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Derivatives of Spatial Variances of Growing
Windows and the Variogram1

J. A. Vargas-Guzmán,2 D. E. Myers,3 and A. W. Warrick 4

Geostatistical analysis of spatial random functions frequently uses sample variograms computed from
increments of samples of a regionalized random variable. This paper addresses the theory of computing
variograms not from increments but from spatial variances. The objective is to extract information
about the point support space from the average or larger support data. The variance is understood
as a parametric and second moment average feature of a population. However, it is well known
that when the population is for a stationary random function, spatial variance within a region is
a function of the size and geometry of the region and not a function of location. Spatial variance
is conceptualized as an estimation variance between two physical regions or a region and itself. If
such a spatial variance could be measured within several sizes of windows, such variances allow the
computation of the sample variogram. The approach is extended to covariances between attributes
that lead to the cross-variogram. The case of nonpoint sample support of the blocks or elements
composing each window is also included. A numerical example illustrates the application of this
conceptualization.

KEY WORDS: scales; multiresolution; moving windows; regularized variograms; spatial variances;
spatial covariances.

INTRODUCTION

Estimation of a sample variogram, to characterize a point support random func-
tion Z(x), may need a large number of samples on an irregular sampling grid to
release information about many lag distances. The variogramγ (h) represents the
expected dissimilarity between any pair of random variablesZ(xi ), separated a
lag distanceh, whereZ(x) is an intrinsic stationary random function (Matheron,
1971). A sample variogram ˆγ (h) is estimated from square increments computed
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from a sample set of valuesz(xi ) taken at several locationsxi . That is,

γ̂ (h) = 1

N(h)

N(h)∑
k=1

(z(xi )− z(xi + h))2 (1)

wherez(xi ) represents a single sample ofZ(xi ), andN(h) is the number of pairs
at some lag distanceh. Obviously, this approach requires a large number of pairs
N(h) to give a good estimate. This may be possible when a dense regular sam-
pling grid is used. Otherwise, grouping the increments into distance classes is
commonly used to enhance the number of pairs. This is done by allowing some
tolerance in the vectors of lag distances. Even in the case of a regular sampling
grid, grouping is frequently needed. Thus, a tolerance angle, a lag tolerance, and
a bandwidth distance are selected subjectively for grouping classes (Journel and
Huijbregts, 1978; Myers and others, 1982). Obviously, this subjectivity affects the
uniqueness of the sample variogram. Warrick and Myers (1987) developed an op-
timum sampling strategy by minimizing the square differences between a desired
and obtained frequency distribution for lag distances grouped into classes. They
found that such an optimum sampling strategy for computing variograms at small
lag distances is obtained from a nonregular grid.

To solve the problem of computing variograms from an irregular sampling
grid, Sen (1989) proposed avoiding the grouping algorithm by using a cumulative
variogram:

γC(u) =
∫ u

0
γ (h) dh (2)

The integral of the variogram is related to the auxiliary functionχ , which has been
used by earlier authors of geostatistics for computing the average variogram of a
fixed point and a line segmentA-B (Clark, 1976; Journel and Huijbregts, 1978):

χ = 1

υ

∫ B

A
γ (u) du (3)

whereυ is the size of the segmentA-B. However, Myers (1994) pointed out
that the numerical integration of Equation (2) proposed by Sen (1989) was not
accounting for the irregular spacing of the data. Later on, Delay and de Marsily
(1994) proposed a numerical integration to account for such an irregular spacing
of the data. In such a way, they suggested the integral of the variogram can be
used to adjust the variogram. The paradigm of computing the sample variogram
from increments was maintained because they are needed to obtain the numerical
integral of the variogram.
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A related problem, as soon will be apparent, is to compute point support
variograms when the studied attribute is too tiny to be sampled at point support or
the measuring sampling devise is too large to attempt collecting samples at smaller
support. Examples of this problem may be the size of grains of soil and features
of individual microbes which can not be measured individually. Other examples
are ground features such as vegetation that can not be captured in detail from a
satellite. In such cases, scientists average the attribute within a sampleτ of volume
υ and express the attribute as an average feature (e.g., percentage of sand content).
That is,

Zυ(yj ) = 1

υ

∫
τ

Z(xi ) dx (4)

whereZυ(yj ) may be interpreted as an average random variable at locationyj or a
nonpoint support random variable. Notice thatyi is the spatial location of the center
of the regionτ . A regularized random function may be introducedZυ(y) and its var-
iogram computed for such spatial supportυ is called regularized variogram. How-
ever, we may need to know the point support variogram. In the case of remote sens-
ing, increasing resolution is a non trivial problem. Sampling at point support, in the
examples mentioned above may be problematic, so a new approach that allows to
estimate the point support variogram from the average or larger support is needed.

The averaging approach of Equation (4) affects the variance between the ele-
ments and is quantitatively explained (Journel and Huijbregts, 1978). The average
variogram function computed from point support locations is

γ̄ (υ, υ ′) = 1

υυ ′

∫
τ

dx
∫
τ ′
γ (x − x′) dx′ (5)

whereυ andυ ′ are the size of two regions,τ andτ ′. Note that Equation (5) allows
the regions to be separated but for our purposes they overlap and coincide forming a
single sample or region elementτ . In two dimensions, for example, all the elements
τ are like disjoint rectangles making a mosaic within a larger rectangular region
ϕ of sizeV . Then, Equation (5) may be applied for the average variogram within
the larger regionϕ. This leads to

γ̄ (V,V ′) = 1

V V′

∫
ϕ

dx
∫
ϕ′
γ (x − x′) dx′ (6)

where, for our purposes,ϕ andϕ′ overlap forming a single window composed of
disjoint elementsτ . From the early works of geostatistics developed by Krige and
Matheron, it is known that the dispersion varianceD2(υ | V) is the spatial variance
between the spatial elementsτ within the domainϕ (Journel and Huijbregts, 1978).
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That is,

D2(υ | V) = γ̄ (V,V)− γ̄ (υ, υ) (7)

For elements of point support (υ → 0) this is

D2(0 | V) = γ̄ (V,V) (8)

A generic name for the average variogram and dispersion variances within a spatial
window isspatial variance.

In this paper, we show that it is possible to go back from spatial variances, such
as Equation (7), to the point support variogram. This approach is not a practical
alternative to Equations (1) or (2), but it may be useful for examples like those
mentioned above. The proposed approach introduces a new paradigm, which is to
measure spatial variances within windows and use them for computing a variogram.
This assumes that we could take an individual sample of supportV (e.g., soil
sample) and measure an average attribute and its included spatial variance. This
could be done in some cases with an analytical instrument scanning space and
measuring the attribute and its spatial variance within windows for larger and larger
physical sizesV . The process might be repeated for several locations and “samples”
that systematically overlap in moving and growing windows. Then, as we show
later, we can use the spatial variances, as a function of the size of the window, to
estimate the variogram. This paper develops the theory and includes a practical
example of computing variograms from data of spatial variances by analysis of
the effect of growing windows on spatial variances.

THEORY OF DERIVATIVES OF SPATIAL VARIANCES

Physical Size and Spatial Variances

The variogram for an intrinsic random functionZ(x) is defined as

γz(h) = 1

2
E(Z(xi )− Z(xi + h))2 (9)

A second random functionY(x) proportional toZ(x) may be introduced as follows:

Y(x) = C Z(x) (10)

whereC is an arbitrary constant. Then,

γY(h) = 1

2
E(C Z(xi )− C Z(xi + h))2 (11)
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This leads to

γY(h) = C2γZ(h) (12)

Applying Equations (6) and (12), the average variogram function within a block
ϕ for the random functionY(x) is

γ̄Y(V,V ′) = 1

V V′

∫
ϕ

dx
∫
ϕ′

C2γZ(x − x′) dx′ (13)

This yields

γ̄Y(V,V ′) = C2γZ(V,V ′) (14)

Notice in Equation (13) thatV represents the size or a constant number, and for a
single physical region or windowV = V ′, we can choseC such that

C = V (15)

From Equation (13) this leads to

γ̄Y(V,V ′) =
∫
ϕ

dx
∫
ϕ′
γZ(x − x′) dx′ (16)

Equations (14)–(16) imply thatY(x) is a random function that has an average
variogram function equal to thetotal spatial variance of the random functionZ(x)
within a windowϕ of sizeV . As soon will be apparent, this analysis also applies
to higher dimensions.

Analogously to Equation (7), the dispersion varianceG2(υ | V) for Y(x) is

G2(υ | V) = γ̄Y(V,V)− γ̄Y(υ, υ) (17)

Applying Equation (14) for both average variogram functions in Equation (17)
yields

G2(υ | V) = C2γ̄Z(V,V)− C2γ̄Z(υ, υ) (18)

and using Equation (15) this is

G2(υ | V) = V2D2(υ | V) (19)
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whereD2(υ | V) is the dispersion variance ofZ(x) as Equation (7). Notice that
Y(x) is different for each value ofV chosen.

The support of a regionϕt includes sizeV and shape and can be measured
as a length fort = 1, an area fort = 2 or a volume fort = 3. Individual points
can be represented in rectangular, polar, cylindrical, spherical, or even curvilinear
location coordinatesx1 . . . xd. The isotropic variogramγZ(h) as classically defined
is a function of the separation distanceh, which can be expressed in any system
of location coordinates. Moreover, the size of a window (block or pixel)V can
be measured by a set of variablesw1 . . . wd that are parallel tox1 . . . xd. For
example, for a rectangular window the variables{w1, w2} are the sides along the
two perpendicular sides and the area of the block is given by a productV =
w1w2. V represents volume, area, or length or any dimensional support. Variables
w1 . . . wd are just features like sides or radius of the window, and implicitly describe
its shape too.

In the classical computation of average variograms and dispersion variances,
the support of the region is constant. Now we introduce a new approach in which
the size of the windowV is a variable or a set of variables. We call this approach
growing windows. For a straight line segmentV = w. However, we hold the
support constant for the elementsυ within the window. That is, ¯γZ(υ, υ) = k is
also a constant. Then,

G2(w) = γ̄Y(w,w)− γ̄Y(υ, υ) (20)

BecauseY(x) = wZ(X), now Y(x) is different for each size of window. Notice
that for a single window,w is a constant value. The last equation can be written in
a more explicit form as

G2(w) =
∫ w

0
dx
∫ w

0
γZ(x − x′) dx′ − w2k (21)

ThisG2(w) function allows computation of the point support variogram whetherk
is also known. Recall from Equation (7) that the dispersion covarianceD2(υ | V),
for constantυ and variableV = w, in one dimension can be written asD2(w) =
D2(υ | V), where we avoid using the symbol of the constantυ for simplicity. Then,

G2(w) = w2D2(w) (22)

In higher dimensions, the window can grow even when a single variablew1 is
increasing and other variablesw2 . . . wd are held constant. A constant window
shape is also required. For example, rectangles with sides parallel to the axes,
whatever their sizes, are considered the same shape.



P1: FOM/ZCC P2: FLF

Mathematical Geology [mg] PL097-622 July 19, 2000 12:43 Style file version June 30, 1999

Derivatives of Spatial Variances 857

Derivative of a Spatial Variance Function

Assuming point support for the elementsτ within any window, theG2(w)
function defined in Equation (21) becomes

G2(w) =
∫ w

0
dx
∫ w

0
γZ(x − x′) dx′ (23)

By applying the Cauchy–Gauss method, this equation can be rewritten as

G2(w) = 2
∫ w

0

(∫ w

0
γ (h) dh

)
dh (24)

From this it is evident that

γ (h) = ∂2(G2(w))

2∂w2
(25)

whereh = w in one dimension. Substituting Equation (22) into (25) results in

γ (h) = ∂2(w2D2(w))

2∂w2
(26)

This last equation provides the algorithm for computing variograms from spatial
variances. In Cartesian coordinates, two-dimensional windows need four deriva-
tives and three dimensional windows need six derivatives. For a parallelepiped,
theG2(w1w2w3) function is

G2(w1w2w3) = w2
1w

2
2w

2
3D2(w1w2w3) (27)

This is the same as for Equation (19) becauseV = w1w2w3 is the volume of the
window.

The derivative of the total variance functionG2(w) with respect tow is the
rate of change of the total variance due to change of the size of the window alongw.
For several variableswi , the classical definition of derivative is given by[
∂G2(w1 . . . wd)

∂wi

]
w j 6=i

= lim
1wi→0

(G2(wi +1w)|w j 6=i )− (G2(wi ) | w j 6=i )

1wi
(28)

To interpret this equation, see Figure 1. The window is composed of two regions
both centered and coinciding in the same physical space; the first isϕt of support
V and the second isϕs of supportV ′, whereV = V ′. The differential of size dw in
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Figure 1. A centered region and its couple growing
at both extremes. The growing segments are differ-
entials.

one dimension means a change of the support of the window and implies two new
extreme zones are annexed to both (coinciding) regions. For higher dimensions
this is ∂w. For a region that grows on two opposite directions, we can easily
interpret that any change in size∂w produces a∂(G2(w)) that is the total variance
between 2∂ϕs (the extremes in one region) and the coupled regionϕt + 2∂ϕs in
thew direction. Therefore, a single derivative ofG2(w) with respect tow is twice
the variance between the window of topologic dimensiont of sizew and a lower
topology regions= t − 1 and size∂w. A second derivative can be taken with
respect to the same coordinate. In such a case, the topology of the region and the
coupled region are equated agains− 1= t − 1. Consider several size variables
(w1 . . . wd); then Equation (26) becomes more complicated and can be written as

γ (h) = ∂2

2F∂(wd)2

[
w2

d

[
· · ·
(

lim
wi→0

[
∂2w2

i [D2(w1 . . . wd)]

∂2wi

])]]
(29)

whered is total number of variables measuring the size of the window,F is the
number of coordinates allowing growth on two opposite directions, andh is an
Euclidean separation distance function

h = f (w1 . . . wd) (30)

The computation of the limit in Equation (29) is needed to get variances that are
for overlapped and coincident regions. This will become clear after the case of
rectangular windows is analyzed.

The Derivative of Variances of a Growing Straight Segment

A straight line segmentA-B is defined in a Cartesian system and the variance
within the segment changes by changing the length ofA-B. The support of a
segmentA-B of the line is given by the valuew. The functionG2(w) for the
random functionZ(x) is given by Equation (21). From the above concepts, the
line A-B grows in opposite directions alongw. A ∂w differential ofw implies
two pointsA′ andB′ are added to the extremes. The variances added are between
a point and a segment Var(A′, A′-B′) and Var(B′, A′-B′). Then, by symmetry the
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variance added is twice a point-segment variance as predicted by the theory. This is

∂(G2(w))

∂w
= 2wχ (31)

whereχ is the auxiliary function of Equation (3). Note that the lineA-B has
a topological dimensiont = s= 1. However, the differential∂w hass= 0. A
point-line average varianceχ hast = 1 ands= 0. So one more derivative with
respect tow (for the coupled region) is required to achievet = s= 0 and the
variogramγ (h), whereh = w, and

∂(wχ )

∂w
= γ (h) (32)

This two-step approach is equivalent to Equation (25). From the formulas it is easy
to see that the integral of the variogram is the total variance of two regions where
the topological dimensions aret = 1 ands= 0, respectively. For a segment of
lengthw, this is

wχ =
∫ B

A
γ (h) dh (33)

The integral of the variogram is the total variance between a point A and a line
A-B. In a continuous sense, from Equation (31),wχ is half the rate of change of
the total variance in a segment when the domain grows. Therefore, the cumulative
variogram (Sen, 1989), the integral of the variogram (Delay and de Marsily, 1994),
and the auxiliary functionχ multiplied byw described in Journel and Huijbregts
(1978) are mathematically the same and can be obtained from derivatives of higher
dimensional spatial variances.

The Derivative of Variances in a Growing Rectangle

Spatial variances within rectangular windows increase as the size or support
of the window increases and this fact may be used for computing variograms.
Rectangular blocks fit exactly into a rectangular field, and blocks are commonly
used in mining and agriculture. For this reason, rectangles have been extensively
used for estimation purposes such as block kriging. There is considerable pertaining
computation of dispersion variances from univariate variograms for rectangular
regions (Clark, 1976; Journel and Huijbregts, 1978; Rendu, 1978). Applying our
approach, growing rectangular blocks may be used for computation of variograms
when variances inside those blocks are known.
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For applying the derivative of variances theory to a growing rectangle, the
variance data should come from rectangles or windows measured at different sizes.
The simplest way to describe the points in a rectangular region and its coupled
region is with a Cartesian system. Under isotropic conditions, the rectangles could
be rotated at different angles and the data still would be applicable. However,
under anisotropic conditions the windows should preserve the orientation because
directional derivatives might generate directional variograms.

The variance inside a rectangular blockD2(p,q) is given as the average
value conditioned to the size of the region measured by its sidesp andq. The
total varianceG2(p,q), function of the Cartesian coordinates (p,q), following
Equation (19), is

G2(p,q) = p2q2D2(p,q) (34)

FunctionD2(p,q) describes the average spatial variance as the sides of the window
p andq changes. The first derivative ofG2(p,q) with respect top gives twice the
total variance between the border line alongq and the rectangle. So the second
derivative with respect topgives a line–line variance in the direction ofq. The limit
whenpgoes to zero gives the variance of a segment of a line alongq coinciding with
itself. Then, two derivatives with respect toq give twice the directional variogram
in the direction ofq. For other directional variograms, rotated rectangles should be
considered. For the variogram in the direction of the coordinateq, Equation (29)
is expressed as

γ (h) = ∂2

2∂q2

(
q2

(
lim
p→0

[
∂2[ p2D2(p,q)]

2∂p2

]))
(35)

where the lag distanceh for any two points into the rectangular window is
given by

h =
√

p2+ q2 (36)

The Derivative of Spatial Covariances Between Attributes

The dispersion (cross) covarianceD2
Z1Z2

(w1 . . . wd) between two random
functions Z1(x) and Z2(x) (e.g., geological features) is an extension of Equa-
tion (7) to multivariate geostatistics (Vargas-Guzm´an, Warrick, and Myers, 1999).
Such within-window covariance is expected to change as the size of the window
grows. The average cross-variogram function needed to define dispersion (cross)
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covariancesD2
Z1Z2

(w1 . . . wd) is

γ̄ (V,V ′) = 1

V V′

∫
ϕ

dx
∫
ϕ′
γZ1Z2(x − x′) dx′ (37)

whereγZ1Z2(h) is the cross-variogram. Extending Equation (29) to this case gives
the possibility of computing the cross-variogram from covariances. That is,

γZ1Z2(h) = ∂2

2F∂(wd)2

[
w2

d

[
· · ·
(

lim
wi→0

[
∂2w2

i [D2
z1z2

(w1 . . . wd)]

∂2wi

])]]
(38)

whereh is again the distance that is a function of the location coordinates. For
example, in one dimension the cross-variogram is obtained with half of two deriva-
tives of the total dispersion (cross)-covariance between attributes.

The Derivative of Variances for Nonpoint Support

For many purposes of land management, mining, environmental contamina-
tion clean up, remote sensing, and other applications, the domain is divided in
blocks or nonpoint elements. Commonly elementsτ of sizeυ are taken in such a
way that they make up exactly the windowϕ of sizeV . We want to analyze what
happens to theG2(w) function and its derivatives when one dimensional elements
of constant sizeυ have nonpoint support.

From Krige’s formula, it is well known that the expected point variance in
a windowϕ is the sum of the expected point variancewithin the elementsτ and
the dispersion variancebetweenelementsτ ; this is implicit in Equation (7). Then,
assuming a constant element sizeυ and windows of variable sizew, a total variance
function following Equation (17) is

G2(w) = w2γ̄ (w,w)− w2γ̄ (υ, υ) (39)

wherew is the size ofϕ, andυ is the size of elementsτ along the same direction
asw. The simplest case would be when the sizeυ of the element is held constant;
then

γ̄ (υ, υ) = k (40)

and

G2(w) = w2D2
(υ|w)(w) = w2γ̄ (w,w)− kw2 (41)
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Thus, it follows that

∂2[w2D2
(υ|w)(w)]

2F∂(w)2
= γ (h)− k (42)

Therefore, Equation (25) applied to this case gives the regularized variogram for
h ≥ υ

γυ(h) = γ (h)− k (43)

Application to Finite Growth

The derivative of variance can be applied to the analysis of the change of
variance when the regionϕt of sizeu grows becoming a regionϑ t of sizev. In this
case, we wish to find the average variogram function ¯γ (u, v) between the centered
regionsϕt andϑ t from the elementary average variogram functions ¯γ (u, u) and
γ̄ (v, v). Consider a straight segment of sizeu; then the segment grows on both
directions to a sizev. The growth is 2m, where 2m= v − u. From the derivative
of the variance explained before, the change of variance is

v2γ̄ (v, v)− u2γ̄ (u, u) = 2[m2γ̄ (m,m)+muγ̄ (m, u)] (44)

where ¯γ (m,m) is the variance within the growth at one extremity of sizem and
γ̄ (m, u) is the variance between the growth at one extremity and the initial region
of sizeu. It follows that

v2γ̄ (v, v)− 2m2γ̄ (m,m) = 2muγ̄ (m, u)+ u2γ̄ (u, u) = uvγ̄ (u, v) (45)

and

γ̄ (u, v) = v2γ̄ (v, v)− 2
[(

u−v
2

)2
γ̄
(

u−v
2 , u−v

2

)]
uv

(46)

This equation can be useful for finding analytical expressions ¯γ (u, v) for blocksϑ t

andϕt whenγ̄ (v, v) andγ̄ (m,m) are known. The limitation is that this equation
assumesϑ t is centered with respect toϕt . Whenϕt andϑ t are not centered, or
if they are displaced a distanceh, the analysis with the result should be different.
A change of the distances between blocks can change the average variogram
γ̄ (u, v). Therefore, relative locations ofϕt andϑ t can affect the variance between
different blocks. This is related to the case of a cross-support variogram (i.e., a
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cross-variogram where two supportsu, v are treated as two attributes), which is
not considered here.

PRACTICAL APPLICATIONS

Variograms from Numerical Variances

An exhaustive simulated realization of a regionalized random variable has
been obtained by simulated annealing with GSLIB (Deutsch and Journel, 1992).
The distribution of the simulated realization is normal. The numerical variogram
of the realization is the same as the theoretical model used in the simulation which
is nested with a nugget 0.2 and a spherical component of range 1 m and sill 0.8.
Then,γ (h) = 0.2(1− δ(h))+ 0.8(sph(1)), where in the nugget termδ(h) = 1 if
h = 0 andδ(h) = 0 otherwise, and sph(1) is the spherical component of range 1 m.
The whole domain simulates a 50 m trench made by 5000 elements (Fig. 2).

Variance within a window placed on the trench is given by Equation (8).
Because each one of the simulated elements is uniform, the data set represents the
entire trench and Equation (6) is

γ̄ (V,V ′) = 1

V V′

∫
V

dx
∫

V ′
γ (x − x′) dx′

= 1

n2

[
(n− 1)

n∑
1

(zi − z̄)2− 2
n∑

i=2

i−1∑
j=1

(zi − z̄)(zj − z̄)

]
(47)

Figure 2. Simulated data set (5000) points along a 50 m trench.
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Figure 3. Variances from first sampling experiment.

where V = n and γ (x − x′) = (zi − zj )2 = (zi − z̄)2− 2(zi − z̄)(zj − z̄)+
(zj − z̄)2. Thus, for an complete data set,

γ̄ (V,V ′) =
∑n

1(zi − z̄)2

n
(48)

In a first sampling experiment, windows were selected with sizesw =
{5, 10,. . . , 155 cm}. Each size of window scanned the trench at steps of 3 cm allow-
ing overlapping of the sequential windows. The process is like moving averages
but we are interested just in the spatial variance as Equation (19). Then, for a given
size of window, variances are averaged for an estimate of spatial varianceD̂2(wi ).
The process is repeated and results are plotted in Figure 3. Then, a numerical
representation of̂G2(w) = w2D̂2(w) is plotted in Figure 4. The second-order half-
derivatives are computed numerically from theĜ2(w) data by finite differences.
The estimated sample variogram in Figure 5 resembles the corresponding model
variogram Figure 7. Note the quality of the variogram is better for smaller lag
distances.

The second sampling experiment takes a smaller amount of replicated sample
variances by disallowing overlapping the equal size windows. So small windows
have larger possibility of more replicates than larger windows. However, we in-
crease the number of sizes of windows to be used to almost 160. The sample
variances (averaged for each size of window) are displayed in Figure 6. These
variances can be modeled with the equations shown in Table 1. However, we
attempt to get the numerical or sample variogram. The problem is that derivatives
of noisy data have exaggerated noise because of the product inĜ2(w) = w2D̂2(w).
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Figure 4. G2(w) estimated from first sampling experiment.

Figure 5. Sample variogram from variances of first experiment.

The variance function was smoothed by applying classic moving averages. Finite
differences are used to obtain the sample variogram fromĜ2(w). The sample var-
iogram and its model are shown in Figure 7. In practice, it would be advisable
to model both the sample variances and the sample variogram simultaneously.
Finally, we observe that it is preferable to sample only few sizes of windows but
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Figure 6. Variances from second sampling experiment.

with a lot of replicates of the same size of window rather than many sizes of
windows with few replicates.

Application to Models of Variances

Analytical expressions for the average variograms in fixed regions provided in
the literature are spatial variance functions for point support. The spatial variances
for a straight segment L and a rectangular region of sizeV are given by Clark
(1976), Journel and Huijbregts (1978), Rendu (1978), and Webster and Burgess
(1984). Such relationships are expressed as auxiliary functions. In our case, we
generalize them as functions of the coordinates describing the size or boundary of
the growing window.G2(w) functions are computed by applying Equation (22).
Then, the required operations are performed to illustrate the analytic models of
variances at lower dimension.

The purpose of these examples is to compute variograms and show that the
differentiation of variances is the inverse of computing auxiliary functions. How-
ever, from the conceptual point of view, derivatives ofG2(w) functions are the
rate of the change of variance as the window grows. On the other hand, computing
auxiliary functions is an averaging concept in a single fixed size domain. For the
analytical expressions analyzed below, the sill is taken constant so that it does not
affect the derivatives.

Table 1 shows the models of variance and their half derivatives for straight
segment windows, whereF(l ) are models provided in the cited literature,G2(w)



P1: FOM/ZCC P2: FLF

Mathematical Geology [mg] PL097-622 July 19, 2000 12:43 Style file version June 30, 1999

Derivatives of Spatial Variances 867

Ta
bl

e
1.

Va
ria

nc
e

M
od

el
s

an
d

Its
D

er
iv

at
iv

es
fo

r
a

S
tr

ai
gh

tL
in

e

F
(l

)
G

2
(w

)
1 2

∂
[G

2
(w

)]

∂
w

1 2

∂
2
[G

2
(w

)]

∂
w

2

S
ph

er
ic

al
1 2

l a
−

1 20

l3 a3
if

l
∈

(0
,
a)

1 2

w
3 a
−

1 20

w
5

a3
0
≤
w
≤

a
3 4

w
2 a
−

1 8

w
4

a3
0
≤

x
≤

a
γ

(h
)
=

3 2

h a
−

1 2

h
3

a3
0
≤

h
≤

a

1
−

3 4

a l
+

1 5

a2 l2
if

l
≥

a
w

2
−

3 4
aw
+

1 5
a2

w
>

a
w
−

3 8
a

x
>

a
=

1
h
>

a

Li
ne

ar
l 3

w
3 3

w
2 2

γ
(h

)
=

h

Lo
ga

rit
hm

ic
lo

g(
l)
−

3 2

w
2

lo
g(
w

)

2
−

3 4
w

2
w

lo
g(
w

)+
w 2
−

3 2
w

γ
(h

)
=

lo
g(

h
)

E
xp

on
en

tia
l

1−
2a l

( 1
−

a l

( 1
−

e−
(l
/
a)
))

w
2
−

2a
w
( 1
−

a x

( 1
−

e−
(w
/
a)
))

w
2
−

2a
w
( 1
−

a w

( 1
−

e−
(w
/
a)
))

γ
(h

)
=

1
−

e−
(h
/
a)

P
ow

er
2l
θ

(θ
+

1)
(θ
+

2)

2w
θ
+2

(θ
+

1)
(θ
+

2)

w
θ
+1

θ
+

1
γ

(h
)
=

h
θ

G
au

ss
ia

n
1+

a2 l2
−

a2
ex

p(
−(

l2
/
a2

))

l2
w

2
+

a2
−

a2
ex

p( −w
2

a2

)
w
−

1 2
a√
π

er
f( w a

)
γ

(h
)
=

1
−

ex
p( −h

2

a2

)
−

a√
π

er
f( l
/
a)

l
−

aw
√ π

er
f( w
/
a)



P1: FOM/ZCC P2: FLF

Mathematical Geology [mg] PL097-622 July 19, 2000 12:43 Style file version June 30, 1999

868 Vargas-Guzmán, Myers, and Warrick

Figure 7. Model and sample variograms from variances of second experiment.

are the total directional variances, 0.5G′(w) and 0.5G′′(w) are the half of the
first and second derivatives respectively. Note the model variograms are easily
computed in these cases. Table 1 describes domains of topological dimension of
t = 1 that have been found most suitable for computing variograms from spatial
variances. Table 2 illustrates cases for rectangular windows, and they are much
more complicated models of spatial variancesF(x,q). Such functions are similar
to the models found in Webster and Burgess (1984). Table 2 shows the analytical
derivatives ofG2(w) = q2F2(x,q). The examples follow the procedure explained
before for derivative of variances in a growing rectangle. In both cases, the first two
derivatives with respect to the coordinates provide a line–line variance function.
Then, the computation of the limit is required to achieve a one dimensional spatial
variance that is treated as described in Table 1.

Why Use Variances to Compute the Variogram?

We mention some examples in which the theory developed in this paper may
be applied. In practical cases, measuring each individual “point” in the domain is
impossible, so we resort to larger support random functions. This is analogous to
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statistical physics which is applied to get information about the microstate from
observations of the macrostate.

The first example is the particle size distribution in soils, sediments, or rocks.
The grains are not individually measured; instead, a sample is sieved and the finer
fractions are determined by indirect methods such as sedimentation. The result is
a histogram or an estimated distribution function for each sample. The expected
variance is dependent on the sample support. Now, consider samples taken at
several supports (holding the shape constant). With a discrete sequence of supports,
a sample variance plot can be constructed. This can be used for computing a point
variogram with the theory developed before. This same method may be applied
to other type of attributes such as pore size distribution in soils. Again variance
within a sample depends on sample support.

Another example is from remote sensing. Some authors analyzing fractal
dimensions have claimed that multiresolution is required for further research in
scale issues (e.g., Quattrochi and Goodchild, 1996). The theory developed here
provides a practical justification for multiple resolution. For example, the finest
resolution of Landsat images is 30× 30 m pixels. Such a resolution comes from the
sampling of the reflectance along the scan line called the analog display (Sabins,
1986). In this case, spatial variances could be measured from the analog display
signal within several sizes of windows (pixels). Then, a multiresolution imager
would provide a set of images andwithin pixels spatial variances for the same
episode at increasing resolutions. Those spatial variances can be used to construct
a sample variance vs resolution plot, which allows computation of point support
variogram.

CONCLUSIONS

The method described in this paper is an alternative to the classic variogram
estimator allowing the recovery of point support variogram in cases where point
data can not be measured but their spatial variances can be known. Moreover, this
method of derivatives of total variance may be the only available tool that recovers
the point variogram from variances measured within windows at large support. The
meaning of the derivatives of spatial variances was found to be the rate of change of
the total variance due to growth of a region. From this it follows that derivatives of
variances provide the variogram as the variance of the attribute between two regions
of topological dimension zero. The results found also provide a link between the
integral of the variogram to spatial variances and to the variogram.

The numerical example shows the approach works as expected. Average vari-
ances taken within a growing discrete sequence allow the reconstruction of the
variogram. The major complication in practice is to obtain reliable experimen-
tal variances or sample dispersion variances. A single coarse resolution variance
cannot allow to recover the point variogram and information is lost by averaging.



P1: FOM/ZCC P2: FLF

Mathematical Geology [mg] PL097-622 July 19, 2000 12:43 Style file version June 30, 1999

Derivatives of Spatial Variances 871

However, a growing sequence of spatial variances within windows allows to com-
pute the “point” support variogram. Analytical and numerical computations are
complicated when the variances come from volumes or surfaces. Therefore, the
simplest shape of window is a straight line. Several lines rotated would allow
identification of anisotropy in the variance and therefore the directional vari-
ograms. The assumption of variances that can be experimentally measured might
not be fully adequate in many cases. However, the possibility of measuring sample
average variances within windows might be possible with further technological
development.
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