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ABSTRACT

Although positive definiteness is a sufficient condition for a function to be a covariance,
the stronger strict positive definiteness is important for many applications, especially in
spatial statistics, since it ensures that the kriging equations have a unique solution. In
particular, spatial-temporal prediction has received a lot of attention, hence strictly
positive definite spatial-temporal covariance models (or equivalently strictly con-
ditionally negative definite variogram models) are needed.

In this paper the necessary and sufficient condition for the product and the product-
sum space-time covariance models to be strictly positive definite {or the variogram
function to be strictly conditionally negative definite) is given. In addition it is shown
that an example appeared in the recent literature which purports to show that product-
sum covariance functions may be only semi-definite is itself invalid. Strict positive
definiteness of the sum of products model is also discussed.

@ 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fundamental results on positive definite (p.d.) functions were first given by Mathias (1923) and Schoenberg (1938a,
1938b). Bochner’s (1959) Theorem not only provides the link between positive definiteness and covariance functions, but it
also shows that p.d. functions have a unique spectral representation. The historical review of different forms of positive
definiteness by Stewart (1976) is also worth noting.

In Geostatistics, many applications of p.d. functions pertain to spatial and spatial-temporal prediction. If the kriging
equations are given in terms of the covariance function then strict positive definiteness is a sufficient condition for the
existence of a unique solution of the kriging equations. When the Kkriging equations are given in terms of the variogram
then strict conditional negative definiteness is sufficient to ensure a unique solution of the kriging equations. There have
been a number of basic results pertaining to strict positive definiteness, even in numerical analysis including: Chang
(1996), Strauss (1997) and zu Castell et al. ( 2005). The latter gave a sufficient condition for strict positive definiteness in R,
The result is based on the linear independence of the exponentials on sparse subsets.

Although there are examples in the literature where space-time covariance functions or space-time variograms are
obtained by assuming that there is a suitable metric for space-time, time is not just another dimension. To ensure that
time is treated differently it is useful to “separate” the dependence on spatial coordinates from the dependence on the
temporal coordinate. The simplest example of a space-time covariance function is the product of a spatial covariance and
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a temporal covariance: this covariance function is called “separable™ model or “product™ model (Rodriguez-lturbe and
Meija, 1974; Posa, 1993; De Cesare et al., 1997). The assumption of separability for spatial and temporal processes offers a
simplified representation of any variance-covariance matrix, and consequently, some remarkable computational benefits
(Zimmerman, 1989; Centon, 2007). Separability is also an advantage when fitting a model to data; when re-written
in variogram form, the separable model is characterized by its marginals. It is also important to underline that the
product—-sum model generalizes the product model and avoids some of the disadvantages of the separable model. The
product and product-sum models {De Cesare et al., 20014, 2001b; De laco et al,, 2001), as well as the integrated product
and integrated product-sum models (De laco et al., 2002a), are particularly advantageous because they can be used for
more general non-geometric anisotropies. Thus, there is interest in whether the product, as well as the product-sum, of a
strictly p.d. spatial covariance and a strictly p.d. temporal covariance is strictly p.d. in space-time. More generally, given a
strictly p.d. covariance function defined on B and a second strictly p.d. covariance function defined on ", the question is
whether the product, as well as the product-sum, of the two factors is strictly p.d. on R *+¥2,

In this paper, Section 2 reviews some essential notions about second order stationary real valued random functions,
product and product-sum models. Section 3 discusses a false counterexample regarding the product and product-sum
models strict positive definiteness given in literature. Section 4 gives the necessary and sufficient condition for the product
and the product-sum space-time covariance model to be strictly p.d. {or the variogram function to be strictly conditionally
negative definite). Conditions for the strict positive definiteness of the more general sum of products model (Gregori et al.,
2008) are also presented.

2. Basic notions

Let Z(s.t) denote a second order stationary real valued random function, defined on BT (d € N, ), with covariance
function given by

Csrihs he) = Cov(Z(S + s, £ he ) Z(S, 1)),

where hs and he are increments in space and time, respectively. Under the weaker assumption of intrinsic stationarity the
variogram is given by

verths,fi) = 0:5 VarlZis +hs t++hy) Z(s.1)):
Assuming second order stationarity it is well known that the variogram and the covariance function are related:
;‘ST[hs,hr} = Cg—f(].{)) C5T[hs,hr}i

Two related functions are useful, called the marginals by analogy with marginals for probability density or probability
distribution functions. y¢;(hs,0) and 7.(0,h;) are the spatial and temporal marginal variograms, respectively.

In the second order stationary case these can be written as }o(h.0)=Cgq(0,0) Gor(h,0) and ;(0h)=
Csr(0,0) Cor(0,h;). Recall that a real valued function Cer() is p.d. on BY x T if for any n N, and any choice of
(S1.by) ... o(Snte) € B9 « T and Ay, ...,4, € K then

n n
Z Z /‘.f.—".rCSTESf sj.r,- rf-}Z 0 (1)
i=1j=1
The function Csr(-) is strictly p.d., if the above quadratic form is positive for any n = N, and any choice of distinct points
(Sp,by ) o (Suutn) € BY % T and Ay, ...,4; & | not all zero.
While covariance functions need only be p.d., variograms need only be conditionally negative definite (c.n.d.), i.e.

n n o
DD Adivsis: spt §) =<0, (2)

i=1j=1

for any n = N, and any choice of (s1.f1). ..., (Sn.fn) € B 5 T and Ay, ..., 4z = R but with the restriction that

n
Z /, =0
i=1
If the above quadratic form is negative for any choice of distinct points (sq.&). ..., (Sp.tny = B x Tand Ay, ..., A, = R notall
zero, whose sum is zero, then the function y¢(-) is strictly cn.d.

The earliest examples of space-time covariance models are either based on simplistic assumptions, i.e. they require the
use of a metric in space-time or can result in p.d. as opposed to strictly p.d. functions. Geometric anisotropies can be
incorporated via an affine transformation and space-time might be viewed as simply a higher dimensional space but
possibly with an anisotropy in the model. This approach implies that there is an appropriate and natural choice of a norm
{or metric) on space-time analogous to the usual Euclidean norm for space. The most obvious way to construct a model in
space-time is to “separate” the dependence on space and on time. Early attempts used either the sum of two covariances
(Rouhani and Hall, 1989) or the product of two covariances (Rodriguez-Iturbe and Meija, 1974; Posa, 1993; De Cesare et al.,
1997), in either case one factor being defined on space and the other on time. It is easily shown that the sum model leads to
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p.d. (not strictly p.d.) models, hence the result may be a non-invertible kriging matrix (Myers and Journel, 1990). In the
following, it is proved that the product of two strictly p.d. covariance functions in lower dimensional spaces is again a
strictly p.d. covariance function in a higher dimensional space. Analogous results are also shown for the product-sum
model.

2.1. Product and product-sum models

Let Z;(s) and Z5(t) be independent second order stationary random functions defined on K9 and T, respectively, with
zero expected values and strictly p.d. covariance functions CGg(h,) and GCdh,). Then, the covariance function of
ZIE'I.“ -_Z1f5}22f” is

Csrths he) = Csths ) Cr(he): (3)

In Section 4 it will be shown that Cer is strictly p.d. on B « T if and only if both factors, Cs and Cy, are strictly p.d. on ¢ and
T, respectively. However, the class (3) is severely limited, since each factor effectively must have the same “sill”.
In variogram form the product model becomes

vsrths fie) = Cr(0)ys(hs) + Cs(0)ypthe)  vs(hs)yr(he) (4)

or in terms of the marginals
1 5
Vsrihsh) =B 0+ sp(Ohe) - gy srs 00O he (5)

Some examples of the product covariance are given in De Cesare et al. (1997}, as well as others.
A natural extension of the product model is the product-sum model. As introduced in De Cesare et al. (20014, 2001b)
and De laco et al. (2001), the product-sum covariance is given by

Corths, i) = Iy Csthg) Gr(he )+ lep Gothis) + ks Gr(hy ), (6)

withk;4 0,k:Z 0.k5Z 0. In Section 4 it will be shown that Csris strictly p.d. on B? s T if and only if both factors, Cs and Cr,
are strictly p.d. on K9 and T, respectively.

This non-separable family of space-time covariances has been built by applying the convexity property of the
covariances family [ Matern, 1980).

Note that the product or sum model is easily obtained by the product-sum covariance model setting, respectively,
lea=k3=0 or k;=0.

The variogram form

ver(hs, i) = [k Gr(0) + kalvsths )+ [k G(O) -+ ks]p(he) ke sths)ipthe) (7)
or

Perthe o) =7 (g 0+ 7 (0 e ) o (g 0) o7 (0L1) (8)
is somewhat more convenient.

As shown in De Iaco et al. (2001), this last spatial temporal variogram is c.n.d. if and only if the following condition for
the parameter k is satisfied:

1

0 <k < o ax{STl 7oy (s, 00,11 7y @.0))

(9)
Some applications are found in De laco et al. (2000, 2002b).
3. A misleading counterexample

In Gregori et al. (2008) it is claimed that the product-sum model is not strictly p.d. for some choices of strictly p.d.
marginals in some pathological situations. Their purported counterexample uses the variogram form of the product-sum
model (De laco et al., 2001 ) but in two-dimensional space instead of space time. They give it as

PEY) =700+ 75.000) k7 (x0)5 0y (10}

i 1s

As noted above this is the variogram form of Eq. (6), i.e. the marginals correspond to covariance functions defined on one-
dimensional space. If these covariance functions are strictly p.d. then the product-sum covariance function is strictly p.d.
on two-dimensional space if i, 4 0 and ky k3Z 0. De laco et al. (2001) show that these inequalities are satisfied if and only
if condition (9} is satisfied. In turn with these conditions and strictly p.d. covariance functions the space time covariance
function in Eq. (6) is strictly p.d. or equivalently, the variogram in Eq. (10) is strictly c.n.d. when the marginal variograms
are strictly c.n.d. In quoting this theorem and in their example Gregori et al. (2008) neglect the strict positive definiteness
(strict conditional negative definiteness for variograms).

Although the model is given in terms of variograms, second order stationarity is assumed and hence each variogram
corresponds to a covariance function.
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The example given in Gregori et al. (2008) considered four data points {u;=(0,0), uz =(a.0), u3=(0,b), ug=(a.b)} with
variogram values v,,(a,0) =c, 750,b) =d with c=df(d 1) and d4 1 and sill[;,5(x,0)] =sill[;55(x,00] = 1 with k=1.

First of all, the values chosen for the marginal sills and the k parameter, imply that (10) i 15 actually the variogram form of
the product of two covariance functions and hence the global sill C(0,0) is also equal to 1. In turn this implies that:

1. [Cxy) =1,
2. 0=yxy)<2.

Obviously, the same inequalities hold for the marginals.
Secondly, the values they assigned to the variogram marginals contradict the inequalities in 1 and 2 for
d =]1,2[U]2, +o0f, since pa,0)=d=d 1)4 2 for 1 =d =2, 7(0by=d4 2 for d4 2. If d=2 then c=d=7(a,0)=7(0,b) and
(a,0)=C0b)= 1. In this case, the marginals are not strictly p.d., as easily shown in the following example.
Let u;=(0,0), uz=(0,b) be two points in K2 and /; =/, =1, then

2 2
ZZ 4G X)) - Gatyy v;) =2C(0,0)+2C(0,by = O:

Thus the marginal covariance C; is not strictly p.d. Similarly for the marginal covariance Cy.

Hence, when it is assumed that C(a,0)=C(0,b)= 1, it is not surprising if the covariance kriging matrix might be singulat
in some cases (Dimitrakopoulos and Luo, 1994).

It is well known that strict positive definiteness of the spatial and temporal marginals is a necessary condition for a
space-time model to be strictly p.d. If the spatial and temporal marginals are not both strictly p.d., then the model is not
strictly p.d. In the following, it is shown that strict positive definiteness of both factors in (3) is a necessary as well as a
sufficient condition for the product of two covariance functions to be strictly p.d.

Alternatively to the previous argumentation, it can be shown that the values given to the variogram marginals produce
a variogram matrix which is not c.n.d.

Proof. Cc-mpute the quadratic form for the given four data points as follows:

Z ,-/_,-;‘tu,- u;) = [/% BE f.% -I-/% }-/_i] c0+[24142 +2434] - a1 F[24143 +24244) - d+[2A1 44+ 24243] - O

Let 4 be a non-zero real number and K any real number; then setting 4y = KA /Ay = 4,43 = KA, /A4 =/, the quadratic form
becomes

[41(;_21%1[ el 2/‘_2m.—2;.2d—dl[2r< (K*+1nd 1)

It is easy to show that for any 1 < d < 2, there is a K such that the factor in brackets is greater than 0, thus the double sum is
greater than 0 and the function is not c.n.d. &

4. Strict positive definiteness

Strict positive definiteness is important for space-time covariance models, because it ensures the invertibility of the
matrices involved in most of the interpolation procedures (e.g. the coefficient matrix in the kriging equations).

In the following, it is shown that the product and the product-sum models of two strictly p.d. covariances, defined on
two different sub-spaces (for example, spatial and temporal domains), are again strictly p.d. This result is implicit in
Strauss (1997) but not explicit and there it requires the Hilbert space setting using reproducing kernels.

4.1. Strict positive definiteness of product covariance functions

Theorem 1. Let Cy and C; be second order stationary covariance functions, defined on E* and B" (v1,1r3 e N, vp+va=1),
respectively, and

Cth) = C(hyhy) = G (hy)Ca(hy), hy € K", hy e B2 (11)

be a second order stationary covariance function defined on E". C is a strictly p.d. covariance on E" if and only if Cy and C; are
two strictly p.d. covariances, defined on "' and 1" (1,13 € N |, vy +v2=1r), respectively.

Proof. Part 1 (only if) If the covariance function C in (11) is a strictly p.d., then for any n = N, and any choice of
=MX.¥ 1 )eoen Uy, = (X, ¥,) & B" « RB¥2 and 4y, .../, € B not all zero,

non
Z Z /-.,:/;.J;CHX,: x,-}Czry,- ¥4 0: (12)

i=1j=1
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This implies that for any ne N, and any choice of uy =(X;,¥;),....Un =(Xp,¥,) € B x B2, where y; = --- =¥, and
Ao oin € B onot all zero,

n n n n
Z Z /r/ICer xI}C2f0) = Cz[ﬂ.l Z Z /r/.J.C1 (x,: xj.}4 0:

S R
Hence
n n
z Z ’;-ff.-jcltxf XI}4 0:
i=1j=1
Thus C; is strictly p.d. Similarly, for any ne N, and any choice of u; =(X;,.¥;) ..., U, = (Xp.¥,) € B « B2, where
Xy = =Xp and iy, ....4, € H not all zero,
n n e n n o
3N A4CHOGY; ¥)=Cl® D > A4Gwy; ¥4 0:
i=1j=1 i=1lj=1
Hence

n n o
Z Zr’.f}.rcg[y[' 5':)4 0,
iz1j=1

thus (; is strictly p.d.

Part 2 (if). Second part (from right to left) of the proof follows.

Let ur=(X1.¥1 ) Uz=(X2¥2)y Mp=(Xn¥n) be distinct points in B x R, let Xy, ... Xn, and ¥y, ....¥,, be the corresponding
distinct coordinates in B and B2, respectively. Then {u;,y 1} is a subset of {(x;,¥;) € B*' » B2i=1, ... .n,k=1,....n3).
The latter set is an (n; x n3) regular pattern.

Let X' be the N x N matrix, where N=n1; x 11, whose entries are {(x; X% ¥ ij=12y .nmp kl=12y |, na

Because Cin (11) is a product, i.e. separable, the covariance matrix X can be written as the Kronecker product of two
smaller matrices Cyp,xn,) AN Copny uny)t

=0 oG, (13)

where the generic element of €y is Gi(x;  X;), i,j=1.2,y , m and the generic element of Cz is G(yx W) k=125 |, na.

If C; and C; are twao strictly p.d. second order stationary covariances on B” and B2, respectively, then their eigenvalues
%1,%2, .- ,0ny and fiy,ff5, ... fip,, respectively, are all positive. Hence, the eigenvalues of the Kronecker product X are all
positive, since they are obtained as the product /i, i=12y ny, j=1.2;y ,n, (Graham, 1981).

This means that the (ny »x nz) » (R = ng) matrix of product covariances corresponding to the (n, x ny) regular pattern in
H" » 1" is always strictly p.d.:

L -]

Z Z Z i AaedqCX X ¥ ¥4 0, il

i=lf=1k=11=1

for all choices of the coefficients not all zero.

Recall that a symmetric matrix is strictly p.d. if all only if the leading principal minors are positive, then it can be
shown that the leading principal minors of the (n % n) matrix of a product covariance function, corresponding to the
subset uy, U,y U, are also positive. This implies that the covariance matrix of the product of two strictly p.d. functions is
strictly p.d. =

Thus strict positive definiteness of both factors is a necessary as well as a sufficient condition for the product of two
covariance functions to be strictly p.d.

A simple example illustrates how any choice of n points in K
configuration.

Let {uy,uzus} be three points in 2, where %1 x2.x3 and VY1.¥2.ys are the corresponding distinct coordinates on H. Fig. 1
illustrates how the three points would appear as a subset of the regular pattern.

The strict positive definiteness of the more general sum of products model proposed by Gregori et al. (2008) can be also
guaranteed. In Gregori et al. {2008), the general sum of products model is defined as follows.

Let {Czi=1y n} and {G:i=1y n), n =N, be, respectively, valid continuous and integrable covariance functions
defined on E" and E™ (15 e N ., vy+1=v), and let fy; and f5;, i=1,y .n, be the Fourier transforms of covariances Cy;
and Cy, respectively. Assume that at least one couple of Fourier transforms, say (finfan), is composed of non-vanishing
functions, so that the following quantities are defined:

¥ % HY? can be viewed as a subset of a regular

o fux) 1(X)
my; = in Ju ~, My = sup AL 2F
xe B fm!X) xel'1 fmtx)

My = in ) My = sup Ly
yeR'2 fanl¥) . 1 Fonl¥)
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Fig. 1. {a) Data points; (b) regular pattern.

For ky, ..., len € K, consider the following model:
n
C[hl,hz} = Z k,:C”Chl )Caithz), hy € R, h; = R, (15)
i=1
then

1. if model (15) is p.d., then the coefficient k, must satisfy the following condition:

n-1
knZ ) lIMyuMa gz o)+ Mgl < o)l: (16)
i=1
2. if the coefficient ky satisfies the following condition:

n—1
J'(HZ Zkf[”'!”n'izf1”qz 0) + M1fM2f1{kj{OJ]' (17)
i=1

then model (15) is p.d.

Note that this model is a special case of a sum of products (of pairs of covariance functions) and in turn is a special case
of an integrated product sum model as in De laco et al. (2002a).

Theorem 2. Given the model (15) for C ,if Cy; and Cy;, i=1,y .n, are continuous and absolutely integrable covariance functions
defined, respectively, on B! and F"2, with vi,v5 e N ., vy +va=v, with at least one pair of non-vanishing Fourier transforms, say
U.Irpf?_n]- and

& Clrtﬂ)CZr(t]]I

Kt Z”cm:mcm:m (8)

so that the function C is not identically zero (it is positive at zera), then

1. if model (15) is strictly p.d., then the admissible values for the coefficient Ik, must satisfy condition (16);
2. if the coefficient k,, satisfies condition (17), then model (15) is strictly p.d.

Proof. Since Cy; and Gy, i=1,y ,n, are supposed to be continuous and absolutely integrable covariance functions defined,
respectively, on H"' and E", with 11,03 e N, 11+v3=v, then the general sum of products model C is continuous and
absolutely integrable. Moreover, the general sum of products model C is bounded, since Cy; and Gz, i=1.y n, are bounded.
Now, recall that, given a continuous and absolutely integrable function C, then C is strictly p.d. if and only if C is bounded
and its Fourier transform is non-negative and non-vanishing (Chang, 1996; Wendland, 2005).
Hence, if C is strictly p.d., then the Fourier transform of model (15)

n
fxy) = > kifyX)fi(y)
i=1
is non-negative, consequently the coefficient k, has to satisfy condition (16), as proved in Gregori et al. (2008). It is well
known that it suffices to show that the Fourier transform is non-negative when the function C is not the zero function,
because then the Fourier transform cannot vanish. The function C is not the zero function under the condition (18) on k.
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If the coefficient k, satisfies the conditions (17) and (18), the Fourier transform f{x,y) of model (15) is non-negative, as
shown in Gregori et al. (2008), and non-vanishing, since the function C is not the zero function, then C is strictly p.d. =

4.2, The strict positive definiteness of product-sum models

Theorem 3. Let C, and Cz be second order stationary covariance functions, defined on B and H"? (11,03 e N, tq+12=1),
respectively, and

th}_C[hl.hZ}_ R1C1Eh1 }Cz[hz}l I{zCl[hl} + k3C2th2}. h1 € ].,;1’1. hz e [z [19}

be a second order stationary covariance defined on R, where k14 0,k2Z 0,ksZ 0 are real constants. C is a strictly p.d.
covariance on K" if and only if Ci and G are two strictly p.d. covariances, defined on B and B (v1,v2 e N o, t1+va=0),
respectively.

Proof. In the following proofs, k; and ks are assumed to be greater than zero, since for k;=k3=0 the product-sum model
reduces to the product model, for which analogous results have been proved in the previous paragraph.
Part 1 (only if). Assume ab absurdo that one of the marginal covariances, that is Cy, is only p.d., then

n n
3O didika[Cux X)Gaty; WIZ 0: (20)
i=1j=1
hence, recall that the sum of two covariance functions defined on two different sub-spaces is only p.d. (Myers and Journel,
1990), that is

n n
Z Z /A.,:/\.J:”QCHX,' X;)+ IL'3C2(}',; y,-}}Z 0, (21)
i=1lj=1
consequently, the sum of two p.d. covariances, that is (20) and (21), is only p.d. (Wendland, 2005).
As a consequence of above, the strictly positive definiteness hypothesis on C is not compatible.
Part 2 (if). Recall that the product-sum model is given by the sum of

e astrictly p.d. function on B, corresponding to the product of two strictly p.d. functions defined on R and E"?, where
U=t +1a,
e a p.d. function on KY, corresponding to the sum of two strictly p.d. functions defined on B and R,

The proof follows by noting that the product of two strictly p.d. functions defined on B" and E"? is strictly p.d. on the
product space RY, and the sum of a strictly p.d. function on ¥ and a p.d. function on the same space is again strictly p.d. on
HY, that is

noonm non
Z Z /..,'/.Jiklcﬂx,' xji}C2fy,' 3’,) } Z Zf.,:;{j”(zCHXf x;} } fc3C2i}‘,- )‘,1}

e o

140 Z0o

n n
=3y Z Aillen Crx; X)Caty; ¥+l Cuxy X+ ksCaty; w4 00 &
Pi—1j=1

Corollary 1. The variogram form (7) or (8) of the product-sum covariance function is strictly c.nd. if and only if the
corresponding marginals are strictly c.n.d.

The following examples highlight how the product-sum model might be viewed as a generalization of the product
model. Exponential and Gaussian models are considered, since they are widely used as marginals in the product-sum
model in different areas, ranging from environmental sciences to medicine, from ecology to hydrology; some applications
are found in De laco et al. (2000, 2002b), Myers (2002), Fernandez-Casal et al. (2003), Gething et al. (2006), Skien and
Bloschl (2006), Spadavecchia and Williams (2009), De laco (2010), among others.

Example 1. There are two different exponential covariance function models, one of which is the product to two
exponential models of the same type (or more depending on the dimension of the space) (Dimitrakopoulos and Luo, 1994),
that is

Cthy hy)=exp( adhy g bahy 3 =expt adhy Jdexp( bdhy3 =Cy(hy)Cathy):

This model is a special case of the product model, i.e. given two valid covariance functions, the product is again a valid
model.
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In variogram form this becomes
vihhp)=1 expl adn s byd):
Using the product-sum form this can be generalized to
rih,hz)=[1 exp( adn+[1 exp( adhea)] K1 exp( adm 31 exp( b (22)

If k=1 then the model is just the exponential variogram model. If 0 < k < 1 the variogram is anisotropic but it is not a
geometric anisotropy.

Example 2. The Caussian covariance function can be written as follows:
C(hy,hy) =exp( adnF bahaP)=exp( adnF)-exp( bahpd®)=Ci(hy)Cathz):
In variogram form this becomes
pihyhy) =1 expl ah F athy Py
This might be generalized to
p(hy ) =11 exp( adhy )+[1 expt by K1 exp( adh, &)1 exp( bah,F)),
which reduces to the usual Gaussian model if k=1.

Additional spatial models with zonal anisotropies can be found in Myers (2008).
5. Summary

While covariance functions need only be p.d. and variograms need only be c.n.d., these conditions are not sufficient to
ensure that the kriging equations have a unique solution. Instead strict positive definiteness is sufficient for covariance
functions and strict conditionally negative definiteness is sufficient for variograms. To ensure that the product and the
product-sum space-time covariance functions are strictly p.d. (or that the corresponding variogram models are strictly
c.n.d.), it is shown that it is necessary and sufficient that the marginal covariance functions be strictly p.d. (or the marginal
variograms be strictly c.n.d.). This shows that the claim made by Gregori et al. (2008) is not true; it is also proved that the
purported counterexample given in that paper is not a variogram because it is not c.n.d. Moreover, the strict positive
definiteness of the sum of products model proposed by Gregori et al. (2008) can be also guaranteed under specific
conditions on both the marginals and the coefficients.
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