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Matrix Formulation of Co-Kriging 1 

Donald  E. Myers 2 

The matrix form o f  the general co-kriging problem is presented. Matrix solutions are given 
for SRFs with covariance functions, for 1RFs of  order zero using variograms and for uni- 
versal co-kriging. General methods for obtaining cross-covariance or cross-variogram models 
are given. The relationship o f  the general co-kriging problem to the problem of  one under 
sampled variable is presented. 
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INTRODUCTION 

Although the basic principles and theory of co-kriging are well known it is a tool 
that is not often used. There are several reasons why this may be so. These in- 
clude the notational and computational complexities, difficulties in modeling 
cross variance or cross variograms and a primary interest in problems which do 
not require joint estimation, in particular an emphasis on problems where spatial 
correlation is more important than intervariable correlation. Although Journel 
and Huijbrechts (1978) note that in mining applications co-kriging is used mainly 
when one variable is undersampled there are applications both in mining, mete- 
orology, soils, geochemical dispersion patterns, hydrology where co-kriging is 
relevant if other difficulties are surmountable. Matheron (1979) has noted that 
in general, kriging a linear combination of dependent variables is not the same as 
the linear combination of co-kriged variables and has given an alternative solu- 
tion when certain assumptions are justifiable. The use of co-kriging may be de- 
termined by whether the principal objective is the reduction of the estimation 
variance for one variable or the need to jointly estimate several variables. By for- 
mulating the problem in matrix form we see that the problem of one variable 
being undersampled is not the general co-kriging problem, and an emphasis on 
that problem obscures the question of the appropriate formulation of the esti- 
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marion variance. There is a natural interpretation for the estimation variance but 
it occurs in perhaps an unexpected manner which still retains the similarity with 
the single variable form. For simplicity then we begin with the problem of jointly 
estimating point values for several dependent random functions. 

THE STATIONARY CASE 

As in the case of single variable kriging, it is easiest to begin with the case 
of stationary random functions with finite variance and then generalize. 

Eet Z1 . . . .  , Zm denote random functions representing the variables of 
concern, for example, lead-zinc-silver, clay-silt-bulk density, sodium content- 
cover loam thickness-stoniness, bariometric pressure-temperature-humidity, to 
name a few possibilities. S = (x, , x 2 , . . .  ,Xn} is the set of sample locations. If 
we write 

Z ( x )  = I l l ( X )  . . . . .  Zm(x)] 

then our objective is to estimate the vector Z(x) given the data Z(Xl ) . . . .  , Z(xn). 
To place the problem in the same setting as with single variable kriging, the vec- 
tors Z(x), 2 ( x l ) , . . . ,  Z(xm) must be viewed as elements of  a vector space with 
an inner product so that the estimate of ,~(x) is obtained as the projection onto 
a certain subspace determined by the data vectors. The inner product must be 
scalar valued, though, so that the estimation variance will be scalar valued and 
hence that the possibility of a minimum is provided. Rather than presenting the 
problem in the full context of Hilbert spaces we use the more familiar prob- 
abilistic description; that is, we want to construct a linear combination of the 
data vectors such that the estimator is unbiased and the "estimation variance" 
is minimized. We can write the linear estimator in the form 

n 
Z*(x) = ~ Z(xk) Fk (1) 

k = l  

where each I" k is an m X m matrix. If  we let )t~. denote the element of the ith 
row, ]th column then this element represents the contribution of the ith variable 
at location xk, to the estimate of  the jth variable. In nonmatrix form this would 
be 

z j* (x )  = 

Since expectation is linear 

E[Z*(x)] = E E [ ¢ ( x k ) ]  Fk 
k 

Since the Zi are stationary, a sufficient condition for Z* to be unbiased is that 

n 

P k = I  (2) 
k = l  
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Kriging each variable separately corresponds to replacing (2) by the stronger 
conditions 

X~=0,  for i--/:] 

X~ = 1, for each i 
k 

(2a) 

In the language of projections, separate kriging results in projecting into a smaller 
subspace and hence in general the estimation variance will be larger. If  one or 
more of the variables is undersampled it results in adding additional constraints 
to those implicit in (2), namely 

X/Xo~ • = 0, for ] = 1 , . . .  , rn (2b) 

where Xko is an unsampled location for the io variable. 
It is seen then that expectation can be taken to be a vector, that is, the vec- 

tor of the separate expectations, but variance can not be treated this way. There 
are at least two ways to deffme an estimation variance and 

max (Var  [ Z i ( x ) -  Z * ( x ) ] }  
l <. i<~m 

and 
m 
Z Vat [Z,(x)- zf(x)] (3) 
i=1 

Af  is seen later; this is equivalent to considering only Var [Zi(x ) - Z*(x)] 
if one is interested only in estimating Z i and it will be shown that the estimation 
variances attributable to the separate components may be selected out. 

The second form is more natural in the context of Hilbert spaces and com- 
putationally more tractable so it will be used. In terms of the metrics induced 
by these two possibilities, they are equivalent. When (2) is satisfied, (3) may be 
written in the form 

E[Z(x) - Z*(x)] [Z(x) - Z*(x)] T (4) 

Of course, to determine the P k so that (2) will be satisfied and (4) ~11 be 
minimized we must express (4) in terms of the covariances. Let E [Z i ( x  ) Z j ( y ) ]  = 
Ci](x - y )  and then 

C(x - y) = [c  d = r 2(y)]  (s) 

where T denotes the transpose of the matrix. C(x - y)  is an m X m matrix and 
in general is nonsymmetric, that is C(x - y)  4= C(y  - x) and C(x - y)  ,:/= C(x - y ) r  
but it always satisfies f f (x  - y ) T  = f f ( y  _ X). Our objective now is to express (4) 
in terms of f f (xi  - xj)  and Pk. This is accomplished by noting that 

T r E [ Z ( x )  - 2*(x)]  r [Z(x) - 2*(x)]  = E [ Z ( x )  - 2*(x)] [Z(x) - Z*(x)] r 

(6) 
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We also note that (2) can be written in the form (Tr denotes the trace) 

{1, i = j  
3,~. = 6 i~ = (7) 

k=l O, i:~ j 

Let ~ be an m × m matrix whose elements are denoted by #q, these are the 
Lagrange multipliers. Set 

~(r~ . . . . .  r , ,  ~) = ~ .Zu0. [ Z  x~}- fi0.] (8) 
i [ k  J 1 

¢(r~ . . . .  , r . ,  ~) = Tr E[Z(x) - Z*(x)] T [Z(x) - 2*(x)] + 2 ¢ ( F 1 , . . . ,  r . ,  ~) 

To minimize • we must solve the system of equations 

3cb/3X~.=O, k= l , . . . , n ;  i , j= l . . . . .  m 

Or~/~#ii = 0 

After computing the derivatives and simplications we obtain 

(9) 

(lO) 

or simply 

n 

~" C(x i - x/) I'] + ~ = C(xi - x), i = 1 . . . . .  m 
j=l 

n 

~" F /=I  
j=l 

(11) 

tll x 1 lCi(xn Xl) C(xn Xn) nl = (12) IC(x, x 
" " / "  L~J L z 

The form of (12) is exactly the same as for simple kriging of one variable except 
that the entries are matrices instead of scalars. 

The estimation variance may be written in several forms, one of which is 

o ~ = T r [ f f ( 0 ) ] - T r [ ~ / = ,  C ( x - x / ) P j ] - T r ~  (13) 

Note that the order of multiplication for matrices must be preserved and also 
the nonsymmetry of C must be respected. Although o~( is a cumulative estima- 
tion variance the variance attributable to the sequence components is easily de- 
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termined. I f  we write V as 

n 
v = C(0)  - ~ C(x - x;)  r~ - ~ = [vjk],  then 

i=1 

m (14)  
cry: = Tr V = ).~ v/j, and 

j = l  

2 = = Cj j (O) -  Z Z cJ i(X - x k )  ~k~]- ~Ajj OK, j vii 
i k 

We can now make several useful observations about the matrix eq. (12). First, 
in spite of  the nonsymmetry  of  f f ( x  - y) ,  the coefficient matrix in (12) is sym- 
metric, and second, except for the zero matrix in the lower right-hand corner, 
all other entries are invertible so that the coefficient matrix could be reduced 
to lower (or upper) triangular form by operating on matrices and hence simplify 
the computations. As noted (12) has the same form independent of  m and is 
clearly the appropriate generalization of  one variable kriging. I f  the ffs are diago- 
nal matrices, that  is, the components are uncorrelated, and (2) and (2a) are 
equivalent, but if the ffs are not diagonal then (2a) is stronger and the system of  
equations is not the same as (12) and in general the estimation variance is larger 
than that given by (13). Likewise (2b) is stronger than (2) and the system of  
equations is not  the same as (12). 

INTRINSIC RANDOM FUNCTIONS 

As with simple kriging of  one variable, it is simpler to utilize cross vario- 
grams than to use cross covariances but this is not always possible. Subject to a 
symmetry condition, however, it is possible to rewrite the system of  equations 
using cross variograrns. Instead of  assuming that the Zs are stationary random 
functions we assume 

(i) E [ Z i ( x  + h)  - Z i ( x ) ]  = O, for i = 1 , . . . ,  m, that is 

~ [ 2 ( x  + h) - Z(x)]  -- [0, 0 , . . . ,  01 : 0 

(ii) CoVar  [Zi(x  + h) - Z i ( x ) ,  Z j ( x  + h) - Z j (x ) ]  = 2 ~[ij(h) 

exists and is dependent only on h for i, j = 1 . . . .  , m 
I f ( i )  is satisfied then (ii) may be written as 

!2 E [ 2 ( x  + h)  - 2(x)]  T [2(x + h) - Z(x)] = ~(h) = [Tij(h)] (15) 

To express the estimation variance in terms of  the 7 ( x i  - x j )  and the Fk, it is 
necessary to also assume or require that  

0ii) E [ 2 ( x  + h)  - 2(O)] v [Z(x) - 2(0)]  = E [ 2 ( x )  - 2(O)] T [2(X + h)  - 2(0)] ,  

for every x , h ;  that is 
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E [ Z i ( x  + h )  - Zi(O)] [ Z j ( x )  - Zj(O)] = E [ Z i ( x  ) - Zi(0)] [ Z ] ( x  + h )  - Z/(0)], 

for i , j = l , . . . , m  and all x , h  

For stationary random functions with finite variances this condition is equiva- 
lent to 

(iii)' Cij(h) - Ci] ( -x ) -  Cij(x + h) = Cij(-h) - Ci j(x)-  Cij(-x - h) 

which is obviously satisfied if Cij(y ) = Cij(-y ) for all i, j, y.  (rio is necessary to 
derive the following identity 

E[Z(x + h) - Z(0)] T [Z(x) - Z(0)] = ~(x + h) + ~(x) - ~(h) (16) 

which is needed to express the estimation variance in terms of the variogramma- 
trices. The estimator Z* has the same form as before given by (1), and (2) is a 
sufficient condition for the unbiased property which then allows the estimation 
variance to be again written in the form given by (6). Utilizing the identity, an 
analogous expression to (9) is formal and after differentiation we obtain the sys- 
tem of matrix equations 

n 

7 ( x i -  xj) Pj + ~ = 7(xi - x); i = 1 . . . . .  n, 
j=l 

(17) 
n 

Z r j=i 
j=l or 

x 1 
The estimation variance then may be written in the following form 

o~ =Tr[)_~i=l 7 ( x - x i )  Pi] + T r ~  (19) 

and as in the stationary case the estimation variance attributable to the separate 
components may be selected out. 

UNIVERSAL KRIGING 

If the components of the random function Z(x) are not assumed to be sta- 
tionary but have expected values that are locally represented by linear combina- 
tions of known functions then the above results are easily extended in a manner 
analagous to universal kriging for one variable. 
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Let F ( x ) =  [ f l ( x ) , . . .  , fp(x)] be a 1 X p vector of  known functions, lin- 
early independent over the support x l , . .  • ,Xn. E[Z(x)I  is then assumed to be 
of the form 

l~(x) = F(x )  B (20) 

B = [bi]], a p X m matrix 

For Z*  to be unbiased it is sufficient that 

H 

i f(x) B = E F(xl)  BFj (21) 
]=1 

whatever the matrix B. If  we write Fl(xj) =f l (x j ) I ,  I the identity matrix then 
(21) becomes 

Fl(xj) P] = Ft(x),  for l = 1 . . . .  , p (22) 

and the universal kriging system is 

n p 
X C(xi- xj) D,  Z Fl(x3 ~l =C(xi- x) 
1=1 I+1 

Z Fl(xj) D =Fl(x),  /=1 

~ C ( x l  - x , )  • • • C ( x  - x . )  
! 

C ( x .  - x , ) ' ' '  C ( x n  - x ~ )  

] F , ( x 1 )  "F,(xn)  

LFp(xl) "FAx.) 

Pl 

Pn 
- -  m_ Y ~  

/11 

#p 

1 = 1 , . . .  ,p ;  

i = 1 . . . . .  n or if 

FI(XI)"" "G (X1)] 
F , ( x . )  • • • Fp(x~) 

@ 
_J 

e(x  - x ;  

IS(x .  x) 
= L  

F l (x ) 

LF i ) 
The system is 

= W  

(23) 

WX =L (24) 
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The kriging variance is 

c r~=TrC(0 ) -  [Tr ~i=1 C(x -x i )  Pi] 

- Tr ~ Fl(x) ~l 
l = l  

and the variance attributable to various components may be selected out. 

(25) 

MODELS FOR C(h) AND 7(h) 

As noted earlier, one of the difficulties occurring in the use of co-kriging 
is modeling the cross covariances or cross variograms. One model which is used, 
but which does not lead to a reduction in the estimation variance when com- 
pared to separate variable kriging, is the strict linear model. That is, it is assumed 
that each Zj(x) has a representation 

s 

zj(x) = Z ajk Yk(x) (26) 
k = l  

stationary, independent with separate covariances Kk(h). where the Yks are 
Then 

s 

Cij(h) = aikakjKk(h) (27) 
/¢=1 

An elementary observation about variances provides a much wider choice of 
models. For any pair Zi(x ), Zj(x) let Uij(x) = Zi(x) + Zi(x) then 

E[Uij(x + h) Uij(x)] = Cii(h) + Cjj(h) + 2Cij(h) (28) 

that is, cross-covariance models can be obtained as linear combinations of covari- 
ances for the separate components and covariance for the sum. For intrinsic ran- 
dom functions this becomes 

7ij(h) = ½ [7i + j (h)-  7i(h)- 7i(h)] (29) 

we see that spherical, exponential, polynomial, gaussian models may be used 
to fit 7 + j, 7i, 3'i" and thus 7q(h). In general it will be necessary to verify that 
17ij(h)I ~ [Ti(h) 7j(h)] 1/2 after the separate modeling of 7i, 7j, 7i + j. This sug- 
gests that rather than computing and plotting sample cross covariograms, sample 
variograms for paired sums should be computed and plotted instead. 

An examination of the integral representation theorem for generalized co- 
variances, Matheron (1973), shows that the above analysis also leads to a repre- 
sentation for generalized cross covariances. 
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CONCLUSIONS 

Matrix formulat ion of  the co-kriging problem leads to a clear identification 
of  appropriate conditions and suggests computat ional  simplifications and meth- 
ods for modeling cross covariances or cross covariograms. 
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