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Variograms with Zonal Anisotropies and 
Noninvertible Kriging Systems ~ 

D o n a l d  E .  M y e r s  2 a n d  A n d r e  J o u r n e l  3 

Zonal anisotropies are usually simply defined as those that are not geometric' (i.e., that cannot be 
removed by an aJfine tran~sformation). Such anisotropies have c~en been associated with zonations 
and models have been proposed to reflect that association. It is shown by example that such models 
can lead to noninvertible coefficient matrices in kriging systems, because the models are onty 
(conditionally) semidefinite instead of  positive definite. The relationship to the construction used 
in turning bands algorithm and also to spatial-temporal models is discussed. 
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INTRODUCTION 

Geometric anisotropies are defined in terms of invertible affine transformations, 
and zonal anisotropies are commonly defined as those that are not geometric. 
Physically, the latter are thought of as being related to some form of zonation; 
and the corresponding variograms or covariance function models commonly 
have been modeled with a nested structure, with some components being de- 
pendent on only some coordinates. An example is presented to show that such 
a construction may lead to a kriging system that is not invertible. 

THE EXAMPLE 

Consider a problem in two dimensions with sample locations at the corners 
of a rectangle. To simplify the discussion, assume that the sample locations are 
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at (xl, Yl) = (0, 0), (x2, Y2) = (h, 0), (X3, Y3) = ( 0 ,  I ) ,  and (X4, Y4) = (h, 
l) .  Suppose that 3' (x, y)  is a variogram having a nested structure as follows: 

3`(x, y )  = 3` , (x)  + 3`2(Y) (1) 

where 3'j, 3'2 are valid (in 2D space) isotropic variograms, such that 3'j (h)  = 
a, y2 ( l )  = b. Consider the left-hand side coefficient matrix for an ordinary 
kriging system, using these four sample locations. The matrix is (assume the 
points are numbered in the order listed) 

_ m 

0 a b a + b  1 

a 0 a + b  b 1 

b a + b  0 a 1 

a + b  b a 0 1 

1 1 1 1 0 

It is obvious that the sum of  rows one and four is the same as the sum of  rows 
two and three; hence, the four rows are linearly dependent and thus the matrix 
is singular. The problem is that - 3 '  is only conditionally semidefinite, rather 
than positive definite. This is easy to see if weights of  1, - 1 ,  - 1 ,  1 are as- 
signed to the four points; then the quadratic form 

- z z x,x 3'(x, - y ,  - y j )  (2) 

is zero, whereas it should be positive if - 3 '  were (strictly) conditionally positive 
definite. Note that analogous observations could be made if covariances were 
used instead of  variograms. 

There are several aspects of  this (counter) example worth noting: 

1 .  

2. 

No assumptions have been made about the type of  models used to rep- 

resent 3`~, and 3'2- 

No assumptions have been made about the numbers a, b, h, l, except 
that if h > 0 then a > 0 and if I > 0 then b > 0. If  one or the other 
of  the variograms were periodic, then the conditions on a, b might not 
be satisfied for all positive h, 1. Hence, the coefficient matrix will be 
singular for (nearly) any four points that are the vertices of  a rectangle 
with sides parallel to the coordinate axes of  the model (1). 
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. 

4. 

Strict positive definiteness of - 3 '  is a sufficient condition for the coef- 
ficient matrix to be nonsingular for all sample location patterns (assum- 
ing that no sample location appears twice), but semidefinite functions 
can have singular coefficient matrices for some sample location pat- 
terns. For a generalization of this result, see Myers (1988). 

The singularity of the coefficient matrix in the kriging system is a con- 
sequence of the sample location pattern and is not dependent on the 
location to be estimated (or in the case of block kriging, the location or 
shape of the block). Whereas the vector of weights used in the kriging 
estimator is indeterminate, and hence the estimated value is also inde- 
terminate, the kriging variance is constant. Using the example given 
above, if 3"(h/2, 1/2) = d and the point to be estimated is the center 
of the rectangle, then the °'solution" vector is 

Xj = X4 

)k 2 = 0 . 5  - -  )k 4 

)k 3 = 0 . 5  - -  )k 4 

)k 4 = )k 4 

= d -  (a + b ) / 2  

From the symmetry one would expect all the weights to be 0.25, this 
would correspond t o  )k 4 = 0.25. However, for any choice of the arbi- 
trary variable, X4, the kriging variance is the same--namely, 2d - (a 
+ b ) /2 .  

A P A R A D O X ?  

While the example given above makes no explicit assumptions about the 
random function, the construction of a variogram or covariance of the form 
given in (1) seems very plausible since one way to obtain such a variogram 
representation is to construct a random function as follows: 

Z(x, y) = Z , (x )  + Z2(y) (3) 

where (x, y) is a point in 2D space (note that it could equally well be x in 
n-space and y representing time). The representation given in (3) could corre- 
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spond to a zonation in a deposit. If  Z I, Z 2 are uncorrelated, then the variogram 
would have the form given in (1). In general, one expects that the sum of two 
valid models (i.e., strictly positive definite models would result in a strictly 
positive definite model). The example shows that this does not always happen 
in this kind of construction. 

As pointed out by one of the referees, the construction in (3) results in four 
random variables being linearly dependent, i.e., 

Z ( h , l )  + Z(0, 0) : Z(h, 0) + Z(0,1) (4) 

In this case, then, it is not unexpected that the variogram or covariance is poorly 
behaved. 

The reader may also be struck by the similarity of (3) with the construction 
used in the turning bands simulation technique, wherein a random function de- 
fined in a higher dimensional space is "simulated" by forming a linear com- 
bination of uncorrelated "simulated" random functions defined in 1D space. 
Each term in the sum corresponds to projecting the point in n-space onto a line, 
e.g., one of the coordinate axes as is the case in (3). One clear difference is 
that the covariance function for each of the terms is the one-dimensional co- 
variance corresponding to the original covariance defined in n-space. This ex- 
ample will be discussed subsequently. 

EXTENSION TO 3D SPACE 

To better understand the counterexample and its relevance to the turning 
bands construction, it is useful to examine the problem in 3D space; that is, 
consider 8 sample locations with coordinates (x~, yj, E1 ) = (0, 0, 0), (x2, Y2, 
E2) = (h, 0, 0), (x3, Y3, E3) = (0, l, 0), (X4, Y4, g4) = (0, 0, k), (xs, Ys, Es) 
= (h, l, 0), (x6, Y6, E 6 )  = (h, 0, k), (x7, YT, E T )  = (0, l, k), and (x8, Y8, E8) 
= (h, l, k). Suppose that 3' (x, y, E) is a variogram having a nested structure 
as follows: 

3"(x, y, E )  = 3',(x) + 3'2(Y) + 3'3(E) (5) 

where 3"~, 3'2, 3'3 are valid (in 3D space) isotropic variograms, such that 3'1 (h) 
= a, 3'2(l ) = b, 3'3(k) = c. Consider the left-hand side coefficient matrix for 
an ordinary kriging system using these eight sample locations. The matrix is 
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To see that this matrix is not invertible (i.e., that the rows are linearly depen- 
dent), form sums by pairs. Add rows 1 and 7, rows 2 and 8, rows 3 and 5, 
rows 4 and 6; then it is seen that the resulting four rows are identical and, hence, 
dependent. 

Let Vl, v2, v3 be the vectors determined by the points (x2, Y2, E2) = (h, 
0, 0), (x3, Y3, E3) = (0, l, 0),  (x4, Y4, E4) = (0, 0, k), then the eight points 
are obtained by the linear combinations 

C i V  1 ~- C2U 2 -I- C3V 3 

where the coefficients are either O's or l ' s .  In this case the vectors are not only 
linearly independent but also orthogonal; hence, it is sufficient to know the 
values y l ( h )  = a, 3"2(l) = b, 3'3(k) = c in order to be able to calculate all 
the entries in the coefficient matrix above. 

More generally let v~ ,  v 2 ,  v3 . . . . .  v m be vectors in 3D space and form 

C I V  I "Jr- C2V 2 -[- " ' "  Jr- CmU m (6) 

where the coefficients are O's or l ' s .  There will be 2'" possible combinations 
(i.e., possible points in the configuration). To construct a noninvertible coeffi- 
cient matrix would require that it have 2'" + 1 rows. Moreover, because the 
vectors cannot be linearly independent if rn > 3 and at most three can be mu- 
tually orthogonal, to evaluate the variogram constructed as the sum of m terms 
will require knowing the values at more than m points. In the case of  the dis- 
cretized variogram or covariance in 3D space constructed as the sum of 15 
covariances (one-dimensional), singularity of  the coefficient matrix would only 
occur if more than 32,000 points were used in the kriging neighborhood. Since 
in practice the number of  sample locations would always be substantially smaller 
than 32,000, there is little practical difficulty inherent in the turning bands con- 
struction. 

D I S C U S S I O N  AND C O N C L U S I O N S  

The variogram 3' might be thought of  as having been constructed by two 
singular transformations from 2D into 1D space, it is the singularity of  these 
transformations that causes the difficulty. In (3) the variograms (or covariances) 
are in 1D space, and in general a valid model in a lower dimension is not a 
valid model in a higher dimension [see Journel and Huijbregts (1978, p. 161)]. 
As an additional aid to understanding the source of  the purported contradiction, 
consider a plot of  either 3'~ or 3'2 but in 2D space; the "sur face"  is that of  a 
cylinder defined by the isotropic model plotted against distance. In 2D space 
both 3'1, 3"2 are identically zero along one axis and any function with that prop- 
erty cannot be strictly positive definite. Unfortunately, these examples do not 
provide insight into a valid way to construct variograms with zonal anisotropies. 
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These examples  are important in another context as well. While  there have 
been few reported examples  of  model ing variograms in both space and time, 
Bilonick (1985), those examples have used a construction analogous to the con- 
struction of  a zonal anisotropy given above. As is shown in Rouhani and Myers  
(1989), these constructions will fail to be valid for reasons similar to those given 
above. 
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