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Var iogram M o d e l s  for R e g i o n a l  G r o u n d w a t e r  
G e o c h e m i c a l  D a t a  I 

D. E. Myers,  2 C. L. Begovich, 3 T. R. Butz, 3 V. E. Kane 3 

Four variogram models for regional groundwater geochemical data are presented. These 
models were developed from an empirical study o f  the sample variograms for more than 
10 elements in groundwaters from two geologic regions in the Ptainview quandrangle, Texas. 
A procedure & given ]'or the estimation of  the variogram in the isotropie and anisotropic 
case. The variograms were found useful for quantifying the differences in spatial variability 
for elements within a geologic unit and for elements in different geologie units. Additionally, 
the variogram analysis enables assessment o f  the assumption o f  statistical independence o f  
regional samples which is commonly used in many statistical procedures. The estimated 
variograms are used in computation of  kriged estimates for the Plainview quadrangle data. 
The results indicate that an inverse distance weighting model was superior for prediction 
than simple kriging with the particular variograms used. 

K E Y  W O R D S :  variogram, kriging, interpolation, contouring, inverse distance weighting, 
geochemical gradient. 

INTRODUCTION 

Many types of geochemical measurements are known to be spatially related. 
Samples collected from adjacent areas often exhibit a greater degree of depen- 
dence than samples collected a greater distance apart. This spatial dependence 
should also exist for regional hydrogeochemical data. A method for quantifying 
this dependence is important in understanding regional geochemistry, and is 
fundamental in the assessment of statistical independence implicit in most tradi- 
tional data analyses. 

Kriging is the geostatistical technique developed by Matheron (1965, 1971, 
1973) which focuses on modeling spatial relationships between samples. An 
important component of the kriging model, discussed in the next section, is the 
variogram which characterizes the spacial dependency between samples. Most 
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uses of kriging have focused on ore reserve estimation (e.g., Journel and Huij- 
brechts, 1978; and David, 1977) so regional groundwater geochemical data pro- 
vide a new application area. Burgess and Webster (1980) note several applications 
in soil mapping over a broad region. Application of variograms to geochemical 
data was considered by David and Dagbert (1975) over a small region and also 
by Croissant (1977). The purpose of this study was to develop a variogram esti- 
mation procedure and appropriate models for regional groundwater geochem- 
ical data. A second objective was to evaluate the simplest form of kriging applied 
to groundwater data. 

The collection of groundwater data as a part of the NURE (National Uran- 
ium Resource Evaluation) Program provided an opportunity to explore alternate 
statistical tools for contouring, anomaly identification, and quantifying spatial 
dependence. Data from the Plainview National Topographic Map Series (NMTS) 
quadrangle, Texas (UREP, 1978) were used for this study. Further details may 
be found in Kane, Begovich, Butz, and Myers (1982) and Myers, Begovich, Butz, 
and Kane (1980). Other methods of analysis of this data are reported in Beau- 
champ, Begovich, Kane, and Wolf (1980). (A computer tape of all data can be 
obtained from Technical Library, Bendix Field Engineering Corp., P.O. Box 
1569, Grand Junction, Colorado 81502-1569.) 

COMPUTATION OF VARIOGRAMS 

Let Z(x) denote the concentration of a geochemical variable at the geo- 
graphic location x. Consider observations z(xi) at the n sampling locations 
x l , . . . , X n .  An objective of kriging is to estimate the concentrations at un- 
sampled locations or averages over regions. It is assumed that z(x) is a realiza- 
tion of a random function Z(x). The intrinsic hypothesis further assumes that 

E{Z(x) - Z(x + r)} = 0 (1) 

Vat (Z(x) - Z(x + r)} = 27(r) (2) 

for all vectors x and r. The lack of dependence in (1) on either x or r implies 
an assumed absence of drift in the variogram 3'(r). If the variogram depends 
only on the modulus I r I, it is said to be isotropic. However, if consideration 
of the direction 0 is necessary then 3'(r) = 7(Jr[, 0) and the variogram is said 
to be anisotropic. 

If Var {Z(x)} = K is finite and the intrinsic hypothesis is satisfied, then 

3,(r) = Var {Z(x)} - Coy (Z(x), Z(x + r)}, or (3) 

7(r) = K[1 - Corr (Z(x), Z(x + r)}] (4) 

As r increases, the behavior of 7(r) indicates the value of K. Thus, 7(r) is an 
unscaled reflection of one minus the correlation between two samples a dis- 
tance r apart. 
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Since 7(r) is in general unknown, it must be estimated from the data. 
Under the intrinsic hypothesis 

@(r) = [2(m - 1)]-1 }-~ [z(x)-  z(x +r)] 2 (5) 

is an unbiased estimator where the summation is over the m pairs of sample 
locations a distance r apart. The choice of m -  1 as opposed to m is simply 
by analogy with that of the usual unbiased estimator for variance, but for 
large m it has no real effect and either may be used. The quantity "~(r) is an 
estimator of the value of 7(r) for each r and is not an estimator of  the vario- 
gram model since in general - '~(r) is not conditionally positive definite. The 
computation of "~(r) for regional groundwater geochemical applications pre- 
sents several problems. 

The intrinsic hypothesis implicitly assumes a common geologic popula- 
tion and this may be difficult to satisfy for regional applications. (As will be 
noted later, the fitting of the variogram model utilized -~(r) only for r less than 
30 and the kriging utilized only sample locations within 10 miles, hence the 
intrinsic hypothesis was used only locally.) For example, the Plainview quad- 
rangle contains two major geologic environments, the Ogallala formation and 
t h e  Permian units. The example variograms in the next section illustrate the 
differences in the environments. Further division of the Permain units was ex- 
amined by Beanchamp, Begovich, Kane, and Wolf (1980), but no significant 
differences in the variograms could be detected. However, the partitioning of 
samples by geologic strata increases the variability of  "?/(r) since the samples 
sizes are reduced. 

A second problem in computation of "~(r) is that regional groundwater 
geochemical sampling is often not conducted on a fixed grid as in mining appli- 
cations, but is typically irregular. Although the grid was not uniform there was 
no clustering and intersample distances were on the order of 3.5 miles. Thus, m 
in (5) would be small for a particular r even with the large sample sizes as in the 
Ogallala formation (n = 357) and Permian units (n = 471). To reduce variability, 
the observed distances between samples were grouped into variable length inter- 
vals. The interval size was determined so that a constant number of sample pairs 
were in each interval. The mean r was then used for the interval. This procedure 
results in each plotted point on the variogram being computed from the same 
sample size. Figure 1 illustrates the sensitivity of  "~(r) to changing m. Only at 
m = 1000 was a consistent pattern discernable. In particular for m = 100 there 
is so much scatter that the plot has no discernable shape at all. Thus m = 1000 
was used for the remainder of the computations except where otherwise noted. 

Another difficulty in the variogram computations is the determination of 
the appropriate scale in which to express Z(x). The original scale of measure- 
ment is preferable. However, the intrinsic hypothesis may be more appropriate 
in a transformed scale. For example, ignoring spatial relationships, geochemical 
data are often considered lognormally distributed which implies that the mean 
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of Z(x)  depends on the variance of In Z(x) .  Thus, computation of ~(r) may be 
more appropriate for In Z(x) ,  The major difficulty in using In Z(x)  is that biased 
predictions of Z(x)  are obtained from the kriging estimation procedure. Fig. 2a, c 
gives the untransformed and logarithmic isotropic variograms for uranium in 
the Permian units. Notice that there is no discernable pattern in the untrans- 
formed scale. 

Anisotropic variograms were computed by the same procedure as the iso- 
tropic variograms, but only samples within a specified direction were considered. 
If no anisotropies exist, the anisotropic variograms for specified angles should 
appear the same as the isotropic variograms. Unfortunately, considering only 
samples within the specified angles appreciably reduces the number of available 
sample pairs. As was seen from Fig. 1, this limits the usefulness of the estimated 
variogram. Fig. 2b, d gives anisotropic variograms for m = 100 for uranium in the 
Permian units. No anisotropies were detected in either the Ogallala formation or 
Permian units. 

VARIOGRAM MODELS 

The variables chosen for analysis were selected to allow characterization of 
major as well as trace element geochemistry and are restricted to those variables 
where a sufficient number of samples are above the laboratory detection limit 
for measurement. Estimates of the isotropic variogram were computed for the 
13 variables U, B, Ba, Ca, Li, Mg, Mo, As, V, SO4, Specific Conductance (SCON), 
the total alkalinity (ALK) in the Ogallala formation, and the same 12 variables 
in the Permian units with As omitted because of a limited range of values. Ex- 
amples of typical sample variograms appear in Fig. 3. 

A method of interpreting the sample variograms is simply to group them 
by apparent similarities. Figure 4 indicates the apparent graphical forms ob- 
served. These could be modeled by functions of the following form 

f ~  0 r ~ O  
g(r) = ol 0 < r <~ a (6) 

+ (3r x a < r <~ b 

For a > 0, g(r) is not a valid variogram model since -g(r)  is not necessarily 
conditionally positive definite. It was necessary to alter (6) to obtain a valid 
estimator of the variogram. Although the constant linear model is graphically 
descriptive of some sample variograms, it may be that the model should be para- 
bolic, which would be indicative of drift. It may also be that this shape is a con- 
sequence of the smoothing that results from using m = 1000. The results of the 
graphical classification and are discussed in the next section. 

The models in Fig. 4 could be interpreted in terms of (4). In that case, the 
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linear model simply implies that the correlation between pairs points decreases 
constantly with increasing distance. The constant-linear model implies that there 
is an initial distance in which the correlation is constant followed by a decreasing 
correlation. The concave (convex) model implies that the correlation decreases 
at a decreasing (increasing) rate with increasing distance between samples. As 
will be seen, these models can be useful in the interpretation of regional ground- 
water data. 

Several features of the sample variograms for the groundwater data are dif- 
ferent than typical mining variograms. A sill where the variogram becomes level 
as r increases was not apparent or it exists only for much greater distances. When 
there is no sill, it is important to consider the growth of ' f i r ) .  Journel and Huij- 
brechts (1978, p. 39) note that this intrinsic hypothesis implies 

lim 3,(r) r - w  = 0 (7 )  
irl -,oo I r l -  

Thus, the models in Fig. 4 imply that a sill exists, but may not be present over 
the observable range of r. 

Another characteristic of the sample variograms was that a "nugget effect" 
(i.e., nonzero intercept) was always present for both major and trace elements. 
In mining applications, the discontinuity at the origin may be caused by irregu- 
lar mineralization due to small high-grade accumulations. For regional ground- 
water data, rapid changes over a very short distance within the same geologic 
unit seem unlikely. Possible explanations for the observed nugget effect include: 
(1) Very little data was available for small r since the sample grid was 3.2 miles 
(5.1 km). (2) The changes in concentration are large relative to the scale of sam- 
pling. (3) The intrinsic hypothesis was not appropriate and a more complex 
kriging model is necessary. (4) The true variogram is not a generally smooth 
function near r = 0 and does intersect the origin, but increases quickly for r > 0. 

In order to utilize kriging, it is necessary to fit an acceptable functional 
model so that - "~(r) is conditionally positive definite. For this purpose, models 
of the sample variogram, "~(r), were considered of the form 3'(r)  = a + [3r x where 
X was assumed fixed at X = 1, 0.5, or 1.5. The coefficients a and t3 were chosen 
by a least squares fit. Although sample variograms were computed and plotted 
for up to 90 miles, the number of pairs diminishes rapidly beyond 30 miles and 
the models were fitted only for the first 30 miles. Thus, the constant-linear 
model resulted in /~ close to zero. Subsequently, data locations within 10 miles 
were used in the kriging. Increasing r appreciably increases the computational 
time since an increasing number of samples are being used for the kriging esti- 
mation. The R 2 measure from least squares (one minus the residual sum of 
squares divided by the corrected total sum of squares) is given in Table 1 along 
with S values that are discussed in the next section. 
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Fig. 4. Variograms models for regional geochemical data. 

INTERPRETATION OF PLAINVIEW DATA 

The sample variograms provide several types of useful information. Within 
a geologic unit, variograms quantify the spacial correlation exhibited by ele- 
ments and the "sharpness" of geochemical gradients. The constant-linear model 
indicates that out to some distance (a) variation is constant. The linear, convex, 
and concave models indicate an increase in variation with distance. This implies 
that elements which fit the constant-linear model should have a more homoge- 
neous distribution relative to elements fitting other models. As an example, a 
contour map of uranium (constant4inear variogram) in the Ogallala formation 
is much more uniform than a map of molybdenum (linear). 
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Table 1. Summary of Results from Plainview Quadrangle Analyses 

641 

Ogallala a Permian a 

Element R 2 SK $1 R 2 SK SI 

U 0.10 2.03 1.20 - - - 
In (U) 0.56 1.81 1.28 0.25 0.99 0.86 

SCON 0.15 1.59 0.90 0.29 0.66 0.71 
In (SCON) 0.69 0.93 0.74 0.63 0.78 0.77 

B 0.21 1.56 1.12 - - - 
In (B) 0.78 1.26 0.84 0.04 0.95 0.89 

Ba 0.71 - 1.11 0.07 4.11 0.86 
In (Ba) 0.57 1.29 1.03 0.39 0.94 0.77 

Ca 0.04 4.24 1.38 0.75 0.81 0.82 
In (Ca) 0.30 2.18 1.35 0.57 1.26 0.76 

Li 0.98 0.43 0.41 0.58 0.78 0.64 
In (Li) 0.95 0.88 0.49 0.74 0.58 0.54 

Mg 0.34 3.96 0.72 0.18 0.96 1.00 
In (Mg) 0.60 2.12 1.10 0.35 0.92 0.91 

Na 0.43 2.91 1.21 - - - 
In (Na) 0.69 1.56 1.08 0.27 0.75 0.72 

Mo 0.17 20.1 4.25 - - - 
In (Mo) - - - 0.12 1.20 0.87 

SO 4 . . . . .  0.88 
In (SO4) 0.58 0.81 0.75 - - 0.63 

ALK 0.71 1.32 0.73 0.81 0,78 0.67 
!n (ALK) 0.49 1.04 0.67 - - 0.56 

V . . . . . .  

In (V) 0.93 0.83 0.72 0.11 1.20 0.98 

AS 0.69 0.84 0.81 
In (AS) 0.88 1.00 0.86 

aA dash indicates that no analysis was performed. 

Families o f  e lements  can be grouped  toge the r  tha t  fit types  o f  mode l s  to  

establ ish their  similarity and conclus ions  drawn concern ing  the relat ionships.  

For  example ,  uranium,  bo ron ,  bar ium,  calcium, magnes ium,  sodium,  and alka- 

l ini ty  fit the constant - l inear  model .  The d is t r ibu t ion  pa t t e rn  o f  uran ium fits 

that  o f  several major  e lements  in te rms o f  wide h o m o g e n e o u s  d is t r ibut ion .  

M o l y b d e n u m ,  arsenic,  and vandium,  wh ich  fit the linear mode l ,  have sharp 

local gradients  and may  be very useful  as pa th f inde r  e l ement s  to  iden t i fy  those  
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areas of interest containing high concentrations of uranium among the broad 
uranium trends. 

Between geologic units variograms can demonstrate relative differences 
in behavior of elements in different groundwater geochemical systems and 
suggest the scale of future sampling. In the Ogallala formation, uranium fits 
the constant-linear model while in the Permian units uranium is linear. This im- 
plies different controls on uranium distribution in the Permian units which 
result in relatively sharper gradients and a less homogeneous distribution. Many 
of the elements fitting the constant-linear model in the Ogallala formation fit 
a linear model in the Permian units. In fact, there are fundamental differences 
in geochemical controls between the units and this is reflected in the variogram 
models. A further comparison between the same element in the two different 
units indicates that the variogram models can be used to define the relative 
scale of sampling necessary to characterize elemental distributions based on the 
model type. The variation of uranium in the Ogallala formation is constant for 
sample spacings of up to 30 miles while in the Permian Units variation increases 
constantly. One could use this information in designing a subsequent sampling 
plan to conclude that in looking for uranium, the sample spacing in the Ogallala 
formation could be much greater than in the Permian units to arrive at an equally 
representative distribution map. 

Once functional models are fitted to the sample variograms, it is possible to 
apply the standard kriging estimation. The Plainview quadrangle data was used 
to evaluate Kriging relative to an optimal inverse distance weighting (IDW) pro- 
cedure discussed in Kane, Begovich, Butz, and Myers (1981). A useful method 
of comparison of two estimation procedures is using the statistic 

n ~ 

zi) ( z i  ^ 2 
i = 1  

s = (8) 
n '  

i = l  

where z"/is the estimated value o f z  i for i = 1 , . . . ,  n' validation sample locations 
(Kane, Begovich, Butz, and Myers, 1981). This is a form of jackknifing and the 
numerator represents a comparison between the observed value at the fth loca- 
tion and the kriged value using only nearby sample locations, namely within 10 
miles. For some sample locations as few as 9 other sample values were used in 
the estimation, for others as many as 40. In the first stage of the project only 
punctual kriging was used and it is likely that block kriging would provide im- 
proved comparisons for kriging. It had been intended to pursue this in subse- 
quent work. It should be noted that for S > 1 it is on the average better to re- 
place estimated values by the sample mean (Y). Thus if S > 1, the usefulness 
of an estimation method may be limited for interpolation at unsampled points. 
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It was found in some instances that the value of S was very sensitive to the in- 
clusion or deletion of a small number of  points. Other forms of S were consid- 
ered whereby the differences were normalized by the estimation standard de- 
viation or by the deletion of points where the differences exceeded two standard 
deviations. Histograms of z i - z~i were plotted both for kriging and IDW which 
provided evidence that the estimators were unbiased. 

The values of S for kriging ( S K )  and IDW (Sx) appear in Table 1 for the 
Plainview data. For many of the variables S K was larger than Sz, which would 
suggest that IDW was a better estimator than kriging for the optimal choice of 
the exponent in the IDW and the particular variogram models used. The defi- 
ciency of the kriging estimator in these cases may also be due to the presence of 
drift which was not accounted for, that is, universal kriging was not used. Journel 
and Huijbrechts (1978, p. 40) note from (7) that  variograms that increase faster 
than Irl 2 indicate the presence of drift [i.e., E { Z ( x ) }  =M(x)].  Several rapidly 
increasing variograms were noted in the Plainview data. It should be noted that 
cases where kriging estimation was generally useful correspond to large R 2 values 
(e.g., Li and total alkalinity). Thus, the absence of a large component of random 
variation (i.e., large R 2) in the sample variogram justifies the underlying assump- 
tions and then kriging is applicable. 

The discrepancies between IDW and kriging may be utilized in another way. 
One of the objectives discussed in Myers, Begovich, Butz, and Kane (1980) is the 
identification of anomalous or unusual sampling locations. One method of iden- 
tifying unusual locations is by scaling the residuals z'~ - z i  in terms of the estima- 
tion standard deviation. In many instances, it was found that the large S values 
was due to a large number of unusual points. In terms of a strict stationary as- 
sumption, some of these points would be considered outliers and could have 
an effect on variogram estimation, but this effect is substantially ameliorated by 
using m = 1000. 

CONCLUSIONS 

Four types of variogram models were used to fit the groundwater sample 
variograms. A single functional form can be used to estimate the variogram. Sev- 
eral factors were noted from the Plainview Quadrangle sample variograms: (1) 
Many elements exhibited a "nugget effect" and the absence of a sill. (2) The 
constant-linear variogram model was prevalent in the Ogallala with a constant 
range of 30 miles. (3) Sample variograms differed appreciably between both 
geochemical variables and geologic units. Variograms were shown to reflect dif- 
ferences in elemental spatial correlation both within and between geologic units. 
The sample variograms quantify geochemical gradients enabling useful inter- 
pretations of groundwater data and suggesting follow-up sample spacing. Future 
applications of kriging should entertain more complicated models, such as the 
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incorporation of drift, since several sample variograms exhibited appreciable 
scatter and kriging estimates of sample points were often inferior to the IDW 
estimates. 

ACKNOWLEDGMENTS 

This work was supported by the Union Carbide Corporation, Nuclear Divi- 
sion, Uranium Resource Evaluation Project under contract W-7405-eng-26 with 
the U.S. Department of Energy. 

REFERENCES 

Beauchamp, J. J., Begovich, C. L., Kane, V. E., and Wolf, D. A., 1980, Application ofdis- 
criminant analysis and generalized distance measures to uranium explanation: Jour. 
Math. Geol., v. 12, p. 539-558. 

Burgess, T. M. and Webster, R., 1980, Optimal interpolation and isarithmic mapping of 
soil properties. I. The semi-variogram and punctual kriging: Jour. Soil Sci., v. 31, p. 
315-331. 

Croissant, A., 1977, La g6ostatistique comme outil dans la prospection g6ochimique: Sci. 
Terre, v. 9, p. 129-144. 

David, M., 1977, Geostatistical ore reserve estimation: Elsevier Scientific Publishing Com- 
pany, New York. 

David, M. and Dagbert, M., 1975, Lakeview revisited: variograms and correspondence 
analysis-new tools for the understanding of geochemical data, 5th International Geo- 
chemical Exploration Symposium, Geochemical Exploration 1974, p. 163-181. 

Journel, A. G. and Huijbrechts, W. J., 1978, Mining geostatistics: Academic Press, New 
York. 

Kane, V. E., and Begovich, C. L., Butz, T. R., and Myers, D. E., 1982, Interpolation of 
regional geochemistry using optimal interpolation parameters: Comput. Geosci., v. 8, 
p. 000-000. 

Matheron, G., 1965, Les variables regionalis6es at leur estimation: Mason et Cie, p. 305. 
Matheron, G., 1971, The theory of regionalized variables and its applications: Cahiers due 

Centre de Morphologie Math6matique de Fountainebteane, v. 5, p. 211. 
Matheron, G., 1973, The intrinsic random functions and their applications: Adv. Appl. 

Prob., v. 5, p. 437-468. 
Myers, D. E., Begovich, C. L., Butz, T. R., and Kane, V. E., 1980, Application of kriging 

to hydrogeochemical data from the National Uranium Resource Evaluation Program, 
Union Carbide Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, 
Oak Ridge, Tennessee, K/UR-44. 

Uranium Resource Evaluation Project, 1978, Hydrogeochemical and stream sediment 
reconnaissance basic data for Plainview NTMS quadrangle, Texas, Union Carbide 
Corporation, Nuclear Division, Oak Ridge Gaseous Diffusion Plant, Oak Ridge, Ten- 
nessee, K/UR-101. United States Department of Energy, Grand Junction, Colorado 
[GJBX-92(78)]. 


