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Variance as a Function of Sample Support Size 
R .  Z h a n g ,  2 A .  W .  W a r r i c k ,  2 a n d  D .  E .  M y e r s  3 

The effect o f  sample support size on variance is examined and evaluated. Results based on vario- 
grams and geostatistics are compared to the classical relationship developed by H. F. Smith in 
1938; that is, that the variance is reduced from V~ to V~/n h as the support area increases from ] 
to n plots for  uniformity trials. The exponent b is between zero and one. Theoretical results are 
based on use of  auxiliary functions and account for  the size and shape o f  the sample support and 
the overall field geometry. Results are given in terms of  approximations by rational functions for 
ease of  calculation. Experimental results for uniformity trials, irtfiltration measurements, and spec- 
tral data from satellites are compared to theoretical and empirical results. Applications include 
not only uniformity trials, but also measurement theocv. 
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INTRODUCTION 

Sample support size is of  fundamental importance for various measurement and 
estimation problems. For example, sensor geometry, comparisons of  alternative 
measurement devices, and plot size determination, all require examination of 
the variability of  results as influenced by dimensions of  the samples. Smith 
(1938) presented an empirical law relating variance of  crop yield per unit area 
to plot size: 

v,, = v , / n  b ( l ) 

where V n is the variance among plots, each with an area of  n units and V 1 is the 
variance among plots, each of  unit size. Factor "b" is an index of heterogeneity 
between 0 and 1. If sampling is random, b will be 1. However, if sampling is 
not random, b will be less than l and could approach zero if no heterogeneity 
exists. If n corresponds to an area W and the unit support size is w, Eq. (1) is 
equivalent to 

vw : V w [ w / w f  (2) 
with V w and Vw corresponding to the variances of the two areas. 
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An alternative approach to quantification of heterogeneity is through geo- 
statistics. Our primary objective is to evaluate variance as a function of sample 
support. A second objective is to relate the empirical index of heterogeneity b 
of Eq. (1) to variograms. Previous results along these lines are given in Whittle 
(1956) and Starks (1986). 

THEORY 

The variogram 3,(h) is defined as (cf. Journel and Huijbregts, 1978) 

7(h) = ( 1 / 2 )  Var [Z(x) - Z(x + h)] (3) 

with " V a r "  the variance of the argument. In this discussion, the intrinsic hy- 
pothesis is assumed; that is, the expected value of Z(x) is independent of any 
point x, or 

E[Z(x)] = /z (4) 

and 3' is a function of h only as implied in Eq. (3). (For some examples, second- 
order stationarity will be assumed, which implies the existence of a finite pop- 
ulation variance cr2.) Only isotropic models will be considered. 

Curve I (Fig. 1) shows a typical spherical variogram starting at 3'(0) = 0 
and reaching a maximum or "s i l l "  C1 for h >__ a. The value h = a is called 
the range and is the maximum separation distance for which sample pairs re- 
main correlated. More generally, assume 3' of the form 

3"(h, a) = Co + C13"u(h/a), h > 0 (5) 

where C O is the nugget and 3"u(h/a) a variogram with zero nugget and unit sill 
(for those models which have a finite sill). Common forms of 3", are given in 
Table 1. As indicated, " a "  is the range for the spherical model; for other models 
with a finite sill, a is a characteristic length and can be used to define an effec- 
tive range. For example, for an exponential model, Journel and Huijbregts 
(1978) define the effective range as a '  = 3a for which 3'u(a' ) = 0.95. For the 
linear model, no finite sill nor finite variance exists. 

Table 1. Common Variogram Models  in Terms of a Dimensionless  Length h/a  

Name Function %, (h/a)  Effective range" 

Exponential  1 - exp ( -  h/a)  
Spherical 1.5 (h/a)  - 0.5 (h/a)  3, h < a 

1 h > a  
Gaussian 1 - exp [ -  (h/a)  2] 
Michael i s -Menton (h /a)  /[1 + (h /a)] 
Linear  h / a 

i 

3.0 a 
0.82 a 

1.7 a 
19.0 a 
None 

aEffective range is value of h for which function is 0.95. 
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As sample support size increases, variance is expected to decrease which 
would be consistent with Eq. (1). For example, measurements with point sup- 
port are expected to be more variable than those averaged over a small area. 
With respect to a variogram, this would correspond to a decrease in the sill. 
This is illustrated (Fig. 1A), where curves I, lI, and III have sills Cj, Cl.w, and 
Cnw for samples with point, w units, and W units of support, respectively. 

A similar reduction of the variogram occurs when a nugget is present. 
Although somewhat simplified, the schematic relationship (Fig. 1B) shows a 
decrease in sill and in the nugget as the support increases from a point to w to 
W. 

Whether the problem is to estimate average production rate for a crop, 
estimate average grade of an ore block, or average concentration of a chemical 
in a field, similar problems and questions arise. In some instances, the sample 

I 

ill I ~ C1 

Cl,wC] 'w 
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)- .  

Co 
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i 
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C1 

Fig. 1. Variograms for point and supports of w and W, Part A is 
without a nugget; part B is with a nugget. 
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consists of a large area, although results are to be applied to a much smaller 
area or volume; in other instances, the objective is to extend the average value 
obtained from a small support sample to a larger support. The general context 
is suggested in Fig. 2; why three regions are considered will be clear from the 
additivity condition to be reviewed subsequently. For example, w might be at 
the scale of auger samples for soil properties or DDH for ore grades, W a man- 
agement scale in a soil context or selective mining units in the case of ore 
reserve estimation. Finally, W o could be an entire farm or field, in one case, or 
a deposit in the mining application. 

As is shown (Rendu, 1978; Journel and Huijbrechts, 1978), these average 
values have variances which are interrelated. These variances then allow char- 
acterization of variability of average values at one scale with respect to average 
value at a larger scale. In turn, variances can be expressed in terms of average 
values of the variogram over the respective scales. Miesch (1975) has given an 
example relating variances at three disparate scales. In review, let Z~,, Zw, 
Zwo denote the spatial average values of Z over w, W, Wo, respectively. If mul- 
tiple disjoint ws were within W whose union were W, the average of these 
averages would be the spatial average value over W; a similar result would hold 
for W in W 0. In turn, spatial variances may be defined, and if the expected value 
is taken, the variances are expressible in terms of the second moment functions 
associated with Z. V(w, W), V(w, Wo), and V( W, Wo), respectively, denote 
the variance of the average value over ws within W, over ws within W o, and 
over Ws within W o. Then, by the well-known additivity property, V(w, Wo) = 
V(w, W) + V(W, Wo). These variances, in turn, can be expressed in terms of 
average values of the variogram. 

The variance of samples of size W, where the samples are inside of W 0, is 
given by Eq. 7.23 of Rendu (1978): 

where 

V(W, Wo) = ~(Wo, Wo) - ~(W, W) (6) 

~(W,W) = (1/W 2) fwdX'dy ' fwV[(r' - r ) ] d x d y  (7) 

Q@ 
Fig. 2. Relative support sizes w and W within a 

domain of Wo. 
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The argument r '  - r takes on all possible values of separation within W and 
~(W, W) is the average value of all possible ys within W. Results similar to 
Eq. (6) are also presented by Russo and Bresler (1982). 

In Eq. (7), y is a point variogram. More often, the available variogram is 
based on the support ° 'w" resulting in 

Vw(h) -- Co,w + T;(h) ,  h > 0 (8) 

equivalent to Eq. 6.47 of Rendu (1978), where Co,w is the nugget and the "re- 
gularized" sill is Co,w + G,w- (Exponent . . . . .  denotes a zero nugget model.) 
By Eq. 6.48 of Rendu, ~(W, W) may be rewritten: 

~(W, W) = C O - (w/W)Co,w + ~°(W, W), h > 0 (9) 

where the last term is calculated from a point variogram, but neglecting the 
nugget (i.e,, from the last term on the right of the equation) 

~(h) = C0 + ~°(h),  h > 0 (10) 

Generally, C o will not be known, as the measurements are not for points, but 
have a finite support w. If sill of either the point or regularized variogram exist, 
the approximate relationship is 

C, = C,.w + ~°(w, w) (second-order stationary) (11) 

as shown in Fig. 5.2 of Rendu (1978). (In Eq. (11), the caveat "second-order 
stationary" indicates that this assumption is invoked.) 

Using Eqs. (6) and (9), the variance of support units W in a larger field W 0 
can be written as 

v(w, w0) = [ ( l / W )  - (1/Wo)]wCo.w 

+  O(Wo, Wo) -  o(w, w) 12) 

Thus, a theoretical form analogous to Eq. (2) is given by 

Vw/V w = V(W, Wo)/V(w, Wo) 13) 

If the auxiliary function Fw is defined as 

F w :  [(1/(C, W2)] IwdX' dy' f w T ° ( r  ' - r) dxdy 14) 

then Vw/Vw becomes 

Vw/Vw = [ ( l / W )  - (1/Wo)](wCo.w/C,) + Fwo - Fw 15) 
[ ( l / w )  (1/Wo)](wCo.w/c,) + 1% Fw 

The auxiliary function may be calculated from Eq. (7) by numerical integration, 
may be taken from tables (cf. Journel and Huijbregts, 1978) or from analytical 
solutions for "spherical" and "l inear" variograms (cf. Webster el al., 1984). 
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In order to compare theoretical results to Eq. (2), note that " b "  is the 
slope if log (Vw/Vw) is plotted as a function of  log (W/w) .  However,  Eq. 
(15) shows that the slope is not constant. Thus, the theoretical approach indi- 
cates b is not constant, although for a given range of  Vw to Vw, its value may 
be approximately a constant. Some choices for choosing a representative b in- 
clude an integral average or a regression relationship over a specified range. 
However,  a simpler choice is 

be = --[ log V(R°Sw, Wo) - log V(w, Wo)] / ( log  R °5) (16) 

Thus, bR is chosen by evaluating a variance at the geometric average of Rw and 
w, where R is a specified constant, compared to simply V w for the empirical 
relationship. I f  supports (plots) of  w to 100w are considered, the resulting bR 
would hold exactly at 100°Sw or 10w. The form of Eq. (16) is simplified if W0 
is allowed to increase without bounds. 

N U M E R I C A L  R E S U L T S  

Using analytical forms of the auxiliary function of a spherical variogram 
(Webster et al., 1984) and Eq. (14), log ( 1 - Fw) as a function of  log ( W/a 2) 
is obtained (Fig. 3). When W = 0 (i.e., for the point variogram), Fw = 0 and 
1 - Fw = 1. Increasing the (dimensionless) block size leads to corresponding 
decreases in 1 - Fw. (Log to the base 10 is used throughout.) The relationship 
shown (Fig. 3) can be approximated by the nonlinear equation: 

log (1 - Fw) = (C, + C3y + C5y2)/(1 + C2y + C4y 2 + C6Y 3) (17) 

where y = log (W/a2),  Wis a square block, and C1, • • ", C6 are in Table 2. 
The coefficient of  determination is greater than 0.999. 

0 . 0 -  r . . . . . .  

--.5- 

-I .O- 
l 

-I .5- r~ 
0 
._1 

- 2 . 0 -  ___ 

- 2 . 5  

• \ \  

",XXx\ 

Gaussian 

-- ExponentiGl 

-- Spherical 

- ' 2  - ' 1  

LOG(W/a = ) 

Fig. 3. Plots of log ( 1 - Fw) as a function of support 
size for Gaussian, exponential, and spherical models. 
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Table 2. Coefficients for Approximating 1 - Fw by Eq. (17) ° 
i 

Spherical Exponential Gaussian Michaelis-Menton 

C1 -0 .46435 -0 .21370  -0 .12750  -0 .17014 
C2 -0 .87796  -0 .51877  -1 ,16420  -0 .33138 
6"3 -0 .18170  -0 .11601 -0 .10182 -0 .09378 
C4 0.49604 0.10801 0.66884 0,06440 
C5 -0 .02267  -0 .01803 -0 .02061 -0 .01457 
C 6 -0 .10225 0.00000 -0 .13395 0,00000 

~'In all cases The coefficient of determination is greater than 0.999. 

Also shown (Fig. 3) are relationships for exponential and Gaussian models. 
Appropriate integrals were approximated using Gaussian quadrature. Davis and 
David (1978, esp. Eq. 3) obtain a relationship equivalent to 

S' S' 
Fw = 4 u du ~/(r, a)v dr, r 2 = W(u 2 + v 2) (18) 

0 0 

for which the numerical approximation used is 

n n 

Fw = 4 ~ ~ wiwj f ({W/a2)[(1  - xi) 2 + (1 - xj)2]} ~'5) (19) 
i = l j = l  

withfany variogram in Table 1 and wi and xi weights and roots for the Gaussian 
quadrature. These are given, for example, in Abramowitz and Stegun ( 1964, 
esp. p. 921 for n = 1, . . . ,  8) and in Strond and Secrest (1966, esp. p. 105 
for n = 1 . . . . .  32). An inspection of Eq. (18) reveals that Fw is a function of 
W/a 2 as long as f i s  one of the models in Table 1. 

Thus far, auxiliary functions for square blocks, which are special cases of 
rectangles, have been discussed. For rectangles, a shape factor is defined as 

S = max (length/width, width/length) (20) 

The analog of Eq. (19) is 

F(W/a2, S) = 4  ~ ~ wiwj f ({ (W/a2)[S(1  - xi)2 + (1 - x j ) Z / S ] }  °'5) 
i = l j = l  

(21) 
The relationship between log ( W / a  2) and log ( 1 - Fw) is shown (Fig. 4) 

for a Gaussian model. When log ( W/a  2) is large, the shape factor S does not 
affect 1 - Fw significantly. Results for other models are similar, except for a 
linear model as shown (Fig. 5). For the linear model, log Fw continues to in- 
crease for larger values of W. As for other models, the largest shape factors 
result in the largest Fw values, or the smallest 1 - Fw. 
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Fig. 4. Plots of log ( 1 - Fw) as a function of support 
size for five different rectangular shapes and a Gaussian 
model. 

Approximations similar to Eq. (17) can be used to calculate the auxiliary 
functions: 

log (1 - Fw) = (Cl + C3y + C5y2)/(1 + C2y + C4y 2 + C6y 3) (22) 

where 

y = log ( W / a  2) ( - 3  < y < 2) (23) 

and Ct . . . . .  C 6 are polynomials in S, that is, 

C = al + a2S + a3 $2 + a483 Jr- a584 (24) 

1.0- 
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0.0- 

3 
~"  - ,5 -  
0 __1 

- 1 5  - 
t:~--a S = 5 
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Fig. 5. Plots of log (Fw) as a function of support size 
for five different rectangular shapes and a linear model. 
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at . . . . .  as are shown (Tables 3-6)  for spherical, exponential, Gaussian, and 
Michaelis-Menton models, respectively. 

An example is given to show the use of  these formulas for computing Fw. 
Given a length of  2.4, a width of  1.2, and a spherical model with range a = 
1.5, then 

S = 2  

y = log (W/a 2) = log (2.4 x 1 .2 /1 .52  ) = 0.1072 

Table 3. Coefficients Related to Shape Factors (S)" 

C~ C~ Ca C4 C5 G 

at -0.425161 -1,081143 -0.119132 0.634413 -0.008395 -0.133990 
a2 -0.037814 0.192535 -0.054080 -0.139323 -0.011925 0.033019 
a3 0.001358 -0.013799 0,002599 0.011678 0.000600 -0.002995 
a4 -0.000027 0.000493 -0.000057 -0.000455 -0.000013 0.000121 
a5 0.000000 -0.000008 0.000000 0.000008 0.000000 -0.000002 

oC = al + a2S + a3S z + a4 $3 4- a5 $4 for spherical model. 

Table 4. Coefficients related to Shape Factors (S) 

CI C2 C3 C4 C5 C 6 

a~ -0.186291 -0.689375 -0.079630 0.219997 -0.009674 -0.025423 
a2 -0.023883 0.029925 -0.009455 -0.004286 -0.001095 -0.001437 
a3 0.000722 -0.001136 0.000268 0.000120 0.000028 0.000089 
a4 -0.000013 0.000023 -0.000005 -0.000002 -0.000001 -0.000002 
a5 0.000000 -0.000000 0.000000 0.000000 0.000000 0.000000 

~C~ = a~ + a2S + a3S 2 + a4 $3 -,? asS  4 for exponential model. 

Table 5. Coefficients Related to Shape Factors (S) 
i 

CI C 2 C 3 C 4 C 5 C 6 

al -0.090073 -1.287491 -0.072206 0.720987 
a2 -0.033220 0.142961 -0.026861 -0.085023 
a3 0.001070 -0.007253 0.000983 0.004891 
a4 -0.000019 0.000165 -0.000019 -0.000119 
as 0.000000 -0.000001 0.000000 0.000001 

i,i ii ii 

a c  = al + a2S + a3S 2 + a 4 S  3 + asS4for  Gaussian model 

-0.014710 -0.139829 
-0.005428 0.015277 

0.000217 -0.000954 
-0.000004 0.000025 

0.000000 -0.000000 
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Table 6. Coefficients Related to Shape Factors (S) 

C2 C3 C 4 C5 C6 

al -0.154016 -0.488876 -0.066783 0 .158284 -0.008307 -0.021946 
a2 -0.014737 0 .031047 -0.007124 -0.011761 -0.000953 0.001650 
a 3 0 .000470 -0.001426 0 . 0 0 0 2 3 9  0 . 0 0 0 5 9 6  0.000033 -0.000087 
a4 -0.000009 0.000031 -0.000004 -0.000014 -0.000001 0.000002 
a5 0 .000000 -0.000000 0 . 0 0 0 0 0 0  0 .000000  0.000000 -0.000000 

ac = at + a2S + a3 $2 + a4S s + a5 $4 for Michaelis-Menton model. 

Using coefficients al . . . . .  a5 in Table 3, C1 . . . . .  C6 are calculated with 

Cl = -0 .425161  - 0.037814S + 0.001358S 2 - 0.000027S 3 

= - 0 . 4 9 5 5 7  

In the same way, (72, C3 . . . . .  C6 are -0 .74745 ,  -0 .21735 ,  0.39897, 0.02995, 
-0 .07990 .  By Eq. (22), Fw = 1 - 0.274 = 0.726 which is close to the the- 
oretical result, 0.727. 

Using these formulas, the auxiliary functions have been calculated and 
compared with the theoretical results for the spherical and exponential models 
(cf. McCuen and Snyder, 1986, esp. Tables 5-3 and 5-4). The maximum rel- 
ative differences are less than 4% and 2% for spherical and exponential models, 
respectively. 

For a linear model 

"y(h) = C~y, = C l ( h / a ) ,  h > 0 (25) 

the theoretical solution of  the auxiliary function (cf. Webster and Burgess, 
1984), is known from Eq. (14): 

F w = ( W ° 5 / a ) g ( S )  (26) 

where 

g ( S )  = ( 1 / 3 0 ) { l O ( S  + 1 / S )  °5 + 5S 15 In [(1 + (S 2 + 1 ) ° 5 ) / S ]  

+ 5S - ' 5  In [1 + (S 2 + 1) 0.5 ] - 2(S + 1 / S )  25 

+ 2S 2"5 + 2S -2s  } (27) 

In a logarithmic form, Eq. (26) becomes 

log Fw = 0.5 log ( W / a  2) + log g ( S )  (28) 

The latter function is plotted as a function of  W / a  2 for S = 1, 5, 10, 20, and 
40 (Fig. 5). The linear relationship observed is characterized by a slope of  0.5 
and an intercept of  log g(S ). 
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Relationship Between Geostatistical Parameters and b 

The relationship between geostatistical parameters and empirical parameter 
b is investigated by using Eq. (16), based on the variance ratio evaluated at w 
and a geometric mean for Rw, as well as by using a linear regression between 
values at w and 4w, 9w . . . . .  64w. Additionally, a comparison of the regression 
results for five sets of  experimental data will follow. 

A plot of log (Vw/Vw) as a function of log ( W / w )  for a spherical model 
and with w / a  2 = 0.05, 0.5, and 5 (group A, B, and C in Fig. 6, respectively), 
W 0 large, and a shape factor of one shows, as previously indicated, the relations 
are curvilinear, although as w / a  2 becomes larger, the results are closer to a 
linear relationship. This is not surprising as b is expected to approach 1 as w / a  2 
gets large. Similar relationships for other w / a  2 values may be calculated by 
utilizing Fig. 3. For example, to calculate bR with w / a  2 = 0.01 for a spherical 
model and R = 100, values of - 0 . 004  and - 0 . 1  are determined for log ( 1 - 
Fw), corresponding to - 2  and - 1  for log (W/a2) .  By Eq. (16), bR is 

bR = - [ ( - 0 . 1 )  - ( - 0 . 0 0 4 ) ] / l o g  (10)  : 0.096 

Also, straightline plots based on Eq. (16) with R = 100 [i.e., the line 
passes through log ( W / w )  = 0 and 1 ], are shown (Fig. 6) as well as a linear 
regression based on equally weighted values of W / w  = 4, 9, 16, 25, 36, 49, 
and 64. Empirical results become better as w / a  2 increases, which corresponds 
to "more random" (i.e., larger b) conditions. 

Plots of b based on Eq. (16) are given for four variogram models (Fig. 
7A). For small w / a  2 values, b approaches 0 in all cases. As w / a  2 increases, b 
approaches 1 for the spherical, exponential, and gaussian models. However, 

0.0-  

- . 5 -  

>~  - 1 . 0 -  

(._9 
0 
--J - 1 . 5 .  

A 

-- Georne~ric C ~'~%: 

- + Regression 

-- Theoretical 
-2.0. ,. I ' I ' l - - - r - - - - -  

0+0 0 5 1.0 1.5 2.0 

LOG(W/w) 
Fig. 6. The relationship of log (Vw/Vw) as a function 
of log (W/w) for a spherical model and 
basic units of w/a 2 = 0.05, 0.5, and 5 (group A, B, 
C, respectively). 
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Fig. 7. Relationship of b to block size for four 
models. Part A is based on a geometric average, and 
B on a linear regression (see text). 

for the Michaelis-Menton model, the value approaches 0.5 or so. This may be 
explained by the large effective range of the model (see Table 1). Further dis- 
cussion on long-range dependence is found in Whittle (1956). 

Results based on linear regression between results at w / a  2 and 4 w / a  2, 
9w /a  2 . . ,  64w/a  2 are given (Fig. 7B). The relationships are similar but b 
values tend to be a bit larger for small and intermediate w / a  2 values. This is 
consistent with previous results (Fig. 6). 

Using the same procedure, b values of several data sets were calculated; 
both description of the data sets (Table 7) and parameters of the variograms for 
these data sets (Table 8) are presented. Because these variograms are based on 
various finite-sized supports, they must be transformed to point variograms. The 
relationships of Eqs. (8)-(11) were utilized, although the transformation of block 
to point variograms in a rigorous sense generally is more complex. [Several 
examples in Journel and Huijbregts (1978) show large support measurements 
to be composed of multiple nested variograms at the point level.] Ranges of 
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i 

Parameter 

Table 7. Description of Data Sets 

Authors and year Description 

Wheat Mercer and Hall (191 l) 500 3.3 × 3.3 m plots 
Cotton Kuehl and Kittock (1969) 432 1.5 × 1 m plots 
Near infrared Landsat (1979)" 190 30 x 30 m pixels 
Infiltration rate Sisson and Wierenga (1981) 625 5 cm ring measure 
Potato Kalamkar (I932) 576 6.7 × 0.91 m plots 

i , i i i  

~'Private communication with A. R. Huete (University of Arizona, Tucson) 

po in t  v a r i o g r a m  mode l s  were  ob t a ined  f rom ranges  o f  b lock  v a r i o g r a m s  by de-  

c reas ing  the  d i a m e t e r  o f  the  plots .  Sills o f  po in t  v a r i o g r a m s  w i thou t  nugge t  ( C  1 ) 

are re la ted to sills o f  b l o c k  v a r i o g r a m s  w i t hou t  a n u g g e t  (CLw) by  

CI = C , . , , . / [ 1  - Fw] ( 2 9 )  

Va lues  o f  b ca l cu la t ed  f rom auxi l ia ry  func t ions  are c o m p a r e d  wi th  those  com-  

pu ted  by  l inea r  r eg ress ion  wi th  the  e x p e r i m e n t a l  da ta  sets (Tab le  8). 

Table 8. Comparison of b Values Calculated by Auxiliary Function and Experimental Data 

Data Variogram b~u~ b~x r 

Wheat Michaelis-Menton 
(0. i27, 0.123, 13.7)/' 0.44 0.46" 

Exponential 
(0.146, 0.085, 22.5) 0.44 0.46 

Cotton Michaelis-Menton 
(11670, 12794~ 0.38 0.44" 

15.86) 
Exponential 0.38 0.44 

(11764, 8679, 12.08) 

Near infrared Spherical 
(0, 320, 7.33) 0.35 0.35 

Gaussian 
(50, 282, 4.23) 0.36 0.35 

Infiltration rate Linear 
(9.81, 0.025) 0.20 0.28 

Potato Linear 
(2.757, 0.114) 0.20 0.18 

i i  

aValue of b was given in the original reference. 
bFor variograms with sills, '~he three parameter values are nugget, sill, and characteristic length 

(Table 1), respectively. For the linear models, the first parameter is the nugget and the second is 
the slope. 
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Relat ionship  to Field Size 

The variance for a given block size depends not only on the block itself, 
but also on W o through Eq. (12) or Eq. (15). Thus, if Wo is small, the overall 
block variance is expected to be smaller than if Wo is large. For  plots, W o is 
the area of the overall field; for measurement studies, it would be the overall 
dimensions from which a sample support would be chosen. 

As an example of this effect, the problem of McCuen and Snyder (1986, 
esp. p. 169) was reexamined. A point variogram is assumed for soil moisture 
which is spherical with a nugget, sill, and range of 0, 23.4 (%)2, and 25 m, 
respectively. The variance of a 30 x 50 m pixel (W) is calculated with the 
results shown (Table 9). For their case, W o was, in effect, infinity, resulting in 
V(W, Wo) .-~ 4.14 (%)2. Reducing Wo to 1000 W results in a slight reduction 
of V(W, Wo) to 4.13; whereas for W o of 100 and 10 W, the values are 4.07 
and 3.59. Calculations for still smaller Wo are given, although from a practical 
situation they are of less interest. Of course, the results also are dependent upon 
the vafiogram function chosen. If  the characteristic length is larger, or a vari- 
ogram function with larger effective range is chosen, the reduction in V( W, 
W0) will be greater as W o decreases. 

DISCUSSION AND CONCLUSIONS 

The dependence of sample variance on the sample support size and shape 
has long been recognized. The relationship is complex, but can be related to 
the variogram function as well as to the overall area or size of the domain of 
interest. 

The numerical evaluation of the relationships is dependent strongly upon 
auxiliary functions. In addition to tables, formulae (for spherical and linear 
models), and numerical integration, simple rational functions for common 
models are offered. Shapes, sizes, and the size of the overall domain may he 
taken into account with the rational approximations. 

Table 9. Variance of 30 x 50 m Pixels (W) as a Function of 
Field Size Wo 

Wo v(w, Wo) (%)2 

oo 4.14 
1000W 4.13 
100W 4.07 
10W 3.59 
5W 2.86 
2W 1.79 
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For five experimental data sets, comparisons using the above approach are 
made with results comparable to the empirical heterogeneity factor b of Smith 
(1938). For bs in the range 0.18-0.46,  the maximum difference was 0.08, with 
more typical differences of 0.02. 

Among the advantages of the approach presented here, the support size 
and shape as well as the domain size (and shape) are taken into account through 
the variogram function. Of course, a variogram function is needed, either from 
preliminary studies or by assuming previous results are adequate in contrast to 
a "uniformity" trial for the application of Smith's empirical relationship. 
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