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ABSTRACT 

The interpolation of spatial data has been considered in many different forms. The various forms 
of kriging are among the best known in the earth sciences although techniques such as inverse distance 
weighting were and are in use for spatially located data. In the numerical analysis literature various 
forms of splines and more recently radial basis functions have been developed and used. Because these 
techniques have been developed in very different contexts the relationship between them has not 
always been apparent. Various forms of kriging are considered as well as kernel estimators, splines 
and radial basis functions. By using the dual form of kriging and the positive definiteness property of 
the variogram connections are shown between splines, kriging and radial basis functions. One of the 
distinctions between kriging and other interpolators is the incorporation of the support of the samples 
and explicit estimation of  linear functionals such as spatial integrals. 

INTRODUCTION 

Interpolation is a technique that is well-known to users of  tables tabulating 
the values of  a function, generally a function not easily computed. Interpola- 
tion in such cases is ordinarily used to obtain values with an additional deci- 
mal place of  accuracy and the interpolation is linear. Interpolation may in- 
clude two facets and often these are not distinguished. For example, suppose 
that the values of  a function f(x) are known (or tabulated) at points 
Xl,X2,...,xn. In the case of  points in one-dimensional space one is interested in 
the value o f f ( x )  for xi_ ~<x<x~. Continuity o f f ( x )  is sufficient to ensure 
that linear interpolation is adequate when x i -  xi_ ~ = ai is small. That is: 

f *(x) = [ (x--xi-1)  /ai] f (xi_l  ) + [ ( x i - x )  /ail f(xi)  

will be very close to f(x). The error of interpolation/estimation is 
f*  (x) - f (x)  but there may be other errors. The data may also incorporate 
errors, in this instance the data is being smoothed and the function is being 
interpolated at the same time. While the two nearest data points may be suf- 
ficient for simple interpolation, estimation of  the errors in the data (smooth- 
ing) will usually require the use of  additional data locations. The simple form 
of  interpolation illustrated above does not easily extend to functions defined 

0016-7061/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved. 
SSDI0016-7061 (93)E0105-5 



18 D.E. MYERS 

on higher dimensional spaces, particularly when the data locations are irreg- 
ularly spaced. In particular it is usually more appropriate to use additional 
data locations even when the data are error free. Although soil data are often 
collected on transects and along any one transect the problem is one-dimen- 
sional, the application is more commonly two-dimensional. For example, if 
the objective is to characterize sodium concentrations in a field, as in the 
work by Burgess and Webster (1980a-c),  then it is not sufficient to interpo- 
late only along the transects. 

More generally, interpolation occurs in at least two contexts and is some- 
times called estimation or prediction. In the first instance there is a known 
function given either by an analytic representation or as the solution of an 
integral or differential equation. The equation might be difficult to solve, the 
function might be difficult to evaluate or the objective might be to optimize 
the function. Finding the op t imum will in general require solving differential 
equations, even when evaluation of the function is straightforward the solv- 
ing differential equation (s) may not be. 

Note that when interpolation is viewed as a form of approximation it is 
generally approached in a very different way. In the earth sciences there is 
another form of  the interpolation problem that is more familiar. There is an 
unknown function f, values of f are known at a finite number  of points in 
space, and the objective is to produce an approximation to the value of f a t  
one or more points where the functional value is not known. Alternatively, 
the "values" might be linear functionals such as spatial integrals or deriva- 
tives, the objective might be to estimate a different linear functional, e.g., a 
spatial integral over a different sized or shaped region. When the function is 
unknown it is usually necessary to begin with a model, it may be that what 
appear to be different models produce the same results. The model in turn 
will ordinarily include one or more parameters that must be chosen or esti- 
mated from the data. Either explicitly or implicitly the model will lead to an 
interpolating or approximating function, and often the model is chosen to 
ensure that the interpolating function has certain desirable properties. The 
model may be either deterministic or stochastic, and the degree to which the 
interpolating function approximates the unknown function will have to be 
quantified in a corresponding manner,  but in some fashion the interpolator 
must incorporate the extent to which the function is unknown. The interpo- 
lation problem arises in many contexts, it has been considered in statistics in 
several different forms, in numerical analysis and with various ad hoc solu- 
tions in application fields. When the function is unknown it may be more 
difficult to directly quantify the error or the uncertainty of  estimation. The 
connection between estimation and quantification of  the uncertainty may be 
approached in at least two ways. First, perhaps the most common,  the esti- 
mator produces an estimate of  the value of  the function at a non-data point 
and there is also a measure of  the uncertainty associated with that estimate 
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(for example, the variance of the error of estimation). Second, the uncer- 
tainty may itself be estimated but in such a manner that it is associated with 
an estimated value of the function. The first approach is typified by ordinary 
kriging and the second by indicator kriging. The unknown functional value 
may be estimated by representing it as the mean of a random variable and 
then estimating the mean. It should also be noted that some interpolation 
schemes such as inverse distance weighting do not provide any measure of 
precision or accuracy. 

In general one should draw a distinction between interpolating spatial data 
and contouring spatial data although software packages that contour data 
usually provide an interpolation scheme. Contouring might be best thought 
of as the algorithm that starts with data on a regular grid and produces the 
graphical contour plots whereas interpolation (and smoothing) is used when 
the data are not available on a regular grid. Note that if interpolation is used 
as a first step in producing a contour plot then the choice of the grid mesh for 
interpolation is of some importance. Because a software package may use dif- 
ferent interpolation schemes different contour plots may result, the uncer- 
tainty in the contour plot is a combination of the uncertainties associated 
with the interpolation step and the uncertainties associated with the contour- 
ing step. 

DETERMINISTIC METHODS 

Kernel approximation 

Consider a sample from a random variable, u~,. .... un. If the cumulative dis- 
tribution function is given by F (u )  then the empirical distribution function 
is given by: 

F*(u)  = (1/n) ~A(u,)  (1) 

where A (u) = 1 if u >1 u/and is 0 otherwise. 
This approximation function is not very smooth as can be seen by exam- 

ining the corresponding approximation to the density: 

f * ( u )  = (1 /n )~O(u -u i )  (2) 

where 0(u)  = 1 if u = 0  and is 0 otherwise. The ~ function places a "spike" at 
each data value. Unfortunately, as interpolators neither of these functions is 
very good in that F*  simply uses the value at the nearest data point. Both of 
these can be improved by replacing the ~ and A functions by functions which 
smooth out the spikes. For example if: 

O( u ) = e x p ( -  ( u/b ) 2) (3) 

t h e n f  * could be replaced by: 
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K~.,a,O(u- ui) (4) 

where K is a normalizing constant. Now there is an approximation or inter- 
polation for fbe tween  data values. As the constant b increases the 0 function 
approaches the ~ function. This idea is easily extended to data in one-dimen- 
sional space by a slight modification. Simply let ai =f (u i ) .  If in the 0 function 
the variable u is taken to be the magnitude then an isotropic interpolator is 
obtained that extends to 2, 3 or higher dimensional spaces. The constant b is 
called the band width of  the kernel function and approximately represents the 
radius of  an interval about a point  which will include the data points with 
non-zero weights. By adjusting the band width the interpolator gives greater 
or lesser weights to data in terms of  how close the data locations are to the 
point where the interpolation is desired. The constant K is simply the sum of 
the values of the kernel function at the different data locations. As the con- 
stant b changes, the interpolator changes from a smoother to a strict interpo- 
lator. Kernel estimation is well-known in the statistical literature for fitting 
probability distributions but is less well-known for spatial interpolation. While 
the function being fitted or interpolated can be thought as defined in one di- 
mension, the data are not really spatial, i.e., there is no "location" for each 
data value. There are practical problems if the method is used for spatial data. 
The Gaussian kernel (eq. 3 ), is somewhat arbitrary although it has as a limit 
case the ~ function (as b goes to zero). There is little in the literature to sug- 
gest how to choose the kernel for a particular data set. The connection be- 
tween kernel estimation and splines is discussed by Silverman (1984). 

Inverse distance weighting (IWD) can be seen to be a special case of kernel 
estimation. Let O(u)= 1/u" (where a > 0 )  in lieu ofeq .  (3), then eq. (4) is 
the IWD interpolator. Usually a = 1 and u - u i  is interpreted as the distance 
between u and u~. In contrast to the Gaussian kernel above, the inverse dis- 
tance weighting kernel will have infinite band width. Note that the only real 
restriction on the kernel is that it be positive valued; hence the choice is not 
unique. Since the parameter a is not unique it is appropriate to use the data 
to select a value. This can be done by using a form of  cross-validation. Kane 
et al. ( 1982 ) used IWD to interpolate hydrogeochemical data in two different 
regions. In each region a subset of  the data locations was used as a test set, the 
parameter was optimized by estimating the values at the locations in the test 
set using the remaining locations. This is a form of  cross-validation. It was 
found that the sensitivity of the results to the parameter value varied consid- 
erably, depending on the geochemical variable and on the region. While IWD 
is relatively easy to apply, once the value of  a has been selected, it has at least 
two disadvantages. First, the weights depend only on the distances between 
the data locations and the particular location to be estimated, i.e., the relative 
locations of  the data locations to themselves is not incorporated into the in- 
terpolation scheme. Second, IWD is not exact, i.e., because the location to be 
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estimated must be different from all of the data locations. Moreover when the 
location to be estimated is close to a data location the weight at that location 
will dominate completely. There does not seem to be a simple way to convert 
the IWD interpolator into a functional form nor to estimate linear functionals 
such as spatial averages or derivatives. 

Splines 

The thin plate sp l inef*  can be derived by imposing two conditions: 

[f(x~)-f *(x~)12=O (5a) 
i =  1,n 

and: 

~[Df*(x) ]2dx is minimized (5b) 
R 

where D is a second-order differential operator and R is the region of interest. 
Equation (5a) corresponds to exactness and eq. (5b) to a smoothness con- 
dition. In one dimension this variational problem is easily solved since D is 
just a second derivative and R is an interval. It is somewhat more compli- 
cated in higher dimensions and in particular one must choose the degree of 
anisotropy, i.e., the relative weighting of the various partial derivatives in D. 
The smoothing spline is obtained by allowing a compromise between smooth- 
ness and exactness, that is: 

[f(xi)-f*(xi) ]2+; t f  [Df*(x) ]2dx is minimized (5c) 
i =  l ,n 

R 

The constant 2 is called the smoothing parameter and is related to the var- 
iance of the error term. Thin plate and smoothing splines are implemented in 
a number of commercial software packages. The connections between splines 
and kriging was noted as early as 1970 by Kimmeldorfand Wahba, and it was 
made even more explicit by Matheron ( 1981 ). It has also been discussed by 
Dubrule ( 1983 ) and the use of splines is discussed by Hutchinson and Ges- 
sler (1994). 

Trend surfaces 

For a point x~ in k-space, let the coordinates be denoted by x o, j =  1 ,...,k. A 
monomial of degree q in the coordinates is of the form (x,)a~ (x,2)a2... (Xik)ak, 
where the exponents are non-negative integers whose sum is q. The trend sur- 
face interpolator f *  is a linear combination of such monomials: 

f * (x) = E E"" ~ bi (xi,)alJ(xi2 )a2j (Xik)akj (6) 
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where the coefficients are obtained by least squares. It is both an interpolator 
and a smoother. In one dimension it is simply the best fitting polynomial. 
More generally the xo's could simply be independent  variables and eq. (6) is 
simply the regression equation. This is implemented in standard statistical 
packages and if f is multivariate normal with mean f *  then statistical infer- 
ence can be applied to the coefficients. Applied to spatial data, the trend sur- 
face interpolator provides regional information but not local information. In 
part this is because the interpolator is too smooth and generally not exact 
(unless a very high degree polynomial is used).  It has been shown by Mar- 
cotte and David (1988) that the trend surface interpolator is the same as 
universal kriging (except at the data points) when a pure nugget variogram is 
used. 

STOCHASTIC METHODS 

Models 

When the function is unknown and there are no state equations sufficient 
even to place the function in a particular class of  functions (such as polyno- 
mials or functions with continuous second derivatives) it is necessary to 
choose a class in a different manner. Let ho(x),...,hp(x) be known linearly 
independent  functions (defined on k-dimensional space). For example, a 
common choice would be to let these functions be mononomials  in the coor- 
dinates ofx.  Then the unknown function is considered to be of  the form: 

f ( x )  = Y(x) +doho(x) + "" +aphp(x) (7) 

Moreover the data may be of  the form: 

f ( x )  =f(x)  + e (x) (8) 

where e (x) represents error or noise. The objectives include removal of  the 
noise term from the data and estimation or prediction off(xo) .  One way to 
choose a class of  functions is f o r f t o  be considered as a "value", i.e. a reali- 
zation, of a random function Z(x) .  In addition Y(x) is assumed to have mean 
zero and to have a known spatial structure function. The mean of the un- 
known random function Z(x)  is then represented by the linear combination 
of  the known linearly independent  functions. In the simplest case only h0 is 
present and is a constant function. The simplest form of  an estimator would 
be: 

f * ( x ) =  Z 2~(x)f(x~) (9) 
i ~  1 ,n 

The model given by eqs. ( 7 ) or (8), or both, is not complete without spec- 
ifying the spatial structure function. This is a rather different representation 
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than given for the other interpolators, the interpolating function is expressed 
as a sum of  functions but those functions are not explicitly known nor speci- 
fied a priori. In normal practice it is common  to write the coefficients in eq. 
(9) without indicating the dependence on x although it is clear that they are 
dependent.  This reflects an emphasis on estimating or predicting the value of 
f(xo) in lieu of  estimating the function fi The question then is how to 
(uniquely) determine the coefficients in eq. (9)? This should be done in a 
way that allows the incorporation of  the information contained in the data, 
in particular the degree of  spatial correlation. It is accomplished by a combi- 
nation of  assumptions pertaining to the random function Z(x) and imposing 
certain conditions on the interpolator. These are given in statistical form, the 
most  important  ones pertain to the spatial structure function. 

Spatial structure functions 

The covariance Cx(h) and the variogram 7x(h) are two common forms of 
spatial structure functions. They are defined as follows: 

Cx( h ) = C o v  [ Z (x  + h,Z(x) ] (10) 

?x(h) =0.SVar[Z(x+h)-Z(x) ] ( 11 ) 

These are characteristics of  the random function Z(x) and not characteristics 
of  the data values. Both of  these quantify the interdependence of pairs of  ran- 
dom variables, Z(x+ h) and Z(x). The basic underlying intuitive premise is 
that values at locations that are close together are more similar and values at 
locations far apart are relatively independent.  In order to infer the covariance 
or variogram from data it is necessary to assume that they do not depend on 
x. These assumptions will be made more explicit. If  Z(x) is second-order 
stationary then the covariance will exist and not depend on x (in that case the 
subscript is unnecessary). The variogram can exist under slightly weaker con- 
ditions, commonly  known as the intrinsic hypothesis. If Z(x) is second-order 
stationary then ?(h)=C(O)-C(h). Although the covariance is always 
bounded the variogram need not be. The most  difficult problem is the infer- 
ence of  the covariance or variogram, in part this is because the data is not 
replicative, i.e., when using the model  above the data is a non-random sample 
from one realization of  the random function and most standard statistical 
inference methods are not applicable (not even when additional strong as- 
sumptions such as multivariate normality are made).  In addition all the known 
standard models satisfy those conditions, hence it is for practical reasons rather 
than for theoretical reasons that one of  the usual stationarity conditions is 
imposed. Positive definiteness is much more important  however since it en- 
sures that the coefficient matrix in the kriging system is invertible, i.e., that 
the solution is unique. One of  the criticisms of  kriging is that the estimation 
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and modeling of the spatial structure function is at least partially subjective, 
although automatic methods such as weighted least squares and maximum 
likelihood have been used to estimate the parameters of  the models. 

The dual form 

Recall that the system of  equations for the coefficients in the kriging esti- 
mator can be written in the form: 

r Go [~__/x ~/] [M] = [/./,o ] (12, 
where F i s  the vector of  coefficients in eq. (8) and M i s  the vector of Lagrange 
multipliers (all of which depend on x).  The interpolator (8) can be re-writ- 
ten in the form: 

f * (x) = ~ b i g ( x - x i )  + ~ajhi (x)  ( 13 ) 

where the coefficients are obtained from a system with the same coefficient 
matrix as in eq. (12) but the right-hand side will be replaced by a vector of 
the data values and a vector of  zeros. That is: 

G B Fo [HT ~/] [A]=[0 ] (14) 

If the spatial structure function is a variogram which only satisfies a weak 
positive definiteness condition the submatrix G might not be invertible, but 
the coefficient matrix will be invertible. That this is a sufficient condition is 
shown in Myers (1988a) The form given by eq. (14) appears elsewhere in 
the literature and in particular includes the thin plate and smoothing splines 
as special cases (Cressie, 1989a, b ). 

Radial basis functions 

Hardy ( 1971 ) proposed an estimator of  the form given by eq. ( 13 ) (but 
without the sum of  the h's) using a special choice of the g function known as 
the multiquadratic. If that simplified form of interpolator is required to be 
exact then the equations in ( 14 ) become: 

aB=ro (15) 

and positive definiteness of the g function is sufficient to ensure a unique 
solution for this system. Other functions include Euclidean distance (which 
would correspond to a linear variogram ) but it was noted that the coefficient 
matrix was sometimes not invertible. It was also noted that by adding the 
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additional terms in eq. ( 13 ) and using eq. (14) instead of eq. ( 15 ) that in- 
vertibility was assured. In the numerical analysis literature, interpolators given 
by eq. ( 13 ) are known as radial basis function interpolators (Powell, 1990). 
The function g is a radial basis function (called radial because only isotropic 
models were used). As seen above, however, there is a duality between such 
estimators and universal kriging. By using the stochastic formulation it is easy 
to see why the additional terms in (12) are needed, they represent the un- 
biasedness conditions. 

Bayesian models 

It is well known that the (unique) minimum variance unbiased estimator 
of Z(x) given the data Z(xi ),...,Z(xn) is the conditional expectation. More- 
over if Z is assumed to have a multi-Gaussian probability distribution then 
the conditional expectation is linear in the data and coincides with the simple 
kriging estimator. The same results can be obtained in a slightly different 
manner by assuming a multigaussian distribution but deriving the a poster- 
iori distribution given a prior on the mean and covariance. If the prior is non- 
informative then the mean of the a posteriori distribution is the simple krig- 
ing estimator and the variance of that distribution is the kriging variance. 
Note that the kriging estimator is only the minimum variance linear estimator. 

Non-linear extensions 

Several less than desirable properties of the kriging estimator were noted 
very early by various authors. These include an over-smoothing and non-ap- 
plicability for certain problems such as the estimation of probabilities. At least 
two extensions have been proposed, disjunctive kriging (Matheron, 1976) 
and indicator kriging (Journel, 1985). The disjunctive kriging estimator can 
be thought of as a generalization of (8) as follows. Consider the term 
2i(x)f(xi), this is a special form of a function given by: 

A,(x,f(x,) ) (16) 
The disjunctive kriging interpolator would be given by: 

f ~K(X) = ~Ai [ (x,f(xi) ] (17) 

Then the functions Ai, t= 1 ,...,n must be estimated or modeled. In disjunctive 
kfiging this is done by assuming a bivariate distribution for Z that is factora- 
ble in a certain sense and which allows the representation of the A's in terms 
of orthogonal polynomials (whose weight function is the univariate distribu- 
tion). For example, if a bivariate Gaussian is used then the orthogonal func- 
tions are the Hermite polynomials. The problem reduces to solving multiple 
simple kriging systems to obtain the coefficients in the Hermite expansions. 
Note that the disjunctive kriging estimator is in a sense the same kind as the 
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ordinary, simple and universal estimators, i.e., it directly produces an esti- 
mate of the value of the unknown function. 

Indicator kriging proceeds in a different manner. A probability distribution 
is associated with each location. The estimate of the value at a location is 
obtained by producing an estimate of the corresponding probability distri- 
bution. At data locations the probability distribution is like a Heaviside func- 
tion, that is, a pure jump. Indicator kriging was introduced by Journel ( 1985 ) 
as an alternative to disjunctive kriging. It does invoke strong assumptions, 
however, namely strong stationarity (as contrasted with second order station- 
arity or the intrinsic hypothesis for other kriging estimators). 

LINEAR FUNCTIONAL ESTIMATION 

There are at least three linear functionals (of a function) that are of inter- 
est. The point value is one, the integral over a prescribed area or volume is 
another and the value of the derivative (or a partial derivative) is another. 
One of the advantages of the kriging estimators is that the formulation leads 
naturally to a slight modification allowing the estimation of any one of these 
functionals. Only the right-hand side of eq. ( 12 ) needs to be changed. In con- 
trast if interpolators or estimators of the form given by eq. ( 13 ) are used then 
only the functional applied to the interpolating function is obtained. How- 
ever, by using the duality between the two different formulations it can be 
shown that this is equivalent to estimation of the functional applied to the 
unknown function. 

MULTIVARIATE EXTENSIONS 

If the functionfis  replaced by a vector function then one must ask in what 
sense the vector function is being interpolated and what kind of data is avail- 
able. Both ordinary and disjunctive kriging have obvious extensions as shown 
by Myers (1988a) wherein the form of the interpolator remains the same, the 
kriging equations have the same form and the univariate case is subsumed 
under the vector case. Modeling the spatial structure function is much more 
complicated. The positive definiteness is defined in a completely analogous 
fashion and is sufficient to ensure the invertibility of the coefficient matrix. 

SUMMARY 

Interpolation from spatial data can be performed in various ways by invok- 
ing different assumptions and models. In some instances equivalent interpo- 
lators are obtained. None of these approaches, however, avoids the problem 
that is inherent, namely that if only data are available then the problem is ill- 
posed and there is no unique interpolator. 
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