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ABSTRACT. T h e  Turning I3ands Method,  introduced by G .  Matheron,  roduccs con- 
ditional simulations of a random function defiried in n-s ace There are di&culties which 
make it less attractive for simulations in 2-space and Fur the  the  extension t o  the vcc- 
tor or co-regionalization case. T h e  difficlllt,ies are both theoretical and co rnp~~ta t iona l .  
The  decom osition of the  covariance matr ix  method introduced more rccent,ly by M. 
Davis and I? Alabert is essentially independent of the dimension of the  s ace and results 
in a straight forward extension to the  vector case by using the  generafforrnlllaiion of 
cokri ing given by hlyers. As a n  alternative t o  the  Cholesky decomposition, Davis pro- 
pose$uslng a minimax polynomial approximation t o  Llie square root. Tlle robustness of 
t h e  simulation algorithm is examined wit,h respect to  the  approximations for bot,h thc  
univariate and t,he vector form. Numerical results are given. 

Simulation is a tool tha t  is widely used in many fields. When t h e  expcrirnent is replica- 
ble, sirnulation may be used as an alternative l o  complex ar~alytical solutions. Al~hough  
IIiarly applica~ions' in the  ear th  sciences d o  not  result in rcplicable d a t a  sets simulation 
is st111 useful because i t  provides a tool for quantifying the  ~ l r~ce r t a in ty  t,hat is ol-rscrlrcd 
when estimation t e c h n i q ~ ~ e s  are uscd. In mining. s in~ulat ion has attract,cd interest as a 
tool for plannin especially for scheduling the  ex loitation of mineral deposits see for 
example Chiles 81984) The  criteria imposed on t!e selection of waste disposal kites arc 
frequently iven in terms of the  probability of a leakage; silnulation of hydrological pa- 
rameters alfows a non-analytical estimation of such probabilities and takcs into account 
the  uricertainties associated with those parameters aq illustrated in Sillimarl (1986). Al- 
though multivariate estimation, e.g., cokriging, has perhaps been of less interest than t h e  
univariate casc, even in mining ap lications multivariate simrllations are of considcrablc 
importance a s  exemplified in chiyes (1984), Dowd (1984), l iaaks  (1061) and Alaberr 
(1987a). Bu t  in~eres t ,  in the problem pre-dates geostatistics as  seen in Shinozuka (1971). 
In gcneral the  methods used arc  not  true multivariate simulations arrd d o  not, condition 
thc,c!ata by cokrigiug in a fashion ft~lly analogous to  the  way kri ing i.; usetl in t,hc uni- 
a a .  T h e  program given by Carr  and Myers (1885) pa r t ,g  t>r id;e~ this gap bur 
i! is a cornprurrlise since the intervariable de  endcncc is ignored in i l ~ e  s l m ~ ~ l a t i o n  st;igc?, 
Many of the  dilhculties inlierent in the  use $the  'I'urning Bands method are  avoicl~d by 
the  lire of the c o ~ ~ a r i a n c e  decomposition method developed by Davis p857a .  198711) arrii 
:\labert (1987t1). IVhat rcmnincd then was to  cxtcrid tha t  mct,hod t o  t e usc of cokrlging. 
One tiifficu!tv arises in t h r  multivariate case lha t  does not occur in t,he uni\.ariate caso, 
nanlciy ~11c  ~~l ldersarnplcd p rob lc~n ,  i.e.! ncit all varia.Les are sanipled a t  all l oca~ ions .  It is 
seer, that  esselitia!iy t,he sarrlc algorithni giver1 bv Llyers (198.1) and t l ~ e n  ~mpicrnentcd 
iri Carr ,  hlyers and Glzss ( 1 9 8 5 ) , ~ r o v i d e s  a r c so l~~ t , io r~  of ihc ddliculties a s s o c ; a t ~ d  wit,h 
multivariate sirr~ulation in the  un ersnmpled casc. 
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1.1 The Turning Bands Method-Extensions 

The fundamental characteristic of the Turning Bands method is tha t  it produces a sim- 
ulation of a random function defined in n-space as a linear combination of simulations 
of uncorrelated random functions defined in 1-space such tha t  the covariance function 
and first moment are preserved. Theoretically the linear combination is an integral with 
respect to a uniform probability measure on the unit n-sphere. In practice this integral 
is approximated by a finite linear combination of simulations correspondin to equally 
spaced directions and the simulations for the respective random functions fefined in 1- 
space may be obtained by one of several techniques although the Box-Jenkins Moving 
Average seems to be the one most common1 used. To preserve the covariance it is nec- i essary to  find a corresponding 1-dimensiona covariance, I.e., one must solve an integral 
equation. It is easy to see that a t  least theoretically this formulation will extend easily to 
the vector case. Following the notation used in Myers (1982) let Y ( t  = [Yl ( t ) ,  .... Y t ) ]  
be a second order stationary vector random function defined in 1 space and Phi a 
uniform probability measure on the unit n-sphere then 

is a second order stationary vector random function defined in n-space and the matrix 
covariance function for Z ( z )  is obtained from the integral (we assume without loss of 
generality that  all components of Z ( z )  have zero means) 

and as in the univariate case we assume that any component of Y ( <  u ,  s >) and any 
component of Y (< v ,  r >) are uncorrelated for all u ,  v unless r = s. It is easy to see that 
exactly the Sam; relationship is established betwecn all the components of Cz and Cy, ,  
as used in the univariate case. For the case of n = 3 the 1-dimensional covariances and 
cross-covariances are obtained easily from the corresponding 3-dimensional covariances 
and cross-covariances respectively. In the univariate case the practice is to represent, 
covariances as positive linear combinations of standard models arid hence the problem 
of finding the 1-dimensional covariance is reduced to finding the associated covariances 
for those standard models. However cross-covariances d o  not have to be positive linear 
combinations of covariances; the positive definiteness condition is more complicated as is 
shown in Myers (1984, 1987). In practice one models the cross-covariances by (general) 
linear combinations and the osit~ve definiteness condition is satisfied by imposlng suffi- 
ciency conditions on the coekcients. In this case although there are more relations, the 
problem of reducing the dimension on which the random vector is defined is solved in 
essential1 the same way vector random function in 1-dimension still remains although 
even if tKis problem is solved the computational difficulty associated with producing 
simulations in 3-dimensions would have significantly escalated. 

1.2 Linear Co-regionalizations 

The use of a linear co-regionalization provides a solution to several problems arising out 
of the need to model cross- covariances (or cross-vario rams) as well as the suhseqi~cr~t 
step of co-simulation of correlated random functions. b o r e  specifically let the rdndom 
vector g ( z )  be represented in the form 
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where W(z)  is a random vector with p uncorrelated components and B is a p x m matrix, 
the covariance matrix function of Z(z)  is given by 

cZ ( h )  = B ~ C ~  (h)  R (5) 

and Cw(h)  is diagonal. The variogram matrix function has an analogous representation. 
Wackerrlagel (1988) has used a form of a principal components deromposition to obtain 
B. Given this representation it is then sufficient to  simulate each component of ! P ( z )  
independently and the (unconditional) simulation of Z(z) is obtained from (4). To 
condition Z(z)  one [night proceed in either of two ways, condition the components of 
bv(z) which would require converting the da ta  for Z ( r )  to data for Iv(z)  or use cokriging 
t o  condition Z ( z )  directly in a manner analogous to the conditioning in the univariatc 
case (this is thc algorithm used in Carr and Myers, (1985)). In order to convert the 
da t a  for ~ ( z )  to da ta  for !q(z), B would have to be invertible and in particular it wo~lld 
have to be square. If Z(z) ,  i.e., each component of Z (z ) ,  is defined in n- space then the 
components of W z )  are defined in n-space and hence it would still be necessarv to  use the 
Turnin Bands d ethod or some other technique to produce the individual s"imu1ations. 
When 5 is invertible the number of steps involved in the simulation process is directly 
proportional to the number of components in Z (z )  (assuming that B and c ~ ( / L )  have 
alrcady been determined). 

1.3 Marginal Distributions 

While it might seem plausible not t o  impose conditions on the univariate, i.e. mar inal 
frequency distribution, the alternative is to allow that distribution to be essentialfy in: 
determinate. All of the techniques currently in use for univariate simulation, as well as 
those proposed above and to follow, use finite linear combinations of uncorrelated ran- 
dom variables. It  is then appropriate to re uire that the common distribution of these 
random variables be such that it is under finite linear combinations. Although 
the normal is not the only dis tr ih~~tional  t pe with this property it is the one that is 
most frequently used. In turn this general6 requires that  a non-linear transformation 
first be applied to change the marginal to a standard normal then the inverse transforma- 
tion is applied si.~bsequently to the simulated values. In the univariate case the original 
margina d l s t r~bu t~on  IS preserved but the moments may not be, in general only the first 
two moments of the transformed data are reserved unless strong multivariate normality 
assum tions are invoked in order to be a i l e  to  com ute the b ~ a s  adjustments. In the 
case o r t h e  simulation of a vector random function t i e  concept of a m a r ~ i n a l  distribu- 
tion is carried one step further, i.e. there is a marginal distribution for each component 
(not necessarily the same) and a joint distribution between components. Without multi- 
variate distributional assumptions one can only transform the data for each component 
separately and hence preserve the separate marginal distributions. LT'hile it seems to  
be unavoidable, the construction of slmulatiorls by linear conlbinations of uncorrelated 
random variables places a severe limitation on the properties that can be preserved for 
the simulations. 

2. THE COVARIANCE DECOMPOSITION 

Usin the formulation of cokriging given in Myers t 9 8 2 )  and the presentation of the 
sirnilfation for the univariate case given in Davis ( 1 -  87a, 1987b) the vector simulation 
using simple (co)krigin is easily obtained. We consider first the case where Cz (h )  is 
known, the function IS kll-sampled and simple cokriging is used. Subsequently ordlnary 
cokri ing with the undersampled form is considered and special results relating to  the 
use of a regional curegionalization are glven. 



2.1 Unconditional co-simulation 

We begin by assumin that  Z ( z )  is an m-component vector random function whose 
components are seconforder  statlonary and all with mean zero. The matrix covariance 

. . . .  function is then iven by the middle term in ( 5 )  above. If z l ,  z, are the locations 
where a simulate! value is required, form the matrix 

( - z , )  ...... C ( z l  - z,) 

?.= [ 
C(z,  - z1) ...... C(z,  - 2,) 1 

and let C L , C u  be a Cholesky decomposition of C. Then 

is a vector of simulated values of the vector function Z ( z )  a t  the required locations 
\ ,  

whose covariance matrix is iven by (6 when {V l ,  ...., V,) is a nm-component vector of 
uncorrelated random variabfeer. This ojcourse is exactly the same as the result given in 
Davis (1987a) except that  scalars are replaced in the appropriate places by vectors or 
matrices. 

Likewise if A is a s uare root of C, then arain the vector extension of Davis's 
constrllction is obtained. doreover the Minimax po?ynornial construction for the square 
root of C can still be used as in the scalar case. 

2.1.1 Simulation Discrepancies-Approximation Errors. Although it is generally assurned 
or shown that  a particular simulation algorithm has the minimal desired properties of 
reproducing the mean and covariance as well as the marginal distribution, little attention 
has been lven to the question of whether simulations are equivalent in an appropriate 
sense. In h e  particular case of using a square root instead of the Cholesk decomposition, 
and moreover an approximation to the square root such as is given iy the Minimax 
Polynomial, a more direct conlparison is possible. We will state the results for the 
vector case but the scalar case is simply the case of m = 1. 

First sup ose that  the s uare root A ,  of C is exact i.e., A' = C .  Consider then 
the difference o r  the vectors o? simulated values; a strong form of equivalence would 
require that  this difference be a zero vector for any choice of the vector of uncorrelated 
random variables {PI, .... Vn).By equating the two, i.e., setting the difference equal to  a 
zero vector, we see that  this implies that  A = Cu whlch is not possible. Consequently 
for a given simulated vector of uncorrelated random variables two different realizations 
are obtained. IIowever it is possible for the two algorithms to be ~quivalerlt in another 
sense, for each vector might be another unique vector {V:, . . .  ,vL} such that  

since A is invertible there is a unique solution. IIowever urlless the random variables are 
all uniformly distributed the probability of the one realization may not be the same as 
for the other and hence in terms of the (vector random function the two methods are 
not equivalent even thou h the first and secon order moments are preserved and the 
marginal distribution is afso retained. 

d 
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Now consider the possible discrepancies introduced by using an approximation to  
the square root. Let f ( t )  = (t) ' I2 and g ( t )  be the approximating function, writing 2' in 
diagonalized form 

C = Q T  diag {XI, ...., X,,,)Q PI 
then we have 

A f ( Z )  - Q T  diag {f (XI),  . . . , f (Xnm))Q (10) 

and 
g(C)  = QT diag  XI), . . . ,g(Xnrn))Q (11) 

Usin A and g (C)  to construct simulations with the same vector of uncorrelated random 
variakles we see that  the covariance in the one case is C and in the other it is 

and the norm of the difference between (11) and (12) is given by 

We may also consider how close the one realization is to  the other when the same 
vector of uncorrelated random variables is used for both. While there are several diifer- 
ent metrics that  might be used the mean square distance would seem reasonable. Let 
{xSf ( z l ) ,  . . . , Zs (z,,)}, { z S g ( z 1 ) ,  ...., Zdg(z,,))  be the simulations obtained by using f .  
respectively. If we let V = . . ,I:,) then the distance between these two vectors is 

This is a quadratic form and since K is positive definite the largest c igenval~~e of li can 
be used to obtain a bound on L) in terms of the valrlcs of I/: a l ,  ....., a,, more sj~ecifically 
we have 

D < max ( * . , { V V ~ ) ' / ~  ( I S )  

but  the eigenvalues of K are of the form [f (A,) - g(X,)j2. If the cornponents of I f  arr 
~lncorrelated standard normal random variables then the distribution of { V V ~ ) ' I ~  is 
that  of the square root of a chi-square with nm degrees of freedom. Alternatively we 
might consider the expected value of D instead of just a bound. By re-writing D in a 
more convenient form we have 

which is the same as the norrn of the differrnce between the covariance matrices. 
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Now consider the possible discrepancies introduced by using an approximation to  
the square root. Let f ( t )  = (t)'/ '  and g(t)  be the approximating function, writing C  in 
diagonalized for1~1 

C = QT diag { A 1 ,  ...., Anm)Q (9) 
then we have 

A = f ( c )  = QT diag { f  ( X I ) ,  . . . , f (Xnm))Q ( 10) 

and 
g(C) = QT diag { ~ ( A I ) ,  . . . , g ( A n m ) ) Q  ( 1 1 )  

Usin A and g(C) to construct simulations with the same vector of uncorrclated random 
varia%les we see that  the covariance in the one case is C and in the other it is 

and the norm of the difference between (11) and (12) is given by 

Lye may also consider how close the one realization is to  the other when the sarne 
vector of uncorrelated random variables is used for both. While there arc several diifer- 
ent metrics that  might be used the mean square distance would seem reasonahlr. Lct 
{ Z S I ( z l ) ,  . . . , Z s l ( z n ) ) ,  { Z , g ( z l ) ,  ...., Zsg(z , ) )  be the simulations obtained by using f , g  
respectively. If we let = {V, , .  . . , V n )  then the distance between thcse two vcctors is 

D = { Z ~ l ( . l )  z ) . .  ( z )  - B s g ( z n ) )  

{231(x1) - Z s g ( x l ) >  ..,Zsl - Z e y ( ~ n ) ) T  ( 1.1) 

= V { C U  - g(C)){Crr - S ( ~ ) ) ~ T  ( I  5 )  
= V K V T  

This is a quadratic form and since K  is positive dcfiriite the largest eigenvalilc of li can 
be used to obtain a bound on D in tcrms of the valrirs of p: a l ,  ...... crnm Irlorc spccificall!. 
wc have 

1) 5 max cuj{VirT)'/ '  i 16) 

but  the eigenvalues of K are of the form [ f  ( A , )  - g ( A , ) j 2 .  If the components of V are 
uncorrclated standard normal random variables then the distribution of { v v ~ ) ' / '  is 
tha t  of the square root of a chi-square with nm degrees of frccdorn. Altrrnativc:ly we 
might consider the expected value of D instcad of just a bound. By rewriting Ll in a 
more convenient form we have 

which is the same as the norm of the difference between the covariance mntricpr;. 
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Corresponding to the n da ta  points z l ,  ...., z, and t h e p  unsampled points z ,+l ,  ...., zntp  
partition the vector of values of Z into Zd and Ze. likewise artition the row vector V 
of vectors of simulated uncorrelated random variables into jd and I<. The covariance 
matrix for the full vector Z and its Cholesky decomposition is given by 

Using the simulation formulation given in (7) above we would have 

and if we let vd = ZdUfir then Zed = Zd and the simulation is conditioned to the data.  
If the square root decomposition is used and the square root of the full covari- 

ance matrix is given in terms of a partitioning corresponding to the partitioning of the 
covariance matrix then we have 

and to  condition the simulation we let Vd = {Zd - VeA21)A;; 

3.1.2. Ordinary Co-kriging. We might proceed in two ways to  rerriove the assumption 
of zero means used above. One ossibility is to assume that  the means are known and 
modify the eallatinns ,accordintFy, thn second which is ruore realistic replaces simple 
krigin by or lnary kriglng an we sim ly compute the adjustment necessary to  make 
that c tan  e To change from simple co-%riging to ordinary co-kri ing we must add tile 
differencePbctween the ordinary co-kriged value and the simple co-$riged value. Writing 
as before Zd as  he row vector of data  values of Z ,  let r be the column of weight matrices 
in the simple co-kriging estimator and r0 as the cnrresponding column of weight matrices 
in the ordinary co-kriging estimator. In addition let M = [ M I ,  ..., M,] be the vector of 
means, be the estirr~atcd vector and E a column of identity matrices, then the true 
difference and its estimate are 

It is then only necessary t o  add this term to Z,, as given in (24) or (23) to  compensate 
for the unknown non-zero means. 

3.2 Under Sampled 

When one component is not sampled a t  one location we must either shift a sub-colurnn 
and a sub-row,~.e. a column of entries within a column of matrices and similarly for 
rows In corresponding to da ta  to the part corresponding to  locations to be esti~rlated or 
alternatively we must further partition the covariance matrix to provide the separation. 
This problem only occurs in connect,ion with conditioning. For simplicit we illustrate the 
algorithm for simple cc-kriging with zero means and where there 1s on& one component 
that  is under sampled at only one location. LVe must partition E l l  illto 9 sub-parts as 
follows 

and in turn we must partition C12 and C z l  into three parts each corrcsponding to the 
partitlion in (27). These in turn induce partitions of the Cholesky decompositions of the 



full covariance matrix. In turn we must partition Zd into three parts Z j ,  Z j , Z j  and 
correspondingly partition vd into three parts Vi ,v;,vd3. Then we may write 

Since we want zsld = Z: and Z2d = z3 we have for a given simulat,ion of V: two equations 6 
and two unknowns in the vectors vdl and v:. Additional components being under 
sampled a t  the same or additional locations simply induces a more complex partitioning. 
In terms of a program these can be tracked by the use of counters. 

4 .  SOME PRACTICAL ASPECTS 

Any consideration of vector valued random functions must deal with the qucstior~ of thc 
modeling of cross-covariances. The most common practice either implicitly or explicitl~ 
uses a n~ode l  of the form iven by (5).  In this case the actual functions used are a11 
covariances (and in particufar the positive definiteness condition is assured by imposing 
conditions on B). This is necessary because one can not impose sufficie~~t conditions on 
a cross-covariance separate1 from the conditions imposed on the associated covarianccs 
and herice one can not easiiy identify standard cross-covariance rr~odels. hlyers (1982, 
1987) suggested an alternative method for more direct modeling of the cross-covariance< 
by considering the covariances of the sum and difference of the two cornponcrlts iri clI1r.s- 
tion. Theoretical1 either of these is sufficient to  construct the cross-covariance ( i r ~  
conjunction with t i e  associated covariances) but since the modeling is not perfect l i o ~ i ~  
are necessary. This would appear t,o allow for more general models. Urifort,unatcly i f  all 
covariances are modeled with finite linear combinations of standard models (no rrlattvr 
how large this set is) the rc. uirement tha t  the cross- covariance prod~lceti from the co- 
variances of the sum and difyerence coincide reduces the technique to tile use of a rnodcl 
like that  given by (5). One has simzly arrived at  tha t  point by a different L)roc:ess. I11 turn 
this implies that  in practice the lstinctlon between "true" co-sirnulation and neparatc. 
simulat~on of uncorrelated components used to re- construct the corre1atc.d cornponc,nth 
is more one or how the conditioning is done than how the simulation is done. 

5 NL.MERICrZL RESULTS 

As a test of the program, 20 runs were made of an ~lnconditioned sirnulation fcir twc, 
variables. Likewise 20 runs were made conditioned on 100 poir~ts .  In each case sirnulatrtl 
va1uc.s were roduced for a 10 x 10 grid. The variogram for each of the variables w;~.; 
spherical wit! a sill of 1.0 and a range of 6 . 0  The crosrvario ram was cllosc.~~ so Lhat thi. 
variograln of tlie difference of the two variables would also%; spherical ii,:il ,,tie sarrlc, 
parameters. The resulting sample variograms and variogram of the difrerer~ce, plot~c.~i  
against the rriodel, are shown in Figures 1 ,  2 .  Computing time for '20 rllris ivas li!ss t i l : i r l  

5 mir1ut.e~ on a \.'AX 11/750. 

I>ortions of this paper were written while on sabbatical and vi?,iting in the r)cp;irtrnc.rl:. 
Statistics and Applied Earth Sciences, Stanford University. The program i r i ~ ~ l ~ ~ r ~ i ~ ~ ~ ~ i ~ ~ ;  
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the multivariate version of the matrix decomposition simulation algorithm was written 
by Jerry Jalkanen. 

NOTICE 

Althou h the research described in this presentation has been supported by the United 
States knvironmental Protection Agency throu h a Cooperative Research Agreement 
with the Universit of Arizona, it has not been su%jected to Agency review and therefore 
does not necessarify reflect the views of the Agency and no official endorsement should 
be inferred. 
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