrices. If  this matrix is not invertible, then 
there is a vector [U r Vr] r not identically zero such that 

and hence 

(i) KU + EV = 0 and (ii) ErU = 0 

Condition (ii) is exactly that imposed on the weight vectors in the definition of 
conditional positive-definiteness--that is, that they sum to zero. In addition (ii) 
implies that UrE = 0 and hence UrEV = O. Now if both sides of (i) are pre- 
multiplied by U r, then we have U'rKU = O, which would contradict the as- 
sumption of conditional positive-definiteness unless the vector U is identically 
zero. In that case, KU would be zero and hence EV = O, which implies that V 
= O. This argument will extend easily to the case of  universal cokriging. 

It was noted above, that in the case of second-order stationarity and a 
symmetric covariance, that the pseudo-cross-variogram differs from the usual 
cross-variogram by a constant. Hence, the matrix function whose diagonal en- 
tries are variograms and whose off-diagonal entries are pseudo-cross-vario- 
grams can be written in the form 

G(h) = ~(h) + ,4 

where A is a symmetric matrix with zeros on the diagonal. G is conditionally 
positive-definite in the sense given above if and only if ~ is conditionally pos- 
itive-definite-this means that in the case of symmetry pseudo-cross-variograms 
can be modeled by valid cross-variograms plus a constant. 

E S T I M A T I O N  AND M O D E L I N G  

Since Eqs. (1), (1 ') are expected values, it would seem plausible to esti- 
mate the pseudo-cross-variogram in the same way as an ordinary variogram. 
For a given pair of random functions Zj(x), Zk(x), estimate ~jk(h) by 

~ ( h )  = { 1/2N(h)}~,[Zj(xi) - Zk(xi + h)] 2 (17) 
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where as usual N(h) is the number of  pairs of points xi, xi + h with data for Zj 
at xi and data for Zk at xi + h. It is likely that as in estimating variograms, 
distance classes and angle windows would have to be used. Because neither Eq. 
(1) nor (1') is symmetric, it is necessary to examine whether ~ ( h )  is approxi- 
mately the same as ~ ( - h ) .  Having obtained estimated values for the pseudo- 
cross-variogram for different lags, it is still necessary to select a valid model. 
For as noted above, neither Eq. (1) nor (1 ') is the variogram of a random func- 
tion, nor is either simply related to a linear combination of variograms. 

The relationship given by Eqs. (2) and (3) does suggest a method for mod- 
eling the pseudo-cross-variograms. If the plots of  Eq. (16) appear to be sym- 
metric, then the pseudo-cross-variogram differs from a cross-variogram by a 
positive constant (i.e., the value at h = 0). Note that this constant is not the 
same as a nugget effect. First, estimate the constant from the plots, and then 
model the cross-variogram as described in Myers (1982, 1988a,b). This method 
is then simply a way to improve the plotting of cross-variograms and is not a 
direct way to model pseudo-cross-variograms. This can be seen in another way. 
If G(0) is the matrix of constants g.~,(0), then G(h) satisfies (16) if and only if 
G(h)-G(O) satisfies (16). 

Particularly in early applications, the cr__oss-variograms were frequently 
modeled by using a linear representation. Let U(x) = [Ul(x) . . . . .  Up(x)] be a 
vector of uncorrelated random functions with variogram matrix function ~v(h)  
and means m I . . . . .  rap. If the vector Z(x) = [Zl(x) . . . . .  Zm(x)] has the 
representation 

Z(x) = -O(x)A = U(x)[At . . . . .  Am] (18) 

where the Ai's are 1 × p vectors of constants, then the variogram matrix func- 
tion for Z can be written as 

~z(h) = Ar~u(h)A (19) 

where the cross variogram for Z;, Zj--that is, the ij entry in (19) is given by 

"Yij(h) = Ar-~v(h)Aj (20) 

and hence the cross-variogram is a certain linear combination of the variograms 
for the U's. To obtain the analog of  the variogram matrix function, it is nec- 
essary to assume that the components Y,.(x) are second-order stationary. Then 
the analogous function would be given by Eq. (12), and an entry in (12) would 
be given by 

gij(h) = ATDAi + AfDAj  - ATDA j -- ArDAi - Ari-~v(h)Aj - Ar~r(h)Ai 

(21) 
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where D = C(0) + M 2 = E{-Ur(x)-U(x + h)}. The representation for the pseudo- 
cross-variograms is then more complicated than for cross-variograms and the 
conditions for verifying positive-definiteness are also more complicated. Un- 
fortunately, it is clear that there is no real substitute for data at an adequate 
number of locations for all the variables of interest. 

C O M P U T E R  P R O G R A M S  

Since there is essentially no difference in the form of the cokriging equa- 
tions using pseudo-cross-variograms, any existing program for solving cokrig- 
ing equations can be used nearly unchanged. The differences and changes are 
easy to identify. First of all, the pseudo-cross-variogram need not be symmet- 
ric, as noted above, and hence the filling in of the entries in the matrix function 
and in the subsequent coefficient matrix (15) is slightly different. The class of 
valid models is also slightly different for two reasons; one being the possibility 
of nonsymmetry, and secondly the positive constants ajk in g~k(h) = "rjk + ajk 
discussed above. In any case, the changes could be viewed as a generalization 
and a modified program would still function for cokriging using the usual cross 
variograms. 

The estimation of pseudo-cross variograms is, of course, quite different. 
Although the proposed estimator given by (17) is the obvious analogue of the 
usual sample or empirical variogram, the search process in the algorithm for 
finding the pairs is considerably more complicated. Each data location must in 
some sense be coded to indicate which variables have data at that location. In 
particular, for a given pair of variables Zj, Z k the sample location pair (xi, xi + 
h) is not the same as the pair (xi + h, xi). In fact, it would be possible for the 
set of data locations for Zj to be completely disjoint from those for Z~. Algo- 
rithms and programs for computing the sample variogram are essentially of two 
kinds; the most common sorts the pairs into distance classes and angle windows 
as the sample variogram is computed, and thus no list is constructed of the pairs 
utilized. Several recently released programs (e.g., PREVAR in the GEOEAS 
package) first sort the data locations and only afterward use this file to compute 
the sample variogram. Converting the first kind of progam to compute the sam- 
ple pseudo-cross-variogram is fairly easy, and this has been implemented. In 
the case where the sample locations are sorted and the file of sorted pairs re- 
tained, it would seem that such a file would have to be partitioned into two files 
(i.e., corresponding to h and to - h ) .  While the second approach has clear ad- 
vantages, it may require more memory than is available on the particular com- 
puter, and it also will produce very large files. Subsequent plotting of the sam- 
ple pseudo-cross-variogram will also be slightly more complicated in that it will 
be necessary to plot for both h and - h ,  but it is necessary in order to check for 
nonsymmetries. 
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BLOCK ESTIMATION 

If instead of wanting to estimate Z~(xo) the objective is to estimate ZI.A, 
where 

ZI.A = ( l /A)  f Zl(u)  du (22) 

then certain terms in Eqs. (8) and (9) must be changed. In particular, the terms 
of the form 

E{Z~(xi) - Z,(xo)} {Z,(xfi - Z~(xo)} (23) 

must be replaced by 

E{Zs(xi) - Z~.A} {Z,(xfl - Zj.A} (24) 

Using the identity Eq. (5) and the same technique as is used in converting point 
kriging equations to block kriging, Eq. (24) becomes 

( l /A)  t" ~,.,(u - x i) du + ( l /A)  f ~, , (v - xfl dv  

- g . . ( x i -  x j ) -  ( l / A  2) f l ~l,(tt - t , )du  dv  (25) 

which, in keeping with common notation, we will write as 

~l.,(A, xi) + gat(A, xj) - ~.,.,(x i - xj) - ~j l (A,  A) (26) 

This will not result in a change in the basic form of the equations but it will 
add a term to the kriging variance, namely, -g~ ~(A, A). The terms on the right- 
hand side of (15) will then have to be replaced by average values. 

SUMS, DIFFERENCES,  AND INHOMOGENEITIES 

Unlike the ordinary cross-variogram wherein the differences are formed 
for only the same variable, in the pseudo-cross-variogram differences of pairs 
of variables are required. At least in terms of an interpretation there can be a 
problem when the variables are given in entirely different units or represent very 
different phenomena. Although such a disparity does not lead to mathematical 
problems, the relevance of such a statistic may be open to question. There may 
be practical problems when the variability of the data for one variable is vastly 
different from that of the other or where the scale of magnitudes is quite different 
(e.g., if the sample pseudo-cross-variogram is computed from data for Z t, 7-.2, 
and the latter has values several orders of magnitude larger than the former, or 
vice versa). In such a case, the values of the sample function are essentially 
those of a sample variance of the larger-valued variable. The data can easily be 
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rescaled in the case of the ordinary sample cross-variogram or the sample vari- 
ogram of the sum or difference. For example, if a constant m~ is subtracted 
from all the data values for Zl, and a constant m 2 is subtracted from all the data 
values for Z 2, the sample cross-variogram is unchanged. The same is true for 
the sample variogram of the sum of the variables. If  the data for Zj is multiplied 
by a constant bi and the data for Z 2 is multiplied by a constant b2, then the 
sample cross-variogram is multiplied by bl bz. The theoretical cross-variogram 
has analogous properties. Neither of these properties is true for the sample 
pseudo-cross-variogram, although one could "normal ize"  the data and then 
(after cokriging) remove the normalization from the cokriged values. 

A disparity in the units is not crucial in the cokriging estimator since the 
weights (i.e., the coefficients in the estimator) can be interpreted as reflecting 
the change in units. If  data is transformed, by subtraction of a constant or mul- 
tiplication by a constant, the retransformation can be applied either before or 
after cokriging, when variograms and cross-variograms are used. 

SUMMARY AND CONCLUSIONS 

While the pseudo-cross-variogram defined by Clark et al. (1989) is not a 
true cross-variogram nor a variogram, it can be used to derive the cokriging 
equations, and the resulting equations are nearly identical to the ones using 
cross-covariances or cross-variograms. This cross-variogram has the advantage 
that it is not necessary to have data on both variables at any common locations 
and hence the empirical pseudo-cross-variogram can be computed in many in- 
stances where the usual sample cross-variogram cannot be. Because it is in- 
tended for problems wherein one variable has little data, or there are few lo- 
cations where data is available for both variables, it would not be easy in that 
case to use the sum and difference variograms in order to determine valid models 
for the cross-variogram. Modification of existing software to compute the em- 
pirical pseudo-cross-variogram, or cokriging software to utilize the pseudo- 
cross-variogram, is relatively easy. This pseudo-cross-variogram will have sig- 
nificant importance in connection with modeling both spatial and temporal de- 
pendence and correlation, 
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