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Probabilistic Analysis of Collapsing Soil by Indicator 
Kriging I 

Molla  M.  Alli,  2 E d w a r d  A. Nowatzk i ,  2 and D o n a l d  E. Myers 3 

Collapsing soils, which undergo a large decrease in bulk volume virtually instantaneously upon 
saturation and~or load application, are found in arid and semi-arid regions of  the worM. b7 the 
western and midwestern U.S., problems resulting from collapsing soils at'e being recognized due 
to rapid industrial and urban developments. A probabilistic analysis of  the distribution of  such 
soils would be a rational approach for quantifying risk involved for a project in an area where 
such soils are found. Indicator kriging was applied to seven sets of  collapse and collapse-related 
soil parameters to obtain the probability that a certain parameter is more or less than a predefined 
critical value for low, medium, and high collapse susceptibility. Results are presented in the form 
of  probability contour plots with known variance o f  estimation of  the probability. The ability to 
predict the probability of  occurrence of  collapse and collapse-related soil parameters for different 
critical values with a known degree of  certainty is invaluable to planners, developers, and geo- 
technical engineers. 
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I N T R O D U C T I O N  

The valiety of  soil materials encountered in engineering problems is virtually 
limitless. Soils may be residual or transported. Transported soils may be alluvial 
(stream borne), aeolian (wind borne), glacial (ice borne), or colluvial (gravity 
transported). Alluvial soils are deposited when a mountain runoff flows into a 
valley or onto a plain. When such soils are deposited in an arid or semiarid 
environment, insufficient time may have occurred for them to consolidate under 
their own weight due to rapid evaporation rates. They become partially satu- 
rated with large voids. Application of  typical foundation loads on such soils 
will cause only minor deformations as long as the degree of  saturation remains 
small. As soon as the soil becomes saturated, large deformations take place due 
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to the reduction of  volume and collapse of  the intergranular structure. The rate 
of  volume change depends on the rate at which water is available to the soil. If  
water is rapidly available, the subsequent volume change and deformation is 
rapid and the phenomenon is referred to as collapse. Thus a collapsing soil may 
be defined as a soil that undergoes a large decrease in bulk volume virtually 
instantaneously upon saturation or load application or both (Mitchell, 1976). 

This paper presents a probabilistic investigation of  the distribution of  col- 
lapsing soils throughout the city of  Tucson, Arizona. Contour plots of  selected 
collapse criteria expressed as a function of  measurable physical soil properties 
were developed. These plots provide information about the partial distribution 
of  specific characteristics and quantify risks involved in any building project in 
a particular area. Variables considered in the analysis are mainly of  two cate- 
gories, established collapse criteria and collapse-related soil parameters. The 
two types of  parameters with their abbreviations used in this investigation are 
defined as follows. 

Collapse Parameters 

Cp = % collapse = Aec/(1 + e0) where 

Ae c = change in void ratio following saturation of  specimen under a 
pressure P = 2000 kPa. 

e0 = initial void ratio = initial void volume (V,,0)/solids volume 

(Vs). 
R = Gibb's  collapse ratio = ws/wl where 

ws = saturation moisture content = weight of  water at saturation 
( Wws)/weight of solids (Ws). 

wl = liquid limit moisture content = weight of  water at liquid limit 
(Ww/)/weight of  solids (W~). 

LL = liquid limit (ASTM D-423, 1980). 

A = Alfi 's collapse parameter = (eo - e/)%v/[(1 + e0)~dW0] where 

el = void ratio at liquid limit = void volume at liquid limit 
( V,,t)/solids volume (I1,.). 

w o = initial moisture content = initial weight of  water (Wwo)/weight  
of  solids (Ws). 

~/d = initial dry unit weight = weight of  solids (W~)/total volume 

(VT). 
3'w = unit weight of  water. 

Collapse Related Soil Parameters 

5'd = initial dry density (defined previously). 

e o = initial void ratio (defined previously). 
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Wo = initial moisture content (defined previously). 

no = initial porosity = initial void volume (V,,0)/total volume (Vr). 

So = initial degree of  saturation = initial water volume (Vwo)/initial void 
volume (V,,0). 

PL = Plastic Limit (ASTM D-424, 1980). 

STUDY A R E A  AND D A T A  SET 

Collapse-related data have been collected from several consulting engi- 
neers' offices in Tucson and from reports of  previous research conducted on 
collapsing soils in Tucson (e.g., Sabbagh, 1982). An attempt was made to con- 
sider as much of  the entire area of  Tucson (Fig. 1) as possible. Within a period 
of  approximately 2 years, data were assembled for 411 locations with 992 sam- 
ple points. Seven to 10 soil parameters were determined for each sample point 
that ranged from the surface to depths o f  about 40.0 ft. Data sets (Table 1) were 
established arbitrarily for ranges of  depths; data sets one through six each have 
seven parameters D, Cp, eo, no, s, "/a, and w o, whereas data set seven has three 
additional parameters R, A, and PL. 
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Fig. 1. Map of Tucson showing area covered in this investigation. 
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Data  set 

no, 

Table l. Data Sets Used in the Analysis 

Range of No. of data 
depths (ft.) (N) 

1 0.0-1 125 
2 1.0-2 286 
3 2.0-3 254 
4 3.0-4 100 
5 4.0-6 104 
6 6.0-40 123 
7 0.0-40 219 

E S T I M A T I O N  OF P R O B A B I L I T Y  D I S T R I B U T I O N  

Various estimation techniques for estimating regionalized variables have 
been introduced in the geostatistical literature over the past 10-15 years. These 
can be broadly grouped into two categories, parametric and nonparametric. In 
the case of parametric methods, assumptions concerning the distribution of the 
variable under study are made. Multigaussian kriging (MK), disjunctive kriging 
(DK), and lognormal kriging (LK) are examples of parametric estimation pro- 
cedures. All of these techniques share a distinct disadvantage in that the para- 
metric hypothesis which forms the basis of the techniques may not hold for any 
given application. Additionally, there are no statistical tests which adequately 
investigate the validity of a multivariate distribution hypothesis. These tech- 
niques possibly will be applied in instances which do not conform to the initial 
hypothesis. In such cases, they will yield poor results. A further drawback of 
parametric methods is that many practitioners find them difficult to comprehend 
and apply due to their mathematical complexity (Sullivan, 1984). 

Nonparametric methods, in contrast to parametric methods, require no as- 
sumptions concerning the distribution of the variables. The basis of these tech- 
niques is the indicator transform, which essentially transforms the variables at 
each location into a distribution function. The transformed data can be used to 
estimate the spatial distribution as well as the probability distribution of the 
variable within a region. In addition to not requiring any distribution hypothe- 
sis, nonparametric solutions are easier to obtain because the estimates are de- 
rived from solutions of linear kriging systems which are nearly identical to the 
ordinary kriging systems. 

As indicated before, the main goal of the present investigation is to obtain 
the probability distribution of each collapse and collapse-related parameter at 
its three predefined cut-off levels [i.e., at low (NC), medium (MC), and high 
(HC) collapse susceptibility level]. Several geostatistical methods indicated 
above can be used for estimating the probability distributions. MK is based on 
an assumption of multivariate normality after a transformation. DK is based on 
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the assumption of bivariate normality after an appropriate transformation. The 
requirement of bivariate or multivariate normality may not be satisfied for a 
specific application and these two methods are difficult to apply due to their 
mathematical complexity. On the other hand, indicator kriging (IK) and prob- 
ability kriging (PK) are nonlinear distribution-free methods and generally are 
preferable to linear estimation techniques. When the distribution is skewed or 
has heavy tails (e.g., lognormal, gamma), modeling the variogram is more dif- 
ficult. As a result, linear techniques are poor for estimating the probability dis- 
tribution. In light of these considerations, IK was used to estimate the proba- 
bility distributions of collapse and collapse-related parameters at different 
depths. 

I N D I C A T O R  K R I G I N G  

The theory and development of nonparametric estimators of spatial distri- 
butions, is similar to the theory and development of  nonparametric estimators 
of the local mean value (Joumel, 1983). The major differences between these 
two types of estimators are in variables estimated and types of data used. A 
random variable can be defined at each and every location, xi, within the region 
of interest. The set of these random variables determines a random function. 
As a set of random variables, the random function expresses both local and 
regional behavior of the variable of interest. At a given point in space, the 
random function Z(x)  is a random variable, but over a region, the random 
function incorporates the complete spatial correlation structure of any subset of 
the random variables. Thus, the random function describes both random and 
structured aspects of the variable. 

For any kind of estimation, some knowledge of the spatial law of the ran- 
dom function is necessary before an optimal estimator can be defined. Because 
the data are from only one realization and because any property of a random 
function cannot be inferred from a single realization without a model, a sta- 
tionarity assumption must be included in the model to allow inference of the 
properties of the random function. The type of stationarity invoked for nonpara- 
metric estimation of spatial distributions is stationarity of the bivariate distri- 
bution of z(x)  and z(x  + h) for various values of the distance vector h; that 
is, 

Fx, x+h(z, Z') = Fh(z, z ' )  (1) 

One consequence of bivariate stationarity is that the bivariate distribution of 
two random variables z(x t )  and z(x2) depends on the magnitude of vector h 
separating these two random variables and not on the particular locations, xl 
and x2. This implies stationarity of the univariate distribution; that is, the ran- 
dom variables representing the variable of interest of each particular location 
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z(xl), z(x2), " ' ' ,  z(x,) are identically distributed, nonindependent random 
variables (Sullivan, 1984). 

With the stationarity of the bivariate distribution established, nonpara- 
metric estimators of the probability distribution can be developed. 

THE INDICATOR FUNCTION 

The following material is based on Joumel (1983). The spatial distribution 
of a random variable on a point support within a region A can be defined math- 
ematically as: 

1 f i(x, Zc) (2) (t~(A' ZC) = Z xEA 

where 4~(A, zc) is the spatial distribution of point values within region A for 
cutoff zc (i.e., the proportion of point values within region A less that zc) is an 
indicator defined as: 

I11 if zCx) <_ z, 
i(x, Zc) --- (3) 

0 i f z (x )  > Zc 

Z(X) is the observed value at location x and zo is the cutoff value. 
The spatial distribution O(A, z,.) can be considered as a realization of a 

random variable 55 (A, zo), where 55(A, zo) is the following integral transform 
of the random variable z(x), 

1 
f l(x, Zc) dx (4) 55(A, Zc) = ~ x r A  

where I(x, Zc) is the indicator random function defined as: 

l(x, Zc) = I I '  i f z (x )  -< Z~ (5) 

( 0, i f z (x )  > Zc 

The expected value of this random variable can be determined as: 

= 1  
E[55(A, Zc)] = ~E[ fxeA '(X, Zc)dx I -A IxeA Ell(x, Zc)] dX 

E[55(A, Zc)] = {(1)Pr[z(x)  --- z~] + (O)Pr[z(x) > z~]} dx xEA (6) 
= Pr[z(x)  -< z~] for stationarity of z(x) 

= F(zc) (7) 
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where Pr[z(x)  _< z~] = Probability that z(x)  < z~ and F(zc) = Stationary 
univariate cumulative distribution function. 

The spatial distribution function ~ (A, Zc) can thus be seen as a realization 
of a random function q~(A, zc), whose expected value is equal to the value of 
the stationary univariate cumulative distribution function F (z~). The distribu- 
tion of indicator variables at sampled points, i(x, zc), will be the same with 
only two values, 0 and 1. If  the observed value is less than the cutoff value, the 
indicator value will be 1, otherwise, it will be 0. Clearly, the indicator variable 
i(x, z~), will change as the cutoff value increases. More samples have values 
less than the cutoff value; therefore, more indicator variables have the value 1. 

The distribution of indicator variables is called the Bernoulli distribution 
and is similar to that given in Eq. (7). The expected value is 

E[I(x,  z~)] : (1)Pr[Z(x)  _< zc] + (0)Pr [Z(x)  > zc] = F(zc) 

and its variance 

Var[l(x,z~)] = F(zc){[1 - F(zc)]} .  

ESTIMATION OF CUMULATIVE PROBABILITY FUNCTION 

The purpose of transforming raw data by indicator variables is to use the 
indicator variables to estimate the cumulative probability function q~(A, zc). 
The qS* (A, Zc) functions are linear combinations of the indicator function. This 
function is the exact proportion of values, within any area A, of a variable z (x), 
less than the cutoff value Zc. If  probability measure is used, the value of 4"  (A, 
z~) can be taken as the probability that an estimated parameter is less than the 
cutoff" value. 

The form of the estimator of 4~ (A, zc), 4~* (A, zc) is given by, 

n 

4)*(A, z~) = Z ks * i(x~, zc) (8) 
c ~ = l  

with the constraint 
l l  

Z X, = 1 (9) 
e ~ = l  

for unbiasedness, where X~ are the weights. 
Simple kriging can be used to find the weights in Eq. (8) using the indicator 

variables i(x, zc) and indicator variogram. The final form of the estimator is: 

~*(A,  zc) = Z X~ * i(x~, Zc) 1 - X= F*(Zc) (10) 
e ~ = l  = 
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The estimation variance of this estimator is: 

aZk-Ci(A, A, Zc) - E k= 
o~=1 

* C~(x~, A, zc) 

where 

-C(A, A, Zc) = E[dg(A, z~) * ~ (A ,  zc)] - [F(zc)]  2 

-C(x,~, A, zc) = E[ai,(A, zc) * I(x,~, Zc)] - [F(zc)l  2 

For each region, 4~*(A, Zc) is a function of  the cutoff value zc. I f  a series 

l l )  

of  
cutoff values is applied, a series of  estimates will be obtained. As the cutoff 
value increases, 4~*(A, z~.) increases, because the percentage of points with 
values smaller than the cutoff grade is increased. Because ch * (A, zc) is to be a 
cumulative probability function, the following order relations must be satisfied. 

i. ~b*(A, - c o )  = 0 and ~b*(A, + ~ )  = 1; 
ii. 0 -< 4~ * (A, z¢) -< 1 for all regions of  A and for all cutoff values Zc; 

and 
iii. ~b*(A, zc) is nondecreasing, i.e., ~b*(A, z,.) <- O*(A, z~.), if zc -< 

z ' .  

I f  either of  the following occurs 

i. 4~*(A, zc) estimated by IK is decreasing, i.e., ~*(A,  zc) > 4~*(A, z'~), 
or 

ii. 8 * ( A ,  zc) has negative values or values greater than 1, 

the order relations are not satisfied. In short, if an estimated distribution has 
order relation problems, it is not a valid distribution function. Whenever a order 
relation problem occurs, one simple method of  resolving it is to set th*(A, z'~) 
= qS*(A, z~) as shown (Fig. 2). 

. . . . . .  " ¢(A,4) 

Fig. 2. Solving the order relations problem. 
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I N D I C A T O R  V A R I O G R A M  

The indicator variogram can be estimated by 

1 Xh 
"yi(h, zc)=2-~hi~=j[i(x + h ,  z c ) - i ( x ,  zc)] 2 (12) 

where N h = number of pairs. 
The indicator variogram also can be interpreted as a bivariate probability 

3/i(h, zc) = 0 . 5 { P r [ z ( x ) >  zc, z(x + h)<_ z,.]} 

+ 0.5{Pr[z(x + h) > Zc, Z(X) <- Zc]} (13) 

The indicator variograms "Yz (h, zc,) are estimated for each cutoff value obtained 
for low, medium, and high collapse susceptibility criteria (Fig. 3). Mathemat- 
ically, these functions (a), (b), and (c) can be expressed as: 

For high collapse susceptibility, 

i(x, z) = I 1' i fz  -< zcu (14a) 
0, if z > zca 

For low or noncollapse susceptibility, 

i(x, z) = I I' i fz  ~ Z,.b (14b) 

( 0, if z > zcb 

For medium collapse susceptibility, 

i(x, Z) = I 1' ifzc~ -< z~.c <- zcb (14c) 
0, if otherwise 

Critical values for parameters R, Cp, and n o (Table 2) were obtained from 
Sabbagh (1982); other critical values were derived from conventional volumet- 
ric-gravimetric relationships among the parameters. 

Because moisture content (w) and degree of saturation (s) are related by 
the general expression se = wCs, and because critical values for these param- 
eters could not be derived individually from critical values of the other available 
parameters, the ratio w/s ,  designated as So for initial conditions, was used as 
a measure of the critical value for moisture content [i.e., So(wo/So) = eo/C,]. 

Indicator variograms for each parameter were obtained for each cutoff level. 
The variograms are summarized (Tables 3-5). Data set 1 through data set 6 
each have five parameters (Cp, "Ya, no, So, e0). Data set 7 has three additional 
parameters (R, A, PL). Two types of models were found to be appropriate for 
the parameters: the spherical model with range a, sill C, and nugget Co; and 
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t(Z, l 

i(x,z) 

1.0 

(High) 

zc = Zca 2 

(Low or Non) 

0 Z© ----- Zeb Z 

(b) 

i(x, *) 

1.0 

(Medium) 

z ) 0 Zeb ze = Ze¢ Zca 
(c) 

Fig. 3. Indicator functions for different cutoff levels: (a) high 
collapsing (HC), (b) noncollapsing (NC); (c) medium collapsing 
(MC). 

Parameters 

Table 2. Critical Values for HC, NC, and MC Soil Parameters 

Medium collapsing 
High collapsing (HC) Noncollapsing (NC) (MC) 

R 

cA%) 
A 

no(%) 
e o  

")'a, (pcf) 
So(.,o/So) 

P L  

>_1.4 < 1 . 0  1.0 < R < 1.4 
> 5  _<2 2 < C p < 5  

eo > 0.67, A > - 0 . 6 7  eo < 0.67, A < - 0 . 6 7  
__.45 < 40 40 _< no < 45 

>_0.82 <0.67 0.67 _< eo < 0.82 
_<91.0 >99 .0  91.0 - 3~a _< 99.0 

>_0.308 <0.253 0.253 < So -< 0.308 
_>23 < 19 19 -< P L  < 23 

i 
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Tab le  3. Indicator Var iogram Model Parameters of  all Data Sets 

at HC Cutoff Levels  

Parameter Nugget Range Sill 
Data set Z Co a C 

C, 0.16 25.0 0.25 

Yd 0.21 20.0 0.24 

1 no 0.20 25.0 0.26 

S o  o . 1 8  - - 

eo O. 19 30.0 0.25 

c , ,  0 . 2 2  - - 

7d O. 19 - -  - -  
2 no 0.22 - -  - -  

S 0 - -  _ _  - -  

eo 0.22 - -  - -  

Cp 0.18 15.0 0.24 

Yd 0.16 15.0 0.19 

3 n o 0.22 30.0 0.26 

S o  - -  - -  - -  

eo 0.22 30.0 0.26 

Cp 0.24 - -  - -  

"td O. 19 - -  - -  
4 n o 0.17 40.0 0.26 

S o  - -  - -  - -  

eo 0.17 40.0 0.27 

C. 0.18 20.0 0.22 

Yd O. 16 - -  - -  

5 no O. 19 20.0 0.22 

S o  - -  - -  - -  

eo O. 18 20.0 0.22 

Cp 0.16 30.0 0.21 

Yd O. 15 - -  - -  

6 n o 0.22 - -  - -  

S o  - -  - -  - -  

eo 0.22 - -  - -  

C, 0.22 25.0 0.25 

7d O. 18 20.0 0.25 

no O. 18 15.0 0.24 

7 S o  - -  - -  - -  

eo 0.17 20.0 0.25 

R 0.12 25.0 0.18 

A 0.12 25.0 0.18 

PL 0.11 25.0 0.22 
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T a b l e  4. I n d i c a t o r  V a r i o g r a m  M o d e l  P a r a m e t e r s  o f  all D a t a  Se ts  

at N C  C u t o f f  L e v e l s  

P a r a m e t e r  N u g g e t  R a n g e  Sill 

D a t a  set  Z Co a C 

C r 0 . 1 2  2 5 . 0  0 . 1 8  

7d 0 . 1 8  2 0 . 0  0 . 2 2  

no 0 . 0 7  2 0 . 0  0 . 1 2  

So 0 . 1 6  - -  - -  

eo O. 17 2 0 . 0  O. 12 

Cp 0 . 1 8  - -  - -  

%~ 0 .21  2 0 . 0  0 . 2 5  

no 0 . 1 3  4 0 . 0  0 . 1 8  

So 0 . 1 8  15.0  0 . 2 2  

eo 0 , 1 2  3 5 . 0  0 . 1 7  

Cp 0 .21  - -  - -  

7d 0 .21  3 0 . 0  0 . 2 6  

no O. 14 4 0 . 0  0 . 2 7  

So 0 . 2 2  - -  - -  

eo 0 . 1 5  4 5 . 0  0 . 2 6  

Cr, 0 . 2 4  - -  - -  

7,1 0 . 1 9  3 0 . 0  0 . 2 2  

no 0 . 1 7  3 0 . 0  0 . 2 4  

s o  o . 2 1  - - 

eo 0 . 1 8  2 5 . 0  0 . 2 4  

Cp 0 .21  - -  - -  

7d 0 . 1 9  2 5 . 0  - -  

no 0 . 1 0  3 0 . 0  0 . 2 3  

So 0 .21  - -  - -  

eo O. 10 3 0 . 0  0 . 2 3  

C ,  0 . 2 5  - -  - -  

3'd 0 . 2 0  - -  - -  

no 0 . 2 2  - -  - -  

So 0 . 2 2  - -  - -  

eo 0 . 2 2  - -  - -  

C ,  0 . 1 4  2 0 . 0  0 . 1 9  

'~d d 0 . 1 6  2 0 . 0  0 . 2 4  

n o 0 . 0 6  15 .0  0 . 1 0  

So 0 . 1 4  2 5 . 0  0 . 1 9  

eo 0 . 0 7  15.0  0 .11  

R 0 . 1 7  2 0 . 0  0 . 2 6  

A 0 . 0 5  - -  - -  

PL 0 . 1 2  15 .0  0 . 2 2  
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T a b l e  5. Ind ica to r  V a r i o g r a m  M o d e l  Parameters  o f  al l  Data  Sets 

at M C  C u t o f f  L e v e l s  

Pa ramete r  N u g g e t  R a n g e  Sil l  

Data  set Z Co a C 

Cp 0.11 30 .0  0 .15  

3'J 0 .18  15.0 0 .22  

1 no 0 .23  - -  - -  

S o  - -  - -  - -  

eo 0.21 - -  - -  

Cp 0 .19  15,0 0 .22  

7,1 0.21 - -  - -  

2 no 0.21 - -  - -  

S o  - -  - -  - -  

eo 0.21 - -  - -  

C,  0.21 - -  - -  

"fj 0 . 16  15.0 0.21 

3 no 0 .17  20 .0  0.21 

o - -  - -  - -  

eo 0. t7  20 .0  0.21 

(2, 0 .20  - -  - -  

"Yd 0 .20  - -  - -  

4 no O. 13 20 .0  O. 20 

o - -  - -  - -  

eo 0 .13  20 .0  0 .20  

C, 0 .14  15.0 0.21 

7J  0.18 - -  - -  
5 no 0 .18  - -  - -  

S O  - -  - -  - -  

eo O. 18 - -  - -  

Cp 0.21 - -  - -  

7,1 0 .05  15.0 0 . 1 0  

6 no 0.11 20 .0  0 .16  

S o  - -  - -  - -  

eo 0.11 20 .0  0. t6  

C,  0 .17  - -  - -  

3',~ O. 15 15.0 0 .20  

no O. 16 20 .0  0 .22  

7 So O. 005 - -  - -  

eo 0 .15  20 .0  0.21 

R 0 .17  20 .0  0 .26  

A - -  - -  - -  

PL 0 ,17  - -  - -  



28 Alli, Nowotzki, and Myers 

the pure nugget model with nugget value Co. In some cases, the calculated 
eritical value is greatly different from the available measured values. Compu- 
tation of the variograms is not appropriate in such cases. 

PRESENTATION OF RESULTS 

Equations (10) and (11) were used with indicator variograms to develop 
contour plots for each of the collapse criteria and collapse-related parameters. 
A summary of all of the probabilistic analyses for which contour plots could be 
developed (Table 6) uses an asterisk to indicate that indicator variograms (third 
column) were modeled for these parameters for HC, NC, and MC, or that in- 
dicator kriging (fourth column) was applied to estimate probability contour plots 
with the associated kriging variance. For parameters showing a pure nugget 
model, kriging is not advantageous; the absence of an asterisk indicates that no 
analysis was performed. Presentation of all these contour plots would require a 
large amount of space, only selected cases have been presented here (asterisks 
in fifth column of Table 6). 

The estimated probability contour plots (a) (Figs. 4 and 5) and their as- 
sociated variance of estimation (b) for parameters Cp and "Yd, (Data Set-l) show 
the probability that the value of the parameter is greater than or equal to the 
specified critical value for collapse in high collapse susceptibility. Regions of 
collapse-susceptible soils within the top foot of the surface can easily be de- 
tected from these plots. 

Similar plots for NC critical values (Figs. 6 and 7) for Cp and 7d (data set 
1) show the probability that the value of the parameter is less than or equal to 
the specified critical value for collapse in low collapse susceptibility. 

Results for MC critical values (Figs. 8 and 9) for the parameters Cp and 
"rd (data set 1) show the probability that the value of the parameter is greater 
than the specified critical value for low collapse susceptibility but less than the 
critical value for high collapse susceptibility. 

Results in the form of contour plots have been obtained for parameters of 
a data set which show some spatial structure other than the pure nugget model. 
The contour plots give a probability measure, and the associated variance of 
estimation helps to indicate how good the estimation of probabilities was. Of 
course, accurate estimation requires an accurate estimation of the variogram. 

The usefulness of contour plots in this study is demonstrated by a numer- 
ical example. Estimated probability contours of Cp (data set 1) for HC (Fig. 
10a) indicate that the zone defined by the 60-80% probability contours (shaded 
area) passes around the area adjacent to the Santa Cruz River. This suggests 
that a 60-80% probability exists that the value of Cp, at 0-1 ft. depth within 
this area, is greater than the HC critical value of Cp as listed (Table 2). 
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Table 6. Summary of Probabilistic Analysis on all Data Sets at Three Cutoff Levels 
m 

Indi. Varg. Indi. Krig. Result 
Parameter 

Data set Z HC NC MC HC NC MC HC NC MC 

Cp * , • • , , • • , 

1 n o  * * * * * * * * - -  

S O  * * . . . . . . .  

e o  * * - -  * * * * * - -  

C p  * * * _ _ * _ _ _ 

2 no * * * - -  * . . . .  

S 0 - -  * _ _  _ * _ _ _  * _ 

e 0 * , * _ * _ _ _ * 

C p  * * * * . . . . .  

3 n o  * * * * * * - -  - -  - -  

S 0 - -  * . . . . . . .  

e 0 * * * * * * _ _  - -  - -  

C p  * * * * * * _ _  - -  - -  

" [ d  * * * - -  * . . . .  

S o  - -  * . . . . . . .  

e o * * * * * * _ _  _ _  _ _  

C p  * * * * _ * _ _ _ 

5 n o * * * * * . . . .  

S 0 - -  * . . . . . . .  

e o  * * * * * . . . .  

C p  * * * $ . . . . .  

• "[d * * * - - -  - -  * - -  - -  - -  

6 n o * * * - -  - -  * - - -  - -  - -  

S 0 - -  * . . . . . . . .  

e 0 * * * _ _  - -  * _ _  _ _  _ _  

C p  * * * _ _  - -  * _ _  - -  - -  

" Y d  * * * * * * - -  - -  - -  

H 0 * * * * * * _ _  _ _  _ _  

7 S o  - -  * . . . . . . .  

e 0 * * * * * * _ _  - -  _ _  

R * * * * * * * * * 

A * * - -  * . . . . .  

P L  * * * * * - -  * * - -  

i i 
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Fig. 4. Contour plots of (a) estimated probability and (b) associated 
kriging variance of Cp (data set 1) for HC by indicator kriging, 



Indicator Kriging Applied to Collapsing Soils 31 

40 

30 

10 " ..... ~ 

- t 0 ~  

-20 

-50 

- 3 0  - 2 0  - 1 0  0 10 20 30 40 

50 . . . . . . .  i \ ,  ~. fl ~ '' I ' , - -T--- ' t ' - ' - t ' -~ 

3O 0 . 7 - ~ _  

'\ DWAY \. BLVD. I 0 
O. 6 ~-\ 

- 2 0  i i - lO 

\ ,  
- 5 0  - 2 0  - 1 0  0 10 20 30 40 
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kriging variance of 7J (data set 1) for HC by indicator kriging. 
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Fig. 6, Contour plots of (a) estimated probability and (b) associated 
kriging variance of Cp (data set 1) for NC by indicator kriging. 
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Fig. 8. Contour plots of (a) estimated probability and (b) associated 
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Fig. 9. Contour plots of(a) estimated probability and (b) associated 
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Associated with this estimation is the estimation variance (Fig. 10b), in- 
dicating reliability. The variance has a narrow range lying between 0.5 and 0; 
as such, it can be considered as a moderate value. Accuracy of the estimation 
depends largely upon accurate development of the variogram. As discussed, the 
development of the variogram involves subjective evaluations and is not a rig- 
orous analysis. 

A more accurate picture of probabilities can be obtained by plotting data 
for smaller probability intervals. Production of such plots would require larger 
size paper, or enlarging small scale plots to a more suitable scale. By combining 
probability contour plots, a complete and clear understanding of the collapse- 
susceptibility can be obtained for all depths and for each separate region of 
Tucson. 

SUMMARY AND CONCLUSIONS 

Indicator kriging was applied to collapse and collapse-related soil param- 
eters to model associations among the variables, and to estimate the probability 
that certain parameter is greater than or less than a critical value. Based on this 
study, the following conclusions can be drawn regarding the collapsing soil 
parameters for the Tucson area. 

1. The principles of geostatistics can be applied successfully to geotech- 
nical problems when large amounts of data are available from a reliable 
source. 

2. Geostatistics is a valuable tool for characterizing and modeling spatial 
variability of geotechnical parameters. 

3. The collapse and collapse-related soil parameters can be considered as 
regionalized variables having spatial structures that can be fitted by a 
spherical model variogram. The range of influence of the structure var- 
ied from 5.5-8.0 miles. This distance is large relative to usual distances 
over which soils are sampled. Therefore, the application of geostatisti- 
cal concepts for estimation of collapse and collapse-related soil param- 
eters is justified. 

4. Indicator kriging provides a means whereby contour plots may be ob- 
tained for probabilities that certain collapse and collapse-related param- 
eters are less than or greater than predetermined critical values for low, 
medium, and high collapse susceptibility. Such plots with their associ- 
ated estimation variances confirm the subjective findings of a previous 
investigator (Crossley, 1968) for the areas of collapsing soil in Tucson. 

R E F E R E N C E S  

Abdullatif, A. A. t969, Physical Testing of Engineering Properties of Collapsing Soil in the City 
of Tucson, (unpublished) M.S. thesis, University of Arizona, 135 p. 



38 Alli, Nowotzki, and Myers 

Anderson, F., 1968, Collapsing Soils and Their Basic Parameters in an Area of the Tucson, Ari- 
zona Vicinity, (unpublished) M.S. thesis, University of Arizona, 104 p. 

ASTM, 1980, Natural Building Stones: Soil and Rock: Annual Book of ASTM Standards, Part 19, 
American Society for Testing and Materials, Philadelphia, 634 p. 

Crossley, R. W., 1969, A Geologic Investigation of Foundation Failures in Small Buildings in 
Tucson, Arizona, (unpublished)M.S. thesis, University of Arizona, 58 p. 

Joumel, A. G., 1983, Non-Parametric Estimation of Spatial Distribution: Math. Geol., v. 15, p. 
445-465. 

Mitchell, J. K., 1976, Fundamentals of Soil Behavior: John Wiley & Sons, New York, 422 p. 
Sabbagb, A. O. 1982, Collapsing Soils and their Clay Mineralogy in Tucson, (unpublished) M.S. 

thesis, University of Arizona, 269 p. 
Sullivan, J. A., 1984, Non-Parametric Estimation of Spatial Distribution, (unpublished) Ph.D. 

thesis, Stanford University, 281 p. 


