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SUMMARY 

Carey et a/. utilized principal components analysis (PCA) to analyze frequency shift data obtained from 
piezoelectric sensors formed by coating quartz crystals with 27 different GC stationary phases and tested 
using 14 analytes. The objective of the analysis was to determine an optimal reduced set of coatings for 
detection of the analytes. The results were correlated with those obtained from cluster analysis. In this 
paper the data are re-analyzed using correspondence analysis (CA). The advantage of using CA include 
a symmetric treatment of sensor coatings and analytes and better identification of the representation of 
the analytes in terms of the detection components. The results obtained by the conjunctive use of PCA, 
a varimax rotation and cluster analysis were obtained by CA. 
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INTRODUCTION 

Multivariate data sets consist of the sampled (measured) values of a set of variables, often 
written in matrix form. Usually, columns represent variables and rows represent samples. 
Multivariate (descriptive) statistical analysis has the goal of obtaining summary descriptions 
of the data set. This goal can be achieved in various ways; for example, some methods are 
designed to describe the interrelationships between variables, while others aim at grouping 
either the variables or the samples on the basis of a similarity measure. The results can then 
be used to reduce the dimension of the data set without losing essential information. 

Two popular multivariate methods are cluster analysis, which is used to classify samples 
according to a measure of ‘closeness’ with the results usually shown in a graphical form (a 
dendogram), and principal components analysis (PCA), which is used to transform a set of 
correlated variables into a set of uncorrelated variables for the purpose of simplifying the 
description of the interrelationship between the original variables. Both methods can be used 
for data reduction, but they are applied under different assumptions and imply a non- 
symmetrical treatment of samples and variables. 

We consider a method, correspondence analysis (CA), that treats rows and columns in a 
symmetrical fashion although it does not require that row variates and column variates be 

0886-9383/91/050455- 1 1  $05 SO 
0 1991 by John Wiley & Sons, Ltd. 

Received 6 December 1990 
Accepted 28 March 1991 



456 F. AVILA, D. E. MYERS AND C .  PALMER 

similar. We show that it can be used in situations where two different sets of variates label the 
rows and columns of the input matrix and what is measured is some sort of interaction between 
the two sets. 

In the paper by Carey et al., PCA followed by a varimax rotation and cluster analysis were 
used to analyze a data set consisting of the number of frequency shifts obtained from 27 
piezoelectric sensors, formed by coating quartz crystal microbalances (QCMs) with 27 different 
GC stationary phases, tested to detect 14 analytes. The results from both methods were 
compared and used to categorize the coatings for the purpose of reducing their number. 

In this paper we analyze the same data set using CA and obtain results comparable to those 
obtained by the conjunctive use of PCA, rotation and cluster analysis. CA gives the results 
for the rows and columns simultaneously, avoiding the need to do separate analysis. CA does 
not require a rotation of the factor space. CA provides several diagnostics and graphical 
displays which aid in the interpretation of the results. CA can be used as an alternative, 
computationally efficient, pattern recognition technique. 

THE DATA 

The response of a particular coating to a particular analyte is measured as a shift in the 
fundamental frequency of oscillation of the QCM; the extent of this shift is proportional to 
the weight gain of the sensor on adsorption of some equilibrium amount of the analyte. The 

Table 1. Coatings and their IDS 

ID No. Coating 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 - 

Poly(bu tadieneacr ylonitrile) 
Poly(p-vinylphenol) 
Poly(butadiene methacrylate) 
Polybutadiene hydroxy terminated 
Poly(viny1 stearate) 
Poly-I-butadiene 
Polybutadiene hydroxy terminated liquid 
Methyl vinyl ether 
Octadecyl vinyl etherlmaleic anhydride 
Polystyrene 
Poly(viny1 isobutyl ether) 
Poly(viny1 chloride) 
Poly-1 -butene 
Poly(viny1carbazole) 
Collodion 
Poly(vinylbutyra1) 
Poly(methy1 methacrylate) 
Polyethylene 
Ethyl cellulose 
Poly(ethy1ene glycol methyl ether) 
Poly(capro1actone) 
Poly(capro1actone)triol 
Poly(capro1actone)triol 2X 
Carnuba wax 
Abietic acid 
DC 1 1  
Phenoxy resin 
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data are entered as a matrix with 27 rows labelled by the coatings and 14 columns labelled by 
the analytes. 

The coatings and their ID numbers are shown in Table 1. 
The analytes are benzene, dodecane, DMMP, DM phosphite, 1-butyl formate, a-pinene 

oxide, triphenyl phosphite, DIMP, dichloropentane, isopropyl acetate, triamyl phosphite, 
octane, triphenyl phosphate and water. 

PRIOR RESULTS 

In their paper, Carey et af. used PCA with the coatings as the variables. After applying a 
varimax rotation to the eigenvectors, the eight factors shown in Table 2, explaining 94.9% of 
the variance, were obtained. 

After applying a hierarchical cluster analysis, they obtained a good correlation between 
coatings in the dendogram and in the varimax-rotated factors. On the basis of the results from 
PCA, they suggested selecting eight coatings-poly(capro1actone) triol, poly(butadiene 
methacrylate), polybutadiene hydroxy terminated, poly(viny1 isobutyl ether), poly(p- 
vinylphenol), poly(methy1 methacrylate), poly(viny1 chloride) and collodion-as an optimal 
reduced set of coatings. 

Table 2. Factors from PCA after rotation 

Contribution Factor ID No. Coating 

I 3 
6 
4 
7 

I1 15 
24 
19 
25 

111 14 
16 
2 

10 

IV 19 
21 
26 

V 17 
1 

VI 12 

VII 1 1  

VIII 13 

Poly(butadiene methacrylate) 
Poly-1 -butadiene 
Polybutadiene hydroxy terminated 
Polybutadiene hydroxy terminated liquid 

Collodion 
Carnuba wax 
Ethyl cellulose 
Abietic acid 
Poly(vinylcarbazo1e) 
Poly(vinylbutyra1) 
Poly(p-vinylphenol) 
Polystyrene 

Ethyl cellulose 
Poly(capro1actone) 
GE DC 11  

Poly(methy1 methacrylate) 
Poly(butadieneacry1onitrile) 

Poly(viny1 chloride) 

Poly(viny1 isobutyl ether) 

Poly- 1 -butene 

27.7 
19.5 
14-5 
9 - 6  

25-0  
18.4 
10.4 
10-3 
3 1 . 5  
19.1 
17.0 
13.6 

34.1 
23.9 
18.4 

39.9 
9 . 9  

66.5 

84.9 

75.1 

CORRESPONDENCE ANALYSIS 

Correspondence analysis (CA) is a multivariate method which produces a simultaneous 
graphical representation of the projections of the n rows and p columns of a data matrix 
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X = ( X i j ) n x p  onto factorial axes determined by a least squares criterion, using the so-called 
'X2-metric'. The method is usually applied to  the analysis of contingency  table^^-^ but has also 
been used to analyse geochemical, 5 - 7  ecological and environmental 9,10 data among other 
types of data. 

CA can be developed from different perspectives; 2,3  we choose a 'geometric' approach along 
the lines that Stuart 'I suggests for PCA (see also the book by Lebart et al. 3 ) .  

The entries x i j  must be non-negative. CA is performed on the normalized matrix 
F = ( f j ) n x p ,  where 

Two diagonal weighting matrices D, = diag ( A + )  and D, = diag ( f + j )  are also defined, with 

The matrices D, and Dp are used to scale F. Think of the rows of D i ' F  as vectors in 
p-dimensional space where the metric is weighted by D;', and of the columns of FD,' as 
vectors in n-dimensional space where the metric is weighted by D,- Then the variation of 
a linear combination of vectors in either space is given by a weighted quadratic form, and the 
purpose of CA is to find vectors, u in p-dimensional space and v in n-dimensional space, 
having size one in the norms induced by the matrices D;' and D;' and giving the directions 
of maximum variation. 

Mathematically we have the following problems. 

1. In 'row space' 
maximize u ~ ( D ;  'FD; ')"D,(D; 'FD; ' )u 

subject to  uTD;'u = 1 

maximize V" (D;'F~D; ' )*D, (D; 'F"D ;l)v 

subject to  vTD;'v = 1 

After finding these unit vectors u and v, we can then search in a sequential way for new 
solutions orthogonal, with respect to the inner product defined by the weighting matrices, to  
all previous solutions. 

It is easily seen, using Lagrange multipliers, that the CA problem is really an 
eigenvalue-eigenvector problem. A crucial point, which CA takes advantage of, is that, 
because of the symmetric scaling done on the rows and columns of the input matrix, there is 
a relationship between the solutions to the row problem and the solutions to the column 
problem. This duality is expressed by the equations 

v = (x)-'/~FD;'u, = ( X ) - ~ / ~ F * D ; ~ ~  

where X is an eigenvalue for either of the two problems (they have the same set of eigenvalues) 
and u and v are the respective (eigenvector) solutions. 

In CA the number of non-trivial solutions is min(n, p )  - 1. Because of the initial scaling of 
the data matrix, there is a 'trivial' eigenvalue equal to one (with its corresponding eigenvector) 
which is not considered in the analysis, but it is taken into account for reconstruction purposes 
as shown below. 

2 .  in 'column space' 
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The factors are defined as the projection operators on the principal axes (the eigenvectors) 
and are given by 

g = D G h ,  h = D i ’ v  

The co-ordinates for the plotting of rows and columns are obtained by scaling the 
projections by a factor A l l 2 .  

When CA is used as a dimension reduction technique, there are several diagnostics that will 
help in the choice of factors (i.e. dimensions) to be retained. These include the following: 

(1) A global measure of j t  when K factors are retained, expressed as a cumulative 
percentage of explained variation. This is similar to the measure used in PCA and is given in 
terms of the eigenvalues as the ratio 

(2) The absolute contributions, which indicate the composition of the factors as percentages 
of coatings or analytes. For the kth factor the contribution of coating i and analyte j are 
computed by the formulae 

A C k W  = f + j g j k ,  ACk( i )  = f i + h ? k  

where g j k  and h ; k  are the j th  and ith components of factors g k  and h k ,  respectively. Note that 
the sum of the absolute contributions for a particular factor is one, or 100%. 

(3) 
analyte 
coating 

Note 
100%. 

The relative contributions, which indicate the percentage of variation of a coating or 
explained by each factor. These have also been called ‘square correlations’. For a 
i and an analyte j the square correlations with factor k are 

that the sum of relative contributions for a particular coating or analyte is one, or 

(4) The reconstruction error, which measures the size of the residual when the 
reconstruction formula 

) 
min(n, p ) - 1  

J j = f + f + j ( I  -I- k = l  A k l 2 g j k h i k  

is summed only over the retained factors. It indicates how well a coating or analyte is 
represented with a specified number of factors, When K factors are retained, we can define 
error profiles for the ith coating and j th  analyte through the formulae 

m i n ( n , p ) -  1 2 P m i n ( n , p ) -  I ) EPK( i )=  f + j (  c h i ’ 2 g j k h i k  E P K ( j )  = 2 f i +  ( c h k / 2 g j k h i k  , 
i =  1 k = K + 1  j =  1 k = K + I  

Note that in the reconstruction formula there is a one adding to the sum. This is a 
consequence of the trivial solution that occurs because of the initial scaling of the data. 

The reconstruction formula also highlights CA as a generalization of the X2-test of 
independence, which is based on the comparison of f j ,  thought of as a probability, against 
the product of the marginals fi+ f + j .  



460 F. AVILA, D. E. MYERS AND C. PALMER 

In this paper we will not explicitly use the error profiles since we are more interested in a 
global description of the data set than in reconstructing a particular coating or analyte. There 
are situations, however, where the error profiles may be useful. 

RESULTS AND INTERPRETATION 

The results from CA can be displayed in a series of tables and graphs. First we have the 
eigenvalues with their associated percentage of variation explained (Table 3). 

Thus the first six factors account for roughly 90% of the total variation. 
We obtain a description of the factors from the absolute contributions of the coatings and 

analytes. In Table 4 we list for each factor the coatings and analytes having the highest 
absolute contributions (in parentheses, as a percentage of the factor). 

Although there are two sets of factors, one for the coatings and one for the analytes, they 
are connected through the transition formulae. 

Consider the quality of representation by each factor. In Table 5 we show the coatings and 
analytes with the highest relative contributions on each factor. A cut-off value of 40% of 
relative contribution was chosen to keep the list short. 

We should emphasize here that neither of the groupings of coatings or analytes, in terms 
of absolute or relative contributions, implies a similarity between coatings or analytes grouped 
together. In fact, a factor could be describing the opposite character of several elements and 
it is only through a graphical display of the co-ordinates that a clustering may be inferred. In 
CA a great emphasis is placed on the use of plots to describe the results. 

It is appropriate, however, to explore the factors in terms of the chemical characteristics 
which they may represent. Attempts to make chemical sense of the factors presented here, 
based on interactions such as Lewis acidity/basicity, polarity, hydrogen bonding, 
hydrophilicity and dispersion forces, have met with only limited success. Factor 11, for 
example, would appear to represent a scale of hydrophilicity with water giving a strong positive 
response and octane a strong negative response. However, dodecane defies the pattern with a 
moderately positive response. Also, an initial inspection of the analytes and adsorbents which 
define factor I suggests a scale of polarity and polarizability; however, this is inconsistent with 
the large negative value for collodion. 

Table 3. Eigenvalues from CA and 
variation explained by each 

Eigenvalues Variation (070) 

0.1781 
0.0752 
0 * 0424 
0.0310 
0.0217 
0.0258 
0.0150 
0-0131 
0.0060 
0 - 0040 
0.0031 
0.0015 
0.001 1 

41 .O 
17.7 
10.0 
7.3 
6.5 
6.1 
3.5 
3 . 1  
1.4 
1.0 
0.7 
0.4 
0.2 
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Table 4. Absolute contributions (percentages in parentheses) to the 
factors 

Factor Coatings Analytes 

I Collodion (45) DIMP (30) 
1-Butyl formate (1 5) 
DMMP (13) 
Water (10) 

I1 Poly(viny1 stearate) (19) Octane (27) 
Poly(viny1 chloride) ( 1  6) Water (25) 

Benzene (21) 
111 Poly(viny1 carbazole) (22) Dichloropentane (34) 

Isopropyl acetate (28) 
IV Poly(p-vinylphenol) (24) DM phosphite (44) 
V Poly(viny1 stearate) (28) Benzene (44) 

VI Poly(viny1 isobutylether) (25) a-Pinene oxide (46) 

Poly(butadieneacrylonitri1e) ( 1  9) 

Octane (19) 

Table 5. Coatings and analytes with highest 
relative contributions to the factors 

Factor Coatings Analytes 

I 15, 3, 6, 8, 24 DIMP 
1-Butyl formate 
DMMP 

I1 20, 27, 12, 22 Octane 
Water 

I l l  14, 10, 16 Dichloropentane 

IV 18, 2 DM phosphate 
V 1 None 

VI None a-Pinene oxide 

Isopropyle acetate 

The quality of representation of rows and columns by the set of the first two factors, 

1. Six analytes are well represented by only two factors (sum of relative contributions 
>6O%). These are DIMP, water, I-butyl formate, DMMP, octane and triphenyl 
phosphite. 

2. Two more analytes are moderately well represented by these factors (sum of relative 
contributions = 59%). These are benzene and triphenyl phosphate. 

3.  Eight coatings are well represented by the first two factors: numbers 3, 5, 6, 12, 15, 20, 
24 and 27. Collodion, number 15, has the highest variation of all the coatings and has 
the highest impact on factor I ,  where almost all of its variation is ‘captured’. 

4. Three coatings are moderately well represented by the first two factors: numbers 4, 8 and 
17. These three coatings do not contribute significantly to the formation of the factors. 

comprising roughly 60% of the variation in the data set, may be summarized as follows. 
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1 -  

0.5 - 

0 -  

The co-ordinates of the analytes for the six factors retained are given in Table 6. A plot of 
the first two factors is shown in Figure 1, using the first letters of the names as plotting 
symbols. 

It is seen that octane, benzene and water contribute the most to  the formation of factor 11, 
but water is opposite the others with respect to  this factor. Water and triphenyl phosphite will 
be displayed as being close together in a plot of the first two factors, but they are opposite on 
factor 111. One should not infer clustering from just one plot unless most of the structure can 
be captured in one factorial plane. 

The co-ordinate of the coatings are given in Table 7. 
Several clusters can be detected when looking at a plot of factor I versus factor I1 as given 

in Figure 2. These should be examined through the use of the other factors. The clusters are 
as follows: 

(1) Poly(butadieneacrylonitrile), poly(butadiene methacrylate), polybutadiene hydroxy 

N 

I 

I H20 

I tPP 

Table 6. Analyte co-ordinates 

Analyte FI  FII FIII FIV FV FVI 

Benzene 
Dodecane 
DMMP 
DM phosphite 
1-Butyl formate 
a-Pinene oxide 
Triphenyl phosphite 
DIMP 
Dichloropentane 
Isopropyl acetate 
Tryamil phosphate 
Octane 
Triphenyl phosphate 
Water 

0.60 
-0.18 
-0.37 
-0.12 

0.57 
0.26 
0.68 

0.49 
0.36 
0.26 
0.25 
0-48 
0-64 

-0.50 

-0.71 
0.11 

-0.13 
0.08 
0.12 

-0.00 
0.54 
0.11 
0.23 

-0.13 
-0.07 
-0.49 
- 0.41 

0.66 

0.38 
- 0.03 
- 0.07 
- 0.13 
-0.13 
-0.00 
- 0.41 

0.12 
0.52 

-0.53 
-0.00 

0.00 
0.11 
0.11 

-0.11 
0.11 

-0.11 
-0.31 
-0.00 

0.21 
0.18 
0-16 

-0.22 
0.11 
0.10 
0.18 

- 0.00 
0.12 

- 0.62 
- 0.00 

0-05 
- 0.04 
- 0.01 

0.21 
-0.10 
- 0.07 

0.34 
0.01 

- 0.03 
0.22 

-0.11 
-0.19 

0.20 
0.30 
0.00 

- 0.02 
- 0.07 

0.56 
-0.02 
- 0.04 

0.06 
0.11 
0.16 

-0.24 
-0.19 
- 0.20 
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Table 7. Coating co-ordinates 

463 

ID No. FI FII FIII FIV 

1 0.11 
2 0.28 
3 0-61 
4 0.29 
5 0.39 
6 0.56 
7 0.18 
8 0.64 
9 0.00 

10 0.56 
11 0.49 
12 0.57 
13 0.66 
14 0.40 

16 0-46 
17 0.60 
18 0-13 
19 0.39 
20 0.40 
21 0.28 
22 0.04 
23 0.33 

15 -0.46 

24 - 0.29 
25 -0.65 
26 0.29 
27 0-37 

-0.15 
0.02 

-0.26 
- 0.34 
-0.39 
-0.30 
-0.25 

0.09 
-0.21 

0.36 
0.17 
0.81 
0.28 
0.27 

-0.03 
0.20 
0.41 
0.11 
0-39 
0.71 
0.40 
0.27 
0.51 
0.26 
0.46 
0.44 
0.71 

- 0.03 
- 0.09 

0.02 
0.00 
0-20 
0.03 
0.02 
0.02 
0.01 

-0.69 
-0.29 

0.11 
- 0.63 
- 0-82 
-0.04 
-0.52 
-0.23 
- 0-20 

0.39 
0.23 
0.31 
0.21 
0.52 
0-03 
0.38 
0.17 
0-00 

- 0.04 
- 0.47 

0.10 
0.14 

-0.05 
0.11 
0.06 

- 0.07 
0.21 

-0.01 
0.34 

- 0.03 
0.45 

-0.37 
- 0.04 

0.01 
0.20 
0.46 
0.00 

-0.12 
- 0.07 

0-05 

0.09 
0.52 
0.22 

-0.06 

-0.50 

FV FVI 

0.33 
- 0.02 
- 0.02 

0.25 
-0.28 

0-06 
0.29 

-0.16 
0.15 

-0.11 
0.02 
0.02 
0.17 

-0.11 
- 0.01 
-0.17 
- 0.44 

0.09 
0.19 

- 0.09 
0.25 
0.10 
0.20 
0.00 

-0.36 
0.17 

- 0.21 

-0.10 
0.00 

-0.16 
-0.20 

0.14 
- 0.21 
- 0.09 
- 0.26 
- 0.03 

0.02 
0-63 

-0.21 
0.28 

- 0.03 
0.01 
0.03 

-0.26 
-0.04 

0.35 

0.23 
-0.06 

0.02 
0.11 

- 0.27 
0.52 

-0.32 

-0.27 

1 

0.5 

N 

U 0 

s" 

-0.5 

-1 

25 

24 

12 
220 

1 
7 63 

4 5  

I I I I 1 

-1 -0.5 0 0.5 1 

Coord 1 

Figure 2. Plot of first two factors from CA: the coatings 
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terminated, poly(viny1 stereate), poly-1-butadiene and polybutadiene hydroxy terminated 
liquid (ID numbers 1, 3, 4, 5, 6 and 7). These all plot in the fourth quadrant, having a positive 
first co-ordinate and negative second co-ordinate. This cluster appears to  define adsorbents 
with polar or polarizable groups and hydrophobic alkane-based backbones. 

(2) A large cluster of coatings having positive first and second co-ordinates. This cluster can 
be broken into the following subclusters: poly(p-vinylphenol), methyl Vinyl ether, polystyrene, 
poly vinyl isobutyl ether, poly-1 -butene, poly(vinylcarbazo1e) and poly(vinylbutyra1) (ID 
numbers 2, 8, 10, 11, 13, 14 and 16), which have a ‘moderate’ second co-ordinate; poly(rnethy1 
methacrylate), ethyl cellulose, poly(caprolactone), poly(capro1actone)triol 2X and DC 1 1 (ID 
numbers 17, 19, 21, 23 and 26), which have a ‘large’ second co-ordinate; and poly(viny1 
chloride), poly(ethy1ene glycol methyl ether) and phenoxy resin (ID numbers 12, 20 and 27), 
which have a ‘huge’ second co-ordinate. With the exception of poly-1-butene and DC 11 these 
adsorbents have polar or polarizable groups and less substantial (vinyl-based) alkane 
backbones. Poly-1-butene and DC 11 are separated from this cluster by factors I11 and IV. 

(3) A cluster of coatings having a non-positive first co-ordinate: octadecyl vinyl etherlmaleic 
anhydride, collodion, carnuba wax and abietic acid (ID numbers 9, 15, 24 and 25). This cluster 
can be subdivided into the subclusters (9, 15) and (24, 25) according to  the sign of the second 
co-ordinate. Attempts to  make chemical sense of this cluster have met with little success. 

A comparison with the varirnax factors in Table 2 shows an almost complete agreement 
between the solutions from PCA and CA, but whereas eight vectors were obtained from PCA 
and a further rotation was needed, CA produces almost the same groupings using only six 
factors (vectors) without a rotation. 

In the first cluster, poly(viny1 stearate) is somewhat different from the other coatings in terms 
of the rest of the factors. This leaves only butadiene coatings in this cluster. 

In the second cluster, one could exclude methyl vinyl ether from the first subcluster and 
poly(methy1 methacrylate) from the second subcluster. The first subcluster is then the polyvinyl 
group. 

For the purpose of choosing a reduced set of coatings, we would select on the basis of the 
contributions ‘absolute’ and ‘relative’ shown in Tables 4 and 5. We would choose collodium, 
poly(viny1 chloride), poly(viny1 carbazole), poly(p-vinylphenol), poly(viny1 isobutyl ether) and 
poly(butadiene eneacrylonitrile) for a set of size six, and add to  the list on the basis of other 
considerations. 

The usual practice in CA is to  plot the coatings and the analytes on the same diagram. We 
chose not to do this, in agreement with the arguments advanced by GoodmanI2 and 
Greenacre.I3 If simultaneous plotting is done, care must be taken when trying to give sense 
to the closeness of an analyte to  a cluster of coatings or of a coating to  a cluster of analytes, 
although sometimes this occurrence can be very illuminating. 

CONCLUSIONS 

CA is a multivariate technique that treats rows and columns of a data matrix with non-negative 
entries symmetrically, projecting them on to a set of factorial axes. A graphical display of the 
projections aids in the search for patterns and for an interpretation of underlying relationships. 

For the data set given in the paper by Carey eta[., CA gave the same results as the combined 
use of PCA with varimax rotations and cluster analysis, but fewer factors are required to find 
a sensible set of clusters and CA was shown to be an effective dimension reduction technique. 
We point out that for this type of data set the choice of PCA for the columns and cluster 
analysis for the rows is arbitrary, since one may choose to work with the transposed data 
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matrix and obtain different results; however, CA gives the same results when applied to the 
transposed matrix. 

The advantages of CA include convenient diagnostics that help in the interpretation of the 
results. These include the absolute and relative contributions of the rows and columns, which 
were used to find a reduced set of coatings, as well as global measures of the quality of 
representation. 

Another advantage of the CA approach is that the results can be interpreted chemically 
without the need for rotation of the factors. It is apparent that the clusters observed are 
influenced by and indicative of the chemistry of the phases. It is interesting to note that the 
clusters obtained indicate that the polymer backbone is as important as the chemical 
functionality in determining the chemical behaviour of these stationary phases. The fact that 
some adsorbents did not appear in chemical clusters where they may seem to fit, or that others 
may appear in what seem to be inappropriate clusters, may be due to the conformation, 
uniformity, rigidity and depth of the coatings. These experimental variables are not explicitly 
incorporated in the analysis. 

NOTICE 

Although the research described in this article has been funded wholly or in part by the U.S. 
Environmental Protection Agency through a Cooperative Research Agreement with the 
University of Arizona, it has not been subjected to Agency review and therefore does not 
reflect the views of the Agency and no official endorsement should be inferred. 
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