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ABSTRACT. The Turning Bands Method, introduced by G. Matherom, preduces con-
ditional simulations of a random function defined in n-space There are difficulties which
make it less attractive for simulations in 2-space and for the the extension to the vec-
tor or co-regionalization case. The difficulties are both theoretical and computational.
The decomposition of the covariance matrix method introduced more recently by M.
Davis and ¥. Alabert is essentially independent of the dimension of the space and results
in a straight forward extension to the vector case by usiug the generaf) formulation of
cokrijing given by hlyers. As an alternative to the Cholesky decomposition, Davis pro-
posed using a minimax polynomial approximation to the square root. The robustness of
the simulation algorithm is examined with respect to the approximations for both the
univariate and the vector form. Numerical results are given.

1. INTRODUCTION

Simulation is a tool that is widely used in many fields. When the experiment is replica-
ble, sirnulation may be used as an alternative to complex analytical solutions. Although
many applications in the earth sciences do not result in rcplicable data scts simulation
is still useful because it provides a tool for quantifying the nncertainty that is obscured
when estimation techniques are used. In mining. simulation has attracted interest as a
tool for planning especially for scheduling the exploitation of mineral deposits, see for
example Chiles 51984)4 The criteria imposed on tﬁe selection of waste disposal sites arc
frequently %iven in terms of the probability of alcakage; sinulation of hydrological pa-
rameters allows a non-analytical estimation of such probabilities and takes into account
the uricertainties associated with those parameters as illustrated in Silliman (1986). Al-
though multivariate estimation, e.g., cokriging, has perhaps been of less interest than the
univariate casc, even in mining applications multivariate simulations are of considcrablc
importance as exemp'ified in Chiles (1984), Dowd (1984), Isaaks (1984) and Alabert
(1987a). But interest in the problem pre-dates geostatistics as seen in Shinozuka {1971).
In general the methods used arc not true multivariate simulations and do not condition
the data by cokrigiug in a fashion fully analogous to the way k'ri%ing is used in the uni-
variate case. The program given by Carr and Myers (1985) partly bridged this gap but
it is a comproruise since the intervariable dependcncc isignored in the simulation stuge.
Many of the dilliculties inlierent in the use of the Turning Bands method are avoided by
the nuse of the covariance decomposition method developed by Davis (1987a, 198711) and
Alabert (1987b). What remnincd then was to extend that method to the use of cokriging.
One difficulty arises in thr multivariate case that does not occur in the univariate case,
namely the undersampled problem, i.e., not al variates are sanipled at al locavious. It is
seen that essentially the sarqe algorithm given by Myers {1984), and then implemented
in Carr, hlyers and Glass (1985), provides a resolution of the difficulties associated with
multivariate simulation in the undersampled casc.
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1.1 The Turning Bands Method-Extensions

The fundamental characteristic of the Turning Bands method is that it produces a sim-
ulation of a random function defined in n-space as a linear combination of simulations
of uncorrelated random functions defined in 1-space such that the covariance function
and first moment are preserved. Theoretically the linear combination is an integral with
respect to a uniform probability measure on the unit n-sphere. In practice this integral
is approximated by a finite linear combination of simulations corresponding to equally
spaced directions and the simulations for the respective random functions defined in 1-
space may be obtained by one of several techniques although the Box-Jenkins Moving
Average seems to be the one most commonly used. To preserve the covariance it is nec-
essary to find a corresponding 1-dimensional covariance, 1.e., one must solve an integral
equation. It iseasy to see that at least theoretically thisformulation will extend easily to
the vector case. Following the notation used in Myers (1982) let ,Y(tB = Yl(tg, oY ()]
be a second order stationary vector random function defined in 1 space and les a
uniform probability measure on the unit n-sphere then

Z(z) = |Z1(2), ..., Zm(7)] = /Y(< z,5 >)dP(s) (1)

is a second order stationary vector random function defined in n-space and the matrix
covariance function for Z(z) is obtained from the integral (we assume without loss of
generality that all components of Z(z) have zero means)

Culh) = B{z(z + WT2(2)} = [ C.(1)aP(s) 2

Cyo(h) = B{Y (< z+ h,s >)TY (< 2,5 >)} (3)

and as in the univariate case we assume that any component of Y (< u,s >) and any
component of Y (< v,r >) are uncorrelated for all u,v unlessr = s. It iseasy to see that
exactly the same relationship is established between all the components of Cz and Cy
as used in the univariate case. For the case of n = 3 the 1-dimensional covariances and
cross-covariances are obtained easily from the corresponding 3-dimensional covariances
and cross-covariances respectively. In the univariate case the practice is to represent,
covariances as positive linear combinations of standard models and hence the problem
of finding the 1-dimensional covariance is reduced to finding the associated covariances
for those standard models. However cross-covariances do not have to be positive linear
combinations of covariances; the positive definiteness condition is more complicated as is
shown in Myers (1984, 1987). In practice one models the cross-covariances by (general)
linear combinations and the positive definiteness condition is satisfied by imposing suffi-
ciency conditions on the coefficients. In this case although there are more relations, the
problem of reducing the dimension on which the random vector is defined is solved in
essentially the same way vector random function in 1-dimension still remains although
even if this problem is solved the computational difficulty associated with producing
simulations in 3-dimensions would have significantly escalated.

1.2 Linear Co-regionalizations
The use of alinear co-regionalization provides a solution to several problems arising out

of the need to model cross- covariances (or cross-variograms) as well as the subsequent
step of co-simulation of correlated random functions. More specifically let the rdndom

vector Z(z) be represented in the form

Z(z) = W(z)B (1)
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where W(z) is a random vector with p uncorrelated components and B isapX m matrix,
the covariance matrix function of Z(z) is given by

Cz(h)= BTCw(R)B (5)

and Cyw (k) isdiagonal. The variogram matrix function has an anal ogous representation.
Wackernagel (1988) has used aform o a principal components deromposition to obtain

B. Given this representation it is then sufficient to simulate each component of W (z)
independently and the (unconditional) simulation of Z(z) is obtained from (4). To
condition Z(z) one might proceed in either o two ways, condition the components of
W (z) which would require converting the datafor Z(r) to data for W (z) or use cokriging
to condition Z(z) directly in a manner analogous to the conditioning in the univariate
case (this is the algorithm used in Carr and Myers, (1985)). In order to convert the
datafor Z(z) todatafor W(z), B would have to be invertible and in particular it would
have to be square. If Z(z), i.e., each component of Z(z), isdefined in n- space then the

components of W{z) aredefined in n-space and hence it would still be necessary to use the
Turning Bands Method or some other technique to produce the individual simulations.
When B isinvertible the number of steps involved in the simulation process is directly

proportional to the number of components in Z(z) (assuming that B and C‘w(h) have
alrcady been determined).

1.3 Marginal Distributions

While it might seem plausible not to impose conditions on the univariate, i.e. marginal,
frequency distribution, the alternative is to alow that distribution to be essentially in-
determinate. All of the techniques currently in use for univariate simulation, as wel as
those proposed above and to follow, use finite linear combinations of uncorrelated ran-
dom variables. It is then appropriate to require that the common distribution of these
random variables be such that it is preserved under finite linear combinations. Although
the normal is not the only distributional type with this property it is the one that is
most frequently used. In turn this generalf;/ requires that a non-linear transformation
first be applied to change the marginal to a standard normal then the inverse transforma-
tion is applied subsequently to the simulated values. In the univariate case the original
margina distribution is preserved but the moments may not be, in general only the first
two moments of the transformed data are preserved unless strong multivariate normality
assumptions are invoked in order to be able to compute the bias adjustments. In the
case of the simulation o a vector random function tie concept of a marginal distribu-
tion is carried one step further, i.e. there is a marginal distribution for each component
(not necessarily the same) and a joint distribution between components. Without multi-
variate distributional assumptions one can only transform the data for each component
separately and hence preserve the separate marginal distributions. While it seems to
be unavoidable, the construction of simulations by linear combinations of uncorrelated
random variables places a severe limitation on the properties that can be preserved for
the simulations.

2. THE COVARIANCE DECOMPOSITION

Using the formulation of cokriging given in Myers g1982) and the presentation of the
simu%ation for the univariate case given in Davis (1987a, 1987b) the vector simulation
using simple (co)kriging is easily obtained. We consider first the case where Cz(h) is
known, the function 1s full-sampled and simple cokriging is used. Subsequently ordinary
cokri%ing with the undersampled form is considered and special results relating to the
use of a regional co-regionalization are given.
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2.1 Unconditional co-simulation

We begin by assuming that Z{z) is an m-component vector random function whose
components are second order stationary and all with mean zero. The matrix covariance
function is then iven by the middle term in (2) above. If z,,....z, are the locations
where a simulate!  value is required, form the matrix

C(II*II) ...... C_'(:cl_zn)
C(zp — 1) oo Clz, - z,)
Cll ....... éln
= : : (6)
Chnt cenee Crn
and let ¥ Xy be a Cholesky decomposition of . Then
{Z21), - Zs(za)} = V1,.. . Va}Z0 (7)

is a vector of simulated values of the vector function Z(z) at the required locations

whose covariance matrix is given by (6) when {V,....,V,} is a nm-component vector of
uncorrelated random variables. This of course Is exactly the same as the result given in
Davis (1987a) except that scalars are replaced in the appropriate places by vectors or
matrices.

Likewise if A is a square root of ¥, then agan the vector extension of Davis's
construction is obtained. Moreover the Minimax poﬁynomial construction for the square
root of ¥ can still be used as in the scalar case.

2.1.1 Simulation Discrepancies-Approximation Errors. Although it is generally assurned
or shown that a particular simulation algorithm has the minimal desired properties of
reproducing the mean and covariance as well as the marginal distribution, little attention
has been given to the question of whether simulations are equivalent in an appropriate
sense. In the particular case of using asquare root instead of the Cholesky decomposition,
and moreover an approximation to the square root such as is given {)y the Minimax
Polynomial, a more direct comparison is possible. We will state the results for the
vector case but the scalar case is simply the case of m = 1.

First suppose that the square root A, of ¥ isexact i.e., A? = ¥. Consider then
the difference oF the vectors o? simulated values; a strong form of equivalence would
require that this difference be a zero vector for any choice of the vector of uncorrelated

random variables {V1,....V,,}.By equating the two, i.e., setting the difference equal to a
zero vector, we see that this implies that A = ¥;; which is not possible. Consequently
for a given simulated vector of uncorrelated random variables two different realizations
are obtained. However it is possible for the two algorithms to be equivalent in another

sense, for each vector might be another unique vector {V/,...,V'} such that
{‘?ly‘--Vn}EU - {V1l>>‘7nt}A (R)

since A isinvertible there is a unique solution. However unless the random variables are
all uniformly distributed the probability of the one realization may not be the same as
for the other and hence in terms of the (vector) random function the two methods are
not equivalent even though the first and second order moments are preserved and the
marginal distribution is a%so retained.
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Now consider the possible discrepanciesintroduced by using an approximation to
the square root. Let f(t) = (¢)}/? and g(t) be the approximating function, writing 3 in
diagonalized form

L =Q% diag{A1s.s Aum }Q (9)
then we have
A={(2)=Q" diag{f(M),..., f(Xum)}Q (10)
and
9(2) = Q7 diag {g(M),....9(Anm)}Q (11)

Using A and ¢(X) to construct simulations with the same vector of uncorrelated random
variables we see that the covariance in the one case is £ and in the other it is

9()]* = QT diag {¢*(M1),...,9* (Aam)}Q (12)
and the norm of the difference between (11) and (12) is given by
tr{Z - g (Z)HE — o*(2))

s = g ()1 < (nm){max{N ~ ¢*(X7,)}? (12)

3
3

.
il
—

We may also consider how close the one realization is to the other when the same
vector of uncorrelated random variables is used for both. While there are several differ-
ent metrics that might be used the mean square distance would seem rcasonable. Let

{Zor(z1),. oy Zag(zn)}, {Zeg(21), oy Zog(zn)} be the simulations obtained by using f.g¢

respectively. If we let V= {\71, . ,Vn} then the distance between these two vectorsis
={Zss(z1) - qu(zn) s Zop(zn) — Zeg(zn)}
(Zag(2)) = Zeg(21), 1 2o = Zeglzn)}T (14)
=V{Z U'g(E)}{Ev ~g(EpvT (15)

=VKVT

This is a quadratic form and since K is positive definite the largest cigenvalue of K can
be used to obtain a bound on D in termsof the values of Vi, ....., @, morespecifically

we have o
D < max o, {VVT}/2 (16)

but the eigenvalues of K are of the forrn [f{A;) — g(X)}%. If the components of V arr

uncorrelated standard normal random variables then the distribution of {VVT}I/2 is
that of the square root of a chi-square with nm degrees of freedom. Alternatively we
might consider the expected value of D instead of just a bound. By re-writing D in a
more convenient form we have

E(D) = tr{g*(%) - ¥} {¢*(2) - B}

nm

=3 - gt (17)

1=1

which is the same as the norrn of the differrnce between the covariance matrices.
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¥% T

—
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more convenient form we have

E(D) = tr{g*(2) - B} {¢*(Z) - B}

nm

=37 gt ) (17)

1=1
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Corresponding to the n data points zy, ..., z, and thep unsampled points z, .1, ...., Zn+,
partition the vector of values o Z into Z4 and Z., |ike’WiS€YI/Jartition the row vector V
of vectors of simulated uncorrelated random variables into V; and V.. The covariance
matrix for the full vector Z and its Cholesky decomposition is given by

T 312] _ [Ln 0 } [Uu Uu} (23)
To1 a2 Lay Ly 0 Ui
Using the simulation formulation given in (7) above we would have
Zea = VU1 Zge = VaUis + V, Uy (24)

and if we let V; = Z,U;! then Z.4 = Z4 and the simulation is conditioned to the data.

If the square root decomposition is used and the square root of the full covari-
ance matrix is given in terms of a partitioning corresponding to the partitioning of the
covariance matrix then we have

Zoy = ViAi + Ve Az, Zye = VaArz + V. Az, (25)

and to condition the simulation we let V; = {Z; — V Az, } AT

3.1.2. Ordinary Co-kriging. We might proceed in two ways to remove the assumption
of zero means used above. One possibility is to assume that the means are known and
modify the equations accordin Fy, thn second which is more realistic replaces simple
kriging by Of:}inary kriging and we simply compute the adjustment necessary to make
that change. To change from simple co-kriging to ordinary co-kriging we must add the
difference between the ordinary co-kriged value and the simple co-kriged value. Writing

as before Z, as the row vector o data valuesof Z, let I' be the column of weight matrices
in the simple co-kriging estimator and I'° asthe cnrresponding column of weight matrices
in the ordinary co-kriging estimator. In addition let M = [M;, ..., M,,] be the vector of

means, M= be the estimated vector and E a column o identity matrices, then the true
difference and its estimate are

Zok * ‘Zsk* = M{I — ETF} =M=+ {I; ETI‘} (26)

It is then only necessary to add this term to Z., as given in (24) or (23) to compensate
for the unknown non-zero means.

3.2 Under Sampled

When one component is not sampled at one location we must either shift a sub-column
and a sub-row,l.e. a column o entries within a column of matrices and similarly for
rows in corresponding to data to the part corresponding to locations to be estimated or
alternatively we must further partition the covariance matrix to provide the separation.
This problem only occursin connection with conditioning. For simplicit weillustrate the
algorithm for simple co-kriging with zero means and where there 1s on& one component
;hl'cl\t is under sampled at only one location. We must partition £,; iuto 9 sub-parts as
ollows

w11 12 13
ot el
s )
i1 4T Zd

and in turn we must partition £, and 2; into three parts each corrcsponding to the
partition in (27). These in turn induce partitions of the Cholesky decompositions of the
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full covariance matrix. In turn we must partition Zy into three parts Z}, 2%, 73 and
correspondingly partition V, into three parts V!, V2, V2. Then we may write

Zy=V Ul +VI UL+ VP UR (28)
2L =V U+ ViU +VEUSE (29)
Zh=Vi Ut +VEUuRE + ViUl (30)
Ze =V] UL+ VEUR 4V} UL

+V, Uz (31)

Sincewewant Z!, = Z} and Z3, = Z$ we have for a given simulation of V] two equations

and two unknowns in the vectors le and V. Additional components being under
sampled at the same or additional locations simply induces a more complex partitioning.
In terms of a program these can be tracked by the use of counters.

4. SOME PRACTICAL ASPECTS

Any consideration of vector valued random functions must deal with the question of the
modeling of cross-covariances. The most common practice either implicitly or explicitly

uses a niodel of the form %wen by (5). In this case the actual functions used are all
covariances (and in particular the posmve definiteness condition is assured by imposing
conditions on B). This is necessary because one can not impose sufficient conditions on
a cross-covariance separately from the conditions imposed on the associated covariances
and hence one can not easily identify standard cross-covariance models. Myers {1982,

1987) suggested an alternative method for more direct modeling of the cross-covariance<
by considering the covariances o the sum and difference of the two componernts in ques-
tion. Theoretically either of these is sufficient to construct the cross-covariance (in
conjunction with the associated covariances) but since the modeling is not perfect both
are necessary. This would appear to allow for more general models. Unfortunately if all
covariances are modeled with finite linear combinations of standard models (no matter
how large this set is) the requirement that the cross- covariance produced from the co-
variances of the sum and diflerence coincide reduces the technique to the use d a model

like that given by (5). One hassimply arrived at that point by a different process. In turn
this implies that in practice the distinction between "true" co-sirnulation and scparate
simulation of uncorrelated components used to re- construct the correlated components
is more one of how the conditioning is done than how the simulation is done.

5 NUMERICAL RESULTS

As atest of the program, 20 runs were made of an unconditioned sirnulation for two
variables. Likewise 20 runs were made conditioned on 100 points. In each case simulated
values were roduced for a 10 x 10 grid. The variogram for each of the variables was
spherical wit  asill of 1.0 and arange of 6.0 The cross-variogram was chosen SO that the
variogram Of the difference of the two variables would also be spherical with the same
parameters. The resulting sample variograms and variogram of the differcnce, plotted
against the model, are shown in Figures 1, 2. Computing time for 20 runs was less than

5 minutes oN a VA\ 11/750.
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the multivariate version of the matrix decomposition simulation algorithm was written
by Jerry Jalkanen.
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