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To Be or Not to B e . . .  Stationary? That Is the 
Question 

D.  E .  M y e r s  2 

Stationarity in one form or another is an essential characteristic o f  the random function in the 
practice o f  geostatistics. Unfortunately it is a term that is both misunderstood and misused. While 
this presentation will not lay to rest all ambiguities or disagreements, it provides an overview and 
attempts to set a standard terminology so that all practitioners may communicate from a common 
basis. The importance of  stationarity is reviewed and examples are given to illustrate the distinc- 
tions between the different forms o f  stationarity. 
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Frequent references to stationarity exist in the geostatistical literature, but all 
too often what is meant is not clear. This is exemplified in the recent paper by 
Philip and Watson (1986) in which they assert that stationarity is required for 
the application of geostatistics and further assert that it is manifestly inappro- 
priate for problems in the earth sciences. They incorrectly interpreted station- 
arity, however, and based their conclusions on that incorrect definition. A sim- 
ilar confusion appears in Cliffand Ord (198t); in one instance, the authors seem 
to equate nonstationarity with the presence of a nugget effect that is assumed to 
be due to incorporation of white noise. Subsequently, they define "spatially 
stationary," which, in fact, is simply second-order stationarity. 

Both the role and meaning of stationarity seem to be the source of some 
confusion. For that reason, the editor of this journal has asked that an article 
be written on the subject. We begin by noting that stationarity (at least as it is 
defined in the following section) refers to the random function and not to the 
data. It is this interchange that is the source of much of the confusion that 
appears in the literature. Moreover, different forms of stationarity, or perhaps 
we should say nonstationarity, are recognized. In some instances, authors have 
neglected to indicate which form they are using. 
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STATIONARITY 

In all of  the following, assume that Z ( x )  is a random function defined in 1, 2, 
or 3 space (also referred to as a random field in some literature); x is a point in 
space, not just the first coordinate. 

(Strong) Stationarity 

Z ( x )  is stationary if, for any finite number n of points xl . . . .  xn and any 
h, the joint distribution of Z(xl.) . . . . .  Z(xn)  is the same as the joint distri- 
bution ofZ(Xl + h),  . . . , Z ( x ,  + h) (Cox and Miller, 1965, p. 273-276). 

This is not the form of stationarity that is usually referred to in the geo- 
statistical literature, but it is essentially this form that is required for the appli- 
cation of nonlinear techniques such as disjunctive kriging and indicator and 
probability kriging. Note that this form of stationarity does not imply the ex- 
istence of means, variances, or covariances. In nearly all instances, the data are 
represented as a (nonrandom) sample from one realization of the random func- 
tion and hence can not be tested for stationarity. To refer to the stationarity (or 
nonstationarity) of the data implies a misunderstanding or a different definition 
from that given above. Lest we conclude that stationarity is too strong in all 
circumstances, most of statistics is based on at least a weak form of stationarity. 

Second-Order Stationarity 

Both because of the difficulty of testing for strong stationarity and the fact 
that it does not imply the existence of moments, a weaker form known as sec- 
ond-order stationarity often is used instead. 

Z ( x )  is second-order stationary if cov[Z(x + h),  Z ( x ) ]  exists and depends 
only on h. This implies that var[Z(x)]  exists and does not depend on x; fur- 
thermore, E[Z(x ) ]  exists and does not depend on X (Cox and Miller, 1965, p. 
277, for details). 

Obviously, stationarity does not imply second-order stationarity. Con- 
versely, a stationary random function may not be second-order stationarity, as 
its first two moments may not be defined. Examples to illustrate this are given 
in Appendix A. Because stationarity is essentially untestable, as weak a form 
as possible is desirable to utilize and, as will be seen from a later example, even 
second-order stationarity may be strong. We turn to forms introduced by Math- 
eron (1971, 1973). 

Intrinsic Hypothesis 

The form of stationarity implied by the intrinsic hypothesis is essentially 
second-order stationarity--not for the random function Z ( x ) ,  but rather for the 
first-order difference, Z ( x  + h) - Z ( x ) .  Differences have been used in a num- 
ber of places in statistics as well as in time series analysis (see, for example, 
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von Neumann et al., 1941) wherein successive differences were used for esti- 
mating variance in the presence of an unknown and nonconstant mean. The 
first-order difference is analogous to a first derivative in that the first-order dif- 
ference will filter out a constant mean and first-order derivatives of constants 
are zero. As given by Matheron, Z(x) satisfies the intrinsic hypothesis if 

(i) E[Z(x + h) - Z(x) ]  = 0 for all x and h 

(ii) 3'(h) = 0.5 var[Z(x + h) - Z(x) ]  exists and depends only on h 

where 3,(h) denotes the variogram as usual. An example of  a random process 
that satisfies the intrinsic hypothesis without being second-order stationary is 
presented in Appendix A. 

Of course, if first-order differences filter out constants, one would expect 
higher-order differences to filter out higher-order polynomials. Unfortunately, 
the problem is not so simple. Essentially, only one first-order difference exists 
and only the vector separation of points x + h and x is relevant, but, even in 
one dimension, higher-order differences are not unique and not all higher-order 
differences filter out polynomials. (In particular, when sample locations are not 
on a regular grid, coefficients in the higher-order difference depend on the actual 
coordinates of locations as well as on the sample location pattern.) At least two 
ways of codifying a weaker form of stationarity, generally known as universal 
kriging and intrinsic random functions of order k, are common. Although these 
are not modes of stationarity per se, they indicate the approach. Both were 
introduced by Matheron and some disagreement remains as to advantages and 
disadvantages of  each. 

W e a k l y  Stat ionary with Drift  

This is not a term that has been used before, but that is being introduced 
to distinguish the approach followed in connection with universal kriging and 
that followed with IRFs. 

Here, Z(x) is weakly stationary with drift if 

z(x) : r(x) + m(x) (1) 

where Y(x) satisfies the intrinsic hypothesis and E[Z(x)] = re(x) with re(x) 
representable as a linear combination of known linearly independent functions. 
In some instances, authors have assumed that Y(x) was second-order stationary, 
but that is not necessary. The problem then is determination of the variogram 
of Y(x). The essential point when using this form of stationarity is to remove 
re(x), and then to proceed with Y(x) using the intrinsic hypothesis. 

Intrinsic  Hypothes i s  Order  k 

Because of difficulties resulting from simultaneous estimation/modeling of 
the variogram and m(x), Matheron put forth a second definition of weak sta- 
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tionarity (1973). Specifics are described in Delfiner (1976). One must first de- 
fine authorized linear combinations of higher orders; that is, linear combinations 
that filter out polynomials up to order k - 1. These generalized differences are 
obtained as linear combinations whose coefficients satisfy the familiar univer- 
sality or unbiasedness conditions. These generalized differences must define 
second-order stationary random functions; that is, stationarity is defined in terms 
of translation on weights in the generalized difference. For an intrinsic function 
Z(x)  (order 0), the difference Z(x + h) - Z(x) ,  considered as a function of 
x, is to be stationary. Similarly for an IRF - k and a given authorized linear 
combination, the global translation of this combination is to be stationary. In 
turn, generalized covariances are defined and, in particular, the negative of a 
variogram is a generalized covariance of order zero. 

Both weak stationarity with drift (universal kriging) and IRFs implicitly 
define a weak form of stationarity or rather a not too troublesome form of non- 
stationarity. In the case of the former, the function representing the mean must 
be characterized at least in terms of linear combinations of known linearly in- 
dependent functions and, hence, one attempts to remove the nonstationarity to 
obtain a residual that is nearly stationary. In the case of IRF - ks, the nonsta- 
tionarity is resolved in the generalized covariance. Both approaches still lead to 
some practical difficulties when attempting to model the variogram or general- 
ized covariance. 

AMBIGUITIES  

Drift  or Trend? 

When referring to one of the forms of nonstationarity, both terms, "dr i f t"  
and " t rend,"  appear in the literature, often interchangeably. It may be prefer- 
able to distinguish between them to identify two slightly different concepts. The 
term " t rend"  has a well-known usage in the context of trend surface analysis 
wherein a model like Eq. (1) is used, but the coefficients in m(x) are fitted by 
least squares. 

Matheron (1971) suggested the t e r m "  drift" for m(x) to distinguish it from 
the least-squares estimate of m(x). In the case where m(x) is a polynomial of 
degree zero, i.e., a constant, some authors refer to zero drift and others to 
constant drift. With respect to the intrinsic hypothesis, no real distinction is 
made. The confusion in usage probably results from condition (i) in the intrinsic 
hypothesis because this essentially requires that m(x) be a constant and hence 
the difference is zero. In the following, this distinction between drift and trend 
will be retained. Although commonly the coefficients in m(x) are fit by least 
squares as a preliminary step in estimating a variogram, this is not the optimal 
estimator in the presence of a nonstationarity. This introduces a bias in esti- 
mation of the variogram. 
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Drift, Real or Imaginary? 

The definition of weakly stationary with drift given above suggests that 
drift is an intrinsic property of the random function--and theoretically it is--  
but, as suggested by Cressie (1986b), "What  is one person's nonstationarity 
(in mean) may be another person's random (correlated) variation." The weakly 
stationary with drift model also matches our predeliction to assume that a de- 
terministic part and a random part exist. In many applications, the deterministic 
part is viewed as signal and the random part as noise, the objective being to 
remove the noise. In the context of geostatistics, the random part is not viewed 
as noise and an obvious deterministic part may or may not be present. As an 
example of  at least a plausible deterministic part, consider the dispersion of a 
pollutant in the atmosphere in the presence of a prevailing wind. Whether real 
or imaginary, one often is faced with data sets that appear to be samples from 
realizations of nonstationary random functions. To ignore an apparent nonsta- 
tionarity leads to less than satisfactory results. Although problems that may 
arise are likely all well known, no cohesive discussion in the literature seems 
to have appeared; thus, an attempt to draw these together in the context of the 
previous elucidation of nonstationarity will be made. 

Histograms,  True or False? 

Common practice is to construct a histogram early in the process of ana- 
lyzing data. For example, if the distribution is skewed or multimodal, often the 
data are transformed or partitioned. In particular, when applying disjunctive 
kriging, a smoothed version of the histogram is used to obtain the transforma- 
tion to a normal. The histogram is assumed (at least implicitly) to be an estimate 
of the marginal STATIONARY distribution. Note that second-order stationar- 
ity, or one of the other forms of weak stationarity, is not sufficient; strong 
stationarity at least must exist for the special case of n = 1 (the number of 
points, not the dimension of the space). If  the random function is not stationary, 
at least to this extent, then the histogram is not an estimate of a distribution 
related in a known way to the random function. A slightly weaker assumption 
would be that the distribution of Y ( x )  = Z ( x )  - r e ( x )  is independent of x; in 
that case, the histogram of the true residuals should be constructed. 

Spatial or Ensemble? 

Even if sampling is continuous, the data are taken from only one realiza- 
tion, and hence ensemble (i.e., probabilistic) averages can not be computed 
directly. One possible solution is to replace ensemble averages by spatial av- 
erages; this is the essential idea underlying the use of the sample variogram. 
The "equivalence" of  these two forms of averaging is the central focus of 
ergodic theory and an adequate explanation of ergodicity would require too 
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much space to present here (see, for example, Cox and Miller, 1965; Matheron, 
1978; or Alfaro, 1979, 1984). An alternative to relying on some form of this 
equivalence has been proposed in Srivastava (1987); instead of defining the 
variogram or covariance by ensemble averages and then using spatial averages 
to construct estimators for ensemble averages, spatial averages are used for 
defining both the mean function and the covariance function. He presented nu- 
merical examples to show that estimators of these behave better than does the 
sample variogram as an estimator of the ensemble average variogram. 

An assumption of the equivalence of ensemble means and spatial means 
implies additional assumptions about the random function if the probabilistic 
model is retained. This cannot be totally avoided, but, in some instances, a 
clear distinction between spatial and ensemble averages should be retained. If  
we wish to know (i.e., estimate) the grade of a specific selective mining unit, 
a particular spatial integral is necessary, and to equate it with the ensemble 
average (assuming some form of weak stationarity) would be very misleading. 
The latter would be independent of block size and shape, whereas the former 
definitely is not. 

P R A C T I C E  AND T H E O R Y  

As was noted above, stationarity or even one of the forms of weak sta- 
tionarity is defined by properties of the random function--not by a single real- 
ization and certainly not by a sample from one realization. This would suggest 
that stationarity is not scale related, because the above do not explicitly refer 
to the domain of the random function. However, Matheron (1973) has shown 
that if the IRF - k has a polynomial generalized covariance, it locally is sta- 
tionary. Also, common practice is to subdivide a field of study to "avoid"  
nonstationarities, but, when looking at a data set, whether the field should be 
subdivided or adjoined is not always clear. 

For example, one would not normally think of elevation as being station- 
ary; rapid changes such as might occur in proceeding from east to west in the 
United States come to mind. But suppose that elevation is considered on a global 
scale; then mountain ranges represent an insignificant part of Earth's surface 
and, hence, in this instance, a more reasonable view might be to consider ele- 
vation as stationary. However, a paradox remains; the data are the only infor- 
mation available to test for stationarity or an appropriate weak form, yet sta- 
tionarity is a property of the random function, not of the data, and hence 
untestable. To assume that all applications are stationary or to ignore the ad- 
vantages of  some form of stationarity is not adequate. To compare theory and 
practice, we begin by considering some data sets with apparent nonstationarities 
and examine both the purported reasons and methods of attack. 
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E x a m p l e s  

Example a 

Daily readings of  SO2 over  an 18-month period (Fig. la) show that the 
(spatial) average over  summer  periods is not the same as the same averages 
over  winter periods. Also, the spatial variance over  winter periods is greater 
than for summer. This suggests nonstationarity; but, perhaps more importantly, 
this interpretation is reasonable in terms of  what is known about the seasonal 
effect on production of  SO2. That is, our modeling of  nonstationarity is not just 
an artifact of  our interpretation of  the data. 

Example b 

Because of  an interpretation of  nonstationarity (Example a), first-order dif- 
ferences, Z(x  + 1 ) - Z ( x ) ,  where the units are in days, were considered. The 
transformed data (Fig. lb) show that the distinction between averages for sum- 
mer and winter is gone, but that the variances are not the same. This suggests 
that condition (i) of  the intrinsic hypothesis is satisfied, but not condition (ii). 
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Fig. la. Plot of the raw pollution data against time. 
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Fig. lb. Plot of the increments of the pollution data against time. 

Myers 

500  

Example c 

Differencing was used to remove an apparent nonstationarity in the first 
moment. Also the largest values seem to be most variable. This suggests a 
transformation to equalize variance, such as the logarithm. The result of plot- 
ting log [Z(x)] (Fig. lc) demonstrates that the seasonal difference in variances 
seems to be gone, but that the first-order moment is not constant. 

Example d 

Lastly, both approaches are combined by plotting the difference logarithms 
(Fig. ld), which seems to produce the desired effect (and we emphasize) on the 
DATA. If the random function were nonstationary in the same way, these trans- 
forms might be expected to have the desired effect on Z(x). 

The analysis and interpretation described above would be fairly standard 
as an approach in applying geostatistics to a data set, but we should consider 
the practical and theoretical consequences of such an approach as well as pos- 
sible clues to difficulties that may arise. In particular, we should be careful not 
to conclude from this example that the phenomena can be reduced to a pure 
nugget effect on logarithmic differences. In that case, the seasonal behavior 
would be completely lost as a significant characteristic. 
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Fig. lc.  Plot of the logarithms of the pollution data against time. 
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Fig, Ill. Plot of the increments of the logarithms of the pollution data against time. 
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Common Practice 

As is well known, the principal difficulty arising from the presence of an 
apparent nonstationarity concerns estimation of the variogram. The sample var- 
iogram, which is the most commonly used estimator, is in fact an estimator of 
the expected value of the squared first-order difference rather than of the vari- 
ance. In the presence of nonstationarity, a critical difference exists between the 
two, and the variance is needed. As has been noted by a number of authors-- 
for example, Matheron (1971), Chiles (1976), and Starks and Fang (1982b)-- 
if Z(x)  is given by model (1) above, then 

E { [ z ( / +  h ) -   (x)l = 2-,(h) + {Ira(/ + h ) -  m(/)l 2} (2) 
and hence the sample variogram is biased. Sabourin (1976) described a method 
for matching sample variograms against the theoretical model when this bias is 
present. Unfortunately, the bias is not calculated easily in the general case, i.e., 
in two or three dimensions with irregularly spaced data and with an unknown 
variogram model. Because linear drift leads to parabolic growth in Eq. (2), 
parabolic growth in the sample variogram is interpreted usually as evidence of 
nonstationarity. But remember that the sample variogram is determined by a 
sample of (0 .5 ) [Z(x  + h)  - Z ( x ) ] 2  from one realization and is not itself the 
true expected value. Essentially the same difficulty exists here as in the inter- 
pretation of a plot of data against position coordinates; namely, a trend in the 
data is not necessarily the same as nonstationarity. Often the sample variogram 
is computed from residuals after a least-squares fit to the trend, and significant 
differences in the variograms are interpreted as evidence of nonstationarity. This 
conclusion is plausible, but is not infallible. 

In some instances, as was noted in Chiles (1976), the apparent nonstation- 
arity is present for some directions, but not for others. In such cases, one so- 
lution is to assume an isotropic variogram modeled from the sample variogram 
for the directions without drift and then to use that variogram to estimate the 
drift optimally. This approach is especially plausible when a physical reason 
supports the modeling in only one direction. Chiles (1976) provides an example 
of this. 

Because the problem of estimating drift and modeling the variogram is a 
circular one--i .e. ,  each is needed prior to the other--an iterative approach, as 
supplied by Neuman and Jacobson (1984), would seem to be an appropriate 
solution. Although this seems eminently reasonable, it still suffers from the 
theoretical difficulty of identifying drift from only one realization and of ade- 
quate estimation of the variogram without at least the intrinsic hypothesis. As 
noted by Cressie (1986a), this iteration does not remove bias. 

One variogram model allows us to have our cake and eat it too. Because 
neither the nugget nor the slope in a linear model affects the weights obtained 
from the kriging equation and moreover, at least for a regular grid, the bias 
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resulting from least-squares fitting of the drift is computed easily, the vafiogram 
can be modeled without first knowing the drift and conversely the model can 
be used to estimate drift without knowing the coefficients in the model. Care 
should be taken not to confuse the intercept with the nugget effect. This tech- 
nique is illustrated in Olea (1972) and in Webster and Burgess (1981). In the 
latter, the size of the kriging neighborhood is shown to be crucial to the mod- 
eling as might be expected from Matheron's theorem on local stationarity for 
polynomial generalized covariances. Of course, use of small moving neighbor- 
hoods for kriging is another method for coping with nonstationarity although it 
does not avoid the problem as it affects estimation of the variogram. The use 
of moving neighborhoods, however, also leads to discontinuities in the inter- 
polated surface. Note that, in some cases, nonstationarity, as evidenced in the 
sample variogram, may not be distinguished easily from anisotropies and, in 
the modeling process, one may have to choose between the two. In the latter 
case, how the resulting estimated values and kriging variances are affected by 
a misspecified variogram should be examined. Journel and Froideveaux (1982) 
provide an example of a complex anisotropic hole effect model, but conclude 
that the additional complexity did not substantially affect the resulting estimated 
values. More general theoretical results are given in Armstrong (1984a), Dia- 
mond and Armstrong (1984), and Myers (1985, 1986). 

In the previous discussion of nonstationarity, the emphasis has been on 
difficulties arising from nonconstant drift, particularly with respect to estimation 
of the variogram. Second-order stationarity and even the intrinsic hypothesis 
assume that the variance and variogram are not position dependent. However, 
this may not be the case. Cressie (1985) notes that certain nonlinear transfor- 
mations are concerned, in fact, primarily with obtaining this property, and that 
the relative variogram is one such example. The drift is allowed to be noncon- 
stant, but is assumed constant within separate regions; hence, it is of a rather 
special, but important, form. 

GENERALIZED COVARIANCES OR VARIOGRAMS? 

The kriging equations are essentially the same whether one uses universal 
kriging with a variogram or intrinsic random functions order k with generalized 
covariances; hence, the choice between them is not so much one of theory as 
of difficulties associated with fitting or estimating these functions. 

The variogram has the advantage that the estimator can be plotted and, in 
case of standard models, the parameters are interpretable on the plot. This is 
especially advantageous in presenting results to a nonspecialist. Although the 
covariance would share this advantage, it also would have the disadvantage of 
requiring separate estimation of the mean, which introduces a bias. The diffi- 
culties encountered in the presence of real or apparent nonstationarity have been 
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noted already and, as yet, no adequate solutions to these problems are known. 
In contrast, modeling of polynomial generalized covariances lends itself to au- 
tomatic procedures whether by the use of the algorithm in BLUEPACK or a 
restricted maximum likelihood approach such as has been proposed by Kitanidis 
(1983). 

Chauvet (1984, 1985, 1986) and Cressie (1986a) have both proposed ways 
to utilize graphical presentations of estimators, but, in both cases, methods are 
difficult to apply in more than one dimension even if isotropy is assumed. Al- 
though variograms are generalized covariances (with a change in sign), and 
hence in theory, the use of variograms should be subsumed as a special case of 
generalized covariances; in practice, it is not because the only known standard 
models for generalized covariances are the polynomials including the spline 
term. An anisotropy is not simple to incorporate because the generalized cov- 
ariance is not a function of the separation vector only in the same sense that the 
variogram is; in particular, no simple analogue of the sample variogram for 
generalized covariances of higher order exists and hence there is no easy way 
to distinguish the behavior in different directions. The difficulty is compounded 
by use of only polynomial models for generalized covariances. No theoretical 
difficulties are involved with incorporating anisotropies into generalized co- 
variances, but the practical ones indicated do exist. In general, the generalized 
covariance estimators, or rather the estimators of the coefficients in the poly- 
nomial model, use the data in a global manner whereas the variogram plot pro- 
vides information both locally as well as for longer ranges. 

SUMMARY 

Some form of stationarity is needed for geostatistics, but considerable con- 
fusion prevails in the literature as to what constitutes stationarity. In particular, 
the appellation is applied frequently to data when it should be reserved for the 
random function. This Confusion leads to potential misinterpretations in ana- 
lyzing the data. Unfortunately, no best way of treating or resolving the problem 
has been discovered. 

APPENDIX A 

Strict Stationarity Versus Second-Order Stationarity 

As noted earlier in the text, the definition of strict stationarity (Cox and 
Miller, 1965, p. 272-276) requires that the joint distribution of any n points be 
invariant under translation. So, if the moments exist, they must be invariant 
under translation, but, of course, they need not exist. One might expect that 
second-order stationarity would require merely that the bivariate distribution be 
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invariant under translation. However,  this is not the case. Cox and Miller (1965) 
define it in terms of  the first two moments:  

E[Z(x) ] = m (constant) 

coy [Z(x + h), Z ( x ) ]  = C(h) 

That is, the covariance depends on the distance h but not on x. 

(i) Strictly Stationary, But Not Second Order Stationary 

To see this, consider a process Z(x) defined in the following way. At each 
point x, a value z(x) is drawn at random from the Cauchy distribution whose 
density function is 

1 

f ( z )  7r(1 + z 2) ~ < Z < c~ 

Clearly, none of  the moments (mean, variance) exist because the corre- 
sponding integrals do not converge absolutely, but the distribution is exactly 
the same at all points and is translation invariant. Hence, the process is strictly 
stationary, but does not satisfy the definition of  second-order stationarity given 
above. 

(i0 Second-Order Stationary, But Strict Stationary 

In this case, consider a point process defined on the integers n 0, ___ 1, _+2, 
_+3 . . . .  etc. For each point n, let Z(n) be drawn at random from a three- 
parameter lognormal distribution such that 

where 

Because 

log [Z(n)  + ~ , ]  - N(Ixn, a 2) 

1 
oen = - 1  - - 

n 

~ .  = - 0 . 5  In ( 2 )  

= In ( [ n l ) -  0.5 In (n 2 + 1) 

2 In (n 2 + 1) (7 n 

if n = 0  

otherwise 

E[Z(x) + ~]  = exp (/, + a 2 / 2 )  

v a r [ Z ( x )  + ~]  = exp (2/, + o2) [exp  (0 2) - 1] 
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then, 
e [ Z ( . ) ]  = 1 

var[Z(x)]  = 1 

cov[Z( .  + h), Z(x)]  = 0 

Thus, the moments of the process are independent of n, as required by defini- 
tion, but the distribution (even the marginal ones) depends on the location n 
and so are not strictly stationary. 

Intrinsic, But Not Second-Order Stationary 

The best-known example of a process that is intrinsic, but not second-order 
stationary, is the Wiener-Levy process or, as it is often called, Brownian move- 
ment. 

For simplicity, consider a point process Z(n).  Set Z(0 )  equal to 0 and take 
the sum of a set of random increments Y(i) such that 

Y(i) = +1 with a probability of 0.5 

Y(i) = - 1  with a probability of 0.5 

So Z(n)  = ~,~ Y(i)  and, hence, 

E[Z(n)] = 0 

var [Z(n) ]  = n /2  

The process certainly is not second-order stationary, but it does satisfy the in- 
trinsic hypothesis because 

E[Z(n) - Z(m)]  = 0 

var [Z(n)  - Z (m) ]  = E[Z(n)  - Z(m)]  2 

= ( n  - m )  2 
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