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Space–time correlation models and contaminant plumes
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SUMMARY

A contaminant plume might be described by a function defined in space–time. Spatial integrals or time derivatives
of this function as well as time derivatives of spatial integrals will quantify characteristics such as the total volume
of the plume, the total concentration of the contaminant in the plume, rates of change of the volume, and rates of
change of concentration.

The plume function usually cannot be derived in analytic form but instead must be estimated or approximated.
The dual form of the kriging estimator, which is equivalent to the use of radial basis functions, provides a tool for
modeling this function in analytic form. The extension of the kriging estimator, in its usual form or in its dual
form, to space–time poses no problems since the estimator and the equations are essentially dimension free. The
difficulty is an adequate choice of space–time variograms or covariances.

The product–sum and integrated product–sum models provide an extensive array of valid models and also lead
to a simple process for fitting the models by the use of marginal variograms. Examples are given and an
application to air pollution data from the Milan District (Italy) illustrates the method. Copyright # 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

An air pollution plume or a contaminant plume in the subsurface cannot easily be directly measured or

characterized as an object. In the case of a visible air pollution plume, it might be recorded on film or

video. This mode does not lend itself to analysis of the plume characteristics such as shape, total

volume, rate of change of volume, rate of movement or spreading. Most often the plume will be

observed by taking measurements, i.e. samples at a small number of observation sites. At each site,

samples will be collected or recorded at regular time intervals although there may be some missing

time points for some locations. Each location-time can be viewed as a point in Rk � T , Rk being k-

dimensional Euclidean space and T representing time. Let the data points in space–time be denoted by

ðsi; tiÞ; i ¼ 1; . . . ; n. Denote the contaminant concentration at ðs; tÞ by Zðs; tÞ. If Zðs; tÞ were known

in analytical form then most of the characteristics of the plume could be determined from this function.
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In a later section we will discuss the plume characteristics that can be described in terms of Zðs; tÞ.
Since of course Zðs; tÞ is not known it must be estimated or approximated from data. Then the plume

characteristics will be estimated by using the approximating function in lieu of the unknown Zðs; tÞ.
The dual form of kriging is a logical choice for generating the approximating function; this is

essentially equivalent to using radial basis functions (Myers, 1988, 1991, 1992). However to use

kriging, one must have a valid space–time variogram or covariance. Although Rk � T might be thought

of as simply a k þ 1 dimensional space and begin with an isotropic model with a suitable anisotropy

applied at the time of kriging, this approach ignores the fundamental difference between time and

distance in space.

Kriging has been widely used for the analysis of air pollution and to a lesser extent ground water

contamination studies. However, these studies have mostly been of the ‘static’ nature, i.e. one

considers only a snapshot in time. The principal difficulty has been the lack of a family of valid space–

time covariances or variograms. Kyriakidis and Journel (1999), Posa (1993), Rodriguez-Iturbe and

Meija (1974) and Rouhani and Hall (1989) review the problems associated with space–time modeling.

In addition, the usual approach in geostatistics is to simply interpolate values at non-data locations

rather than to generate an interpolating function although such a function is implicit in the use of the

kriging estimator. One of the advantages of using the interpolating function is that it provides a tool for

estimating non-directly observable characteristics of a contaminant plume.

There are two main parts in this paper: (i) showing how to construct a much larger class of valid

space–time variograms and how to use data to fit them; (ii) the use of dual kriging to estimate and

approximate various plume characteristics. The principal focus will be on (i).

2. PLUME CHARACTERISTICS

It is necessary to first state how the function Zðs; tÞ is assumed to relate to the plume. Since the values

of this function represent the concentration(s) of the contaminant(s) at the space–time point ðs; tÞ, the

‘plume’ is the set of points where Zðs; tÞ > 0. More precisely let

PðtÞ ¼ fs j Zðs; tÞ > 0g: ð1Þ

PðtÞ is then a set of points in space and can change with time. Properties of the plume will first be

described in terms of the (unknown) function Zðs; tÞ, then later it will be shown that these can be

approximated or estimated by the use of dual kriging. Let z be a real number (the definition would have

to be modified slightly for vector valued functions),

IZðs; t; zÞ ¼ 1 if Zðs; tÞ � z and zero otherwise: ð2Þ

This is the usual way of defining the indicator transform in geostatistics. Then the volume of the plume

at time t is given by

VðtÞ ¼
ð

Rk

½1 � IZðs; t; 0Þ� ds: ð3Þ

If the plume is bounded in space then the boundedness of the integrand is sufficient to ensure that the

integral exists. Because instrumentation and/or analytical procedures will nearly always have a
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detection limit that is greater than zero, when using data to estimate the plume volume it will be more

appropriate to use a slightly positive cut-off value in lieu of zero. The rate of change of the volume of

the plume would then be given by the time derivative,

d

dt
VðtÞ: ð4Þ

While it might not be reasonable to expect the indicator function to be smooth as a function of the

space coordinates, it is more reasonable to expect it to be smooth, i.e. differentiable with respect to the

time variable.

The total amount of contaminant in the plume at time t is given by

TðtÞ ¼
ð
PðtÞ

Zðs; tÞ ds: ð5Þ

The total contaminant concentration in the plume may be of interest because in some instances it will

be possible to determine the total pollution independently of estimating this integral and as such would

allow a check on the modeling of the plume function. Of course the average concentration of the

contaminant in the plume would be given by

TðtÞ=VðtÞ

and the rate of change of the average concentration is given by

d

dt
TðtÞ=VðtÞ: ð6Þ

In some instances it might be useful to compute the average of a fixed spatial area rather than over the

entire plume. Of course the rate of change of the total concentration would be given by

d

dt
TðtÞ:

If the function Zðs; tÞ is sufficiently smooth with respect to time, then

RðsÞ ¼ d

dt
Zðs; tÞ ð7Þ

would be the local rate of change of concentration. The set of points, in space, where this derivative is

zero would represent a stagnant area.

3. SOME PRELIMINARIES

Since it is proposed to approximate the plume function Zðs; tÞ by dual (space–time) kriging we review

some basics and fix the notation. The usual kriging formulation requires the use of a random function
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model for Zðs; tÞ, but the dual kriging formulation does not explicitly require this, and Madych and

Nelson (1988) have given such a construction. Although in the radial basis function literature there are

no examples of the use of anisotropies, the theory does not exclude it. For simplicity and for

consistency with the geostatistical literature, the language of random functions is used. The basis

functions (variogram, covariance) are described in that context. Assume that Zðs; tÞ is either second

order stationary or intrinsic stationary. Recall that the random function is second order stationary if:

E½Zðs; tÞ� ¼ constant ð8Þ

Cstðhs; htÞ ¼ Cov½Zðsþ hs; t þ htÞ; Zðs; tÞ�: ð9Þ

Both exist for any s; hs; t; ht and Cstðhs; htÞ is only a function of hs; ht where hs is an increment vector

in space and ht is an increment in time. The covariance function must be positive definite (not just

semi-definite).

The random function is intrinsic stationary if the variogram

E½Zðsþ hs; t þ htÞ � Zðs; tÞ� ¼ 0 ð10Þ

and

�stðhs; htÞ ¼ 0:5 Var½Zðsþ hs; t þ htÞ � Zðs; tÞ� ð11Þ

exist for any s; hs; t; ht and �stðhs; htÞ is only a function of hs; ht, where again hs is an increment

vector in space and ht is an increment in time. The variogram must be conditionally negative definite

(not semi-definite). Positive definiteness is sufficient to ensure that a covariance is bounded;

conditional negative definiteness is not sufficient for boundedness and a separate growth condition

must be imposed, namely less than quadratic.

The extension of the covariance function or variogram to space–time might be thought of as simply

an extension to a higher order dimensional space. In that case one could generate models in the higher

dimensional space in the usual way, i.e. one begins with an isotropic (spatial) covariance CðrÞ or

variogram �ðrÞ. Define a distance function jðhs; htÞj, then Cstðhs; htÞ ¼ Cðjhs; htjÞ and �stðhs; htÞ ¼
�ðjhs; htjÞ are valid space–time models. The difficulty is in choosing or constructing the distance

function. An obvious choice might be ½jhsj2 þ c2jhtj2�0 0:5 for some choice of the constant c2. jhsj is

the usual Euclidean metric and jhtj is absolute value. This construction has been used but it ignores the

fundamental difference between time and a Euclidean dimension. Although metric models are not the

focus of this discussion, it will be found that some models constructed in another fashion appear as

metric models.

4. A SIMPLE CONSTRUCTION FOR SPACE–TIME MODELS

An alternative to the use of a metric is to use a construction analogous to a zonal anisotropy, i.e. to use

models that separately depend only on space and only on time and then combine them in an

appropriate fashion. It is well known (Myers and Journel, 1990; Rouhani and Myers, 1990) that the
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sum of two variograms or the sum of two covariances is generally not valid. That is, if CsðhsÞ is a valid

covariance in space and CtðhtÞ is a valid covariance in time, the sum

CsðhsÞ þ CtðhtÞ

is in general only semi-definite and can lead to non-invertible kriging matrices. The same is true for the

sum of a space variogram and a time variogram. Although the product of a space variogram and a time

variogram would generally not satisfy the growth limitation, the product of a space covariance and a

time covariance will lead to a valid model. This model is somewhat limited but it provides the

motivation for a more general construction; it is also useful to consider the variogram model

determined by the product covariance model.

5. THE PRODUCT MODEL

Let CsðhsÞ; CtðhtÞ be valid spatial and temporal covariances; then

Cstðhs; htÞ ¼ CsðhsÞ � CtðhtÞ ð12Þ

is a valid space–time covariance. Let �stðhs; htÞ; �sðhsÞ; �tðhtÞ be the corresponding variograms, i.e.

�stðhs; htÞ ¼ Cstð0; 0Þ � Cstðhs; htÞ ð13Þ

�sðhsÞ ¼ Csð0Þ � CsðhsÞ ð14Þ

and

�tðhtÞ ¼ Ctð0Þ � CtðhtÞ: ð15Þ

Then

�stðhs; htÞ ¼ Ctð0Þ � �sðhsÞ þ Csð0Þ � �tðhtÞ � �sðhsÞ � �tðhtÞ: ð16Þ

The model in this form has several interesting and useful properties:

�stðhs; 0Þ ¼ Ctð0Þ � �sðhsÞ ð17Þ

and

�stð0; htÞ ¼ Csð0Þ � �tðhtÞ: ð18Þ

Thus estimating and modeling �stð0; htÞ is nearly equivalent to estimating and modeling �tðhtÞ.
Likewise estimating and modeling �stðhs; 0Þ is nearly equivalent to estimating and modeling �sðhsÞ.
The sills Ctð0Þ; Csð0Þ must also be determined.
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The usual sample variograms can be modified for estimating and modeling �stð0; htÞ and �stðhs; 0Þ:

��stð0; htÞ ¼
1

NðsÞ
X

s

1

NsðhtÞ
X

ht

½Zðs; t þ htÞ � Zðs; tÞ�2 ð19Þ

��stðhs; 0Þ ¼ 1

NðtÞ
X

t

1

NtðhsÞ
X

hs

½Zðsþ hs; tÞ � Zðs; tÞ�2: ð20Þ

Case Study 1

Monthly average SO2 data collected at 33 locations in the Lombardy region of Italy from January 1983

to December 1986 were analyzed by De Cesare et al., 1997. The data were first deseasonalized in time

by fitting to a time series using moving averages. A space–time variogram was fitted using the

residuals. A product model was used with components

�sðhsÞ ¼ 270�ðhsÞ þ 1884 Sphðhs=4000Þ

and

�tðhtÞ ¼ 154�ðhtÞ þ Sphðht=4:8Þ:

The variogram fit was evaluated in two ways: the usual cross-validation using the jackknife and then

predicting values into 1987 using only the earlier data. The 1987 data was not used in the variogram

modeling process nor as data for prediction, hence statistics such as the mean square normalized error

could be used to evaluate the variogram fit. Further details are found in De Cesare (1997).

6. PRODUCT–SUM MODELS

Although the sum of a spatial and a temporal variogram is not a valid space–time variogram, adding a

spatial variogram or temporal variogram to a valid space–time model can result in a valid model as is

seen in the variogram form of the product model. This suggests the use of a product–sum model. It will

be given first in covariance form and then re-written in variogram form. Let

Cstðhs; htÞ ¼ k1CsðhsÞ � CtðhtÞ þ k2CsðhsÞ þ k3CtðhtÞ; ð21Þ

where Ct and Cs are valid temporal and spatial covariance models, respectively. For positive

definiteness it is then sufficient that k1 > 0; k2 � 0 and k3 � 0. In terms of the variograms the model

becomes

�stðhs; htÞ ¼ ðk2 þ k1Ctð0ÞÞ�sðhsÞ þ ðk3 þ k1CSð0ÞÞ�tðhtÞ � k1�sðhsÞ � �tðhtÞ; ð22Þ
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where �s and �t are the coresponding spatial and temporal variogram models with sills Csð0Þ and

Ctð0Þ. The second-order stationarity assumption is sufficient to ensure that these variograms have sills.

The conditions analogous to Equations (17) and (18) are

�stðhs; 0Þ ¼ ðk2 þ k1Ctð0ÞÞ�sðhsÞ ð23Þ

and

�stð0; htÞ ¼ ðk3 þ k1Csð0ÞÞ�tðhtÞ: ð24Þ

As in the case of the product model, estimating and modeling �stð0; htÞ is nearly equivalent to

estimating and modeling �tðhtÞ. Likewise, estimating and modeling �stðhs; 0Þ is nearly equivalent to

estimating and modeling �sðhs; 0Þ. These two relationships can be further simplified by imposing

three constraints:

k2 þ k1Ctð0Þ ¼ 1 ð25Þ
k3 þ k1Csð0Þ ¼ 1 ð26Þ
k3 þ k2 þ k1 ¼ 1: ð27Þ

Case Study 2

De Cesare et al. (2000a, 2000b) consider NO2 data from the Lombardy region, Italy. There were 48

spatial locations, hourly average measurements for a period of one year. The data were first

deseasonalized by fitting to a time series using moving averages. The following models were used:

�sðhsÞ ¼ 220 Sphðjhsj=2000Þ þ 450½1 � expð�jhsj=18000Þ�
�tðhtÞ ¼ 280 Sphðjhtj=12Þ þ 90 Sphðjhtj=24Þ þ 250 Sphðjhtj=96Þ:

Details are found in De Cesare et al. (2000a).

6.1. The unconstrained product–sum model

Simply write

k2 þ k1Ctð0Þ ¼ ks ð28Þ
k3 þ k1Csð0Þ ¼ kt: ð29Þ

Then

�stðhs; 0Þ ¼ ks�sðhsÞ ð30Þ

and

�stð0; htÞ ¼ kt�tðhtÞ: ð31Þ
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Thus ks and kt can be viewed as coefficients of proportionality between the space–time variograms

�ðhs; 0Þ and �s;tð0; htÞ and the spatial and temporal variogram models �sðhsÞ and �tðhtÞ, respectively.

Note that

Cstð0; 0Þ ¼ k1Csð0ÞCtð0Þ þ k2Csð0Þ þ k3Ctð0Þ ð32Þ

Then k1, k2 and k3 can be solved for in terms of the sill values Cstð0; 0Þ, Csð0Þ, Ctð0Þ, ks and kt:

k1 ¼ ksCsð0Þ þ ktCtð0Þ � Cð0; 0Þ
Csð0ÞCtð0Þ

ð33Þ

k2 ¼ Cstð0; 0Þ � ktCtð0Þ
Csð0Þ

ð34Þ

k3 ¼ Cstð0; 0Þ � ksCsð0Þ
Ctð0Þ

: ð35Þ

Thus the allowable values for ks and kt that will ensure k1 > 0; k2 � 0 and k3 � 0 are related to the

sills of the spatial and temporal components.

7. SOME GENERAL RESULTS

The product–sum model exhibits several interesting and perhaps unexpected features pertaining to the

sill values of the component variograms. Recall the relationships in Equations (13), (14) and (15)

between a covariance and the corresponding variogram.

7.1. Necessary and sufficient conditions

Consider a space–time variogram of the form

�stðhs; htÞ ¼ �stðhs; 0Þ þ �stð0; htÞ � k�stðhs; 0Þ�stð0; htÞ: ð36Þ

Then

0 < k � 1

max½sill�stðhs; 0Þ; sill�stð0; htÞ�
ð37Þ

is a necessary and sufficient condition for �stðhs; htÞ to be a valid space–time variogram. The proof is

found in De Iaco et al. (2000a).

7.2. Marginal variograms

Consider a plot of the space–time variogram and view the domain as though it were two-dimensional.

Then the functions �stðhs; 0Þ, �stð0; htÞ might be thought of as ‘marginals’, analogous to the idea of a

marginal probability distribution for a joint probability distribution. One marginal is the trace of the

space–time variogram in the ‘plane’ ht ¼ 0; the second is the trace of the variogram in the ‘plane’

hs ¼ 0. In the constructions above, unlike the case of probability distributions, the ‘marginals’ are
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nearly sufficient to determine the ‘joint’ variogram. However, there are two additional marginals that

may be of interest, particularly when examining the joint sample space–time variogram. These

additional marginals are �stðhs; 1Þ and �stð1; htÞ. The sample variograms corresponding to these

will indicate whether it will be necessary to incorporate a non-bounded component in the space–time

variogram. This extension will be discussed later.

8. GENERALIZED PRODUCT MODEL

It is well known that positive linear combinations of valid models are again valid. This is equally

applicable to space–time models as to spatial models. This construction and property can be extended

to an integral form using a probability density function (Matern, 1960; Myers, 1988). That is, let f ðuÞ
be a probability density function defined on a subinterval of the real line and �ðh; uÞ be a valid

variogram for each choice of u in the domain of f . Then

�newðhÞ ¼
ð

R

�ðh; uÞf ðuÞ du ð38Þ

is again a valid variogram model. This construction will extend easily to vector values for u by the use

of joint densities and will extend to the use of probability distribution functions, in lieu of a density, by

the use of a Stieltges integral. Models constructed using this general form of a positive linear

combination may have quite different characteristics from phase of their constituent parts. For

example, the ‘hole-effect’ model can be generated in this way:

�ðrÞ ¼
ð1

0

½1 � cosðr�Þ� d� ¼ 1 � sinðrÞ
r

if r > 0 and �ð0Þ ¼ 0: ð39Þ

Note that even though 1 � cos r is only semi-definite the integrated form is definite. This contrast

appears again in the next section.

9. THE CRESSIE–HUANG CONSTRUCTION

Cressie and Huang (1999) have used a variation of this idea applied to the product model. Assume that

Cðhs; htÞ is integrable; then it can be written in the form

Cðhs; htÞ ¼
ð

Rk

eih0s!�ð!; htÞkð!Þ d!; ð40Þ

where �ð!; �Þ is a continuous autocorrelation function for each ! in Rk,ð
<þ

�ð!; htÞ dht < 1; ð41Þ

kð!Þ > 0 and

ð
<n

kð!Þ d! < 1: ð42Þ
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If this construction is viewed as an integral of the product of spatial and temporal covariances, the

spatial covariance is only semi-definite, although the space–time covariance is positive definite by

construction.

10. THE INTEGRATED PRODUCT MODEL

To ensure that the resulting integral form is valid, we consider only positive definite models. The

following theorem is taken from De Iaco et al. (2000a).

Theorem 1

Let �ðaÞ be a positive measure over U � <, and let Csðhs; aÞ and Ctðht; aÞ be covariances,

respectively, in D 	 Rk and T 	 Rþ, for each a 2 V � U. Assume that the product

Csðhs; aÞ � Ctðht; aÞ is integrable with respect to the measure � over V for each hs and ht. Then for

any K > 0

Cstðhs; htÞ ¼
ð

V

KCsðhs; aÞCtðht; aÞ d�ðaÞ ð43Þ

is a covariance in Rk � T .

This result can be re-written in terms of variograms:

�stðhs; htÞ ¼
ð

V

K½Ctð0; aÞ�sðhs; aÞ þ Csð0; aÞ�tðht; aÞ � �sðhs; aÞ�tðht; aÞ� d�ðaÞ: ð44Þ

Example 1

Let

CsðhsÞ ¼ exp½�ajhsj2� ð45Þ

and

CtðhtÞ ¼ exp½�aðhtÞ2� ð46Þ

and

f ðaÞ ¼ expð�aÞ ð47Þ

the probability density function for the measure �ðaÞ. Then the integrated product model is

Cðhs; htÞ ¼
1

1 þ ðhtÞ2 þ jhsj2
: ð48Þ

This model is not separable, but it is a metric model even though it was not constructed by the use of a

metric. That is, if jðhs; htÞj2 is defined as ðhtÞ2 þ jhsj2 then the model is obtained from the standard
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isotropic model CðrÞ ¼ 1=ð1 þ r2Þ using this metric. This example can be further generalized by

assuming that Csðhs; aÞ and Ctðht; aÞ each depend on additional parameters. The resulting model will

then depend on those parameters.

Example 2

Replace Ctðht; aÞ by

Ctðht; aÞ ¼ exp�ajhtj�; where 0 < � � 2 ð49Þ

then the model is

Cðhs; htÞ ¼
1

1 þ ðhtÞ2 þ jhsj�
: ð50Þ

11. INTEGRATED PRODUCT–SUM MODELS

The following construction is taken from De Iaco et al. (2000b).

Theorem 2

Let �ðaÞ be a positive measure over U � <, let Csðhs; aÞ and Ctðht; aÞ be covariances, respectively,

in D 	 Rk and T 	 Rþ, for each a 2 V � U. Suppose that Csðhs; aÞ � Ctðht; aÞ is integrable with

respect to the measure � over V for each hs and ht. For any k1 > 0, k2 � 0 and k3 � 0, then

Cstðhs; htÞ ¼
ð

V

½k1Csðhs; aÞCtðht; aÞ þ k2Csðhs; aÞ þ k3Ctðht; aÞ� d�ðaÞ ð51Þ

is a covariance.

Case Study 3

The methods described above have been applied to hourly average concentrations of NO2 measured

during August 1997 in 18 survey stations in Milan District. After removing the seasonal component by

the standard technique of moving averages (Brockwell and Davis, 1987), residuals, available for all

stations, were used for the structural analysis.

The steps for generating the space–time variogram model are listed below. Examining the shapes of

the sample spatial and temporal variograms, b�s;tð�; 0Þ and b�s;tð0; �Þ, exponential models were fitted for

�sð�; aÞ and �tð�; aÞ whose analytical expressions are, respectively:

�sðhs; aÞ ¼ 1 � exp �a
jjhsjj
4414

� �
; ð52Þ

�tðht; aÞ ¼ 1 � exp �a
ht

8:22

� �
; ð53Þ
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and the sill values are 400 and 250, respectively, for the spatial and temporal structures, i.e. k2 þ k1 ¼
400, and k3 þ k1 ¼ 250.

�ðaÞ ¼ 9:84a2 expf�2:7ag:

�s;tðhs; 0Þ ¼
ð1

0

400 1 � exp �a
jjhsjj
4414

� �� �� �
½9:84a2 expf�2:7ag� da

¼ 400

 
1 � 2:73

2:7 þ jjhsjj
4414

� �3

!
;

�s;tð0; htÞ ¼
ð1

0

250 1 � exp �a
ht

8:22

� �� �� �
½9:84a2 expf�2:7ag� da

¼ 250 1 � 2:73

ð2:7 þ ht

8:22
Þ3

 !
:

The details for choosing f ðaÞ are found in De Iaco et al. (2000b, 2000c).

12. FURTHER EXTENSIONS

The product, product–sum and integrated product may be viewed as special cases of the integrated

product–sum models. One disadvantage of these constructions is that they are all based on variograms

that correspond to covariances. That is, the resulting space–time models will be bounded and have

sills. While the sum of a space variogram and a temporal variogram is generally not a valid space–time

variogram, even if both components correspond to covariances, adding a space variogram and/or a

temporal variogram to a valid space–time variogram will result in a valid model. Let K1 > 0, K2 � 0

and K3 � 0 be arbitrary real numbers. Then a more general model might be of the form

�Gðhs; htÞ ¼ K1�stðhs; htÞ þ K2�s1ðhsÞ þ K3�t1ðhtÞ; ð54Þ

where �stðhs; htÞ is a valid space–time variogram, e.g. obtained as an integrated product–sum model,

�s1ðhsÞ is a valid space variogram (not necessarily corresponding to a covariance) and �t1ðhtÞ is a valid

time variogram (not necessarily corresponding to a covariance). Consider now the marginal

variograms:

�Gðhs; 0Þ ¼ K1�stðhs; 0Þ þ K2�s1ðhsÞ ð55Þ
�Gð0; htÞ ¼ K1�stð0; htÞ þ K3�t1ðhtÞ ð56Þ

�Gðhs; 1Þ ¼ K1�stðhs; 1Þ þ K2�s1ðhsÞ þ K3�t1 ð1Þ ð57Þ
�Gð1; htÞ ¼ K1�stð1; htÞ þ K2�s1 ð1Þ þ K3�t1 ðhtÞ: ð58Þ

It is the last two marginals, or rather the sample versions of them, that indicate whether one or more of

the two components �s1ðhsÞ, �t1 ðhtÞ are needed and whether unbounded models must be incorporated.

Cressie and Huang (1999) give such an example and used weighted least squares to determine the

parameter values.
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12.1. Fitting vs choosing models

It is well known that there are at least two distinct stages in estimating a variogram or covariance. One

pertains to the model type(s), e.g. spherical, Gaussian, etc. The second corresponds to determining the

parameters of the model type(s). Of course these two steps are not completely independent. While the

number of model types commonly used in geostatistics is not large—some software packages only

incorporate four or five—there is still the possibility of a nested model incorporating multiple types.

Once the model types are tentatively determined, an optimal fitting tool such as weighted least squares

can be used to determine the parameters of the model types. While one can plot a sample omni-

directional space–time sample variogram and compare with various possible models, it is an advantage

to be able to make at least an initial fit by separating the dependence on space and time. The marginal

sample variograms are easier to identify and model.

12.2. Anisotropies

By separating the dependence on space and time in the variogram or covariance one is incorporating a

non-geometric anisotropy on space–time. However, the above constructions allow two extensions that

are useful. One is that the usual form of geometric anisotropy can be incorporated into the dependence

on the space variables. For simplicity of presentation, the above construction focused on models that

were isotropic in space, though this is not essential. Moreover, by the use of the marginal models

one can model the spatial geometric anisotropy completely separately from combining the spatial

marginal with the temporal model. While the construction was motivated by the need to recognize

the different character of time, as compared to a Euclidean dimension, the same methodology can be

used to construct zonal anisotropies in Euclidean space. In fact it is not necessary to split an

n-dimensional space into an (n� 1)-dimensional and a one-dimensional space, the methodology will

work equally well for splitting into different dimensional combinations. In that case one can

then incorporate geometric anisotropies into each lower dimensional space. This is discussed in

Myers et al. (2000).

13. MODELING THE PLUME FUNCTION

We turn now to the use of the dual kriging estimator and its extension to space–time form. Recall that

the (ordinary) kriging estimator is usually written in the form

Z�ðs0; t0Þ ¼
Xn

i¼1

�iZðsi; tiÞ; ð59Þ

where the coefficients �i; i . . . n are obtained from a system of linear equations and are functions of

s0; t0. The form of the estimator given in Equation (59) is essentially dimension free. Under the

assumption of a constant mean the equations for determining the coefficients in Equation (59),

Xn

i¼1

�i�stðsi � sj; ti � tjÞ þ � ¼ �stðs0 � sj; t0 � tjÞ; j ¼ 1; . . . ; n and
Xn

i¼1

�i ¼ 1; ð60Þ
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are also dimension free. The dual form of Equation (59) is

Z�ðs0; t0Þ ¼
Xn

i¼1

Bi�stðs0 � si; t0 � tiÞ þ A; ð61Þ

where Xn

i¼1

Bi�stðsi � sj; ti � tjÞ þ A ¼ Zðsj; tjÞ; j ¼ 1; . . . ; n and
Xn

i¼1

Bi ¼ 0: ð62Þ

13.1. Space–time non-stationarities

In the purely spatial context the ordinary kriging estimator can easily be extended to the universal

kriging estimator; in fact there is no change in the form of the estimator, the kriging equations change

and the form of those equations depends on an assumed functional form for the non-constant mean. In

the spatial context the mean is usually assumed to be modeled as a polynomial in the spatial

coordinates, i.e. a linear combination of monomials in the spatial coordinates. These monomials have

several important properties. First of all, they are linearly independent. Secondly, they must satisfy the

unbiasedness conditions; in the dual form of the universal kriging estimator they must satisfy what is

called in the radial basis function literature, polynomial solvency conditions.

However in practice the universal kriging estimator is not often used in geostatistical applications.

One tool for avoiding it is the use of a moving search neighborhood. Other authors use various

techniques to ‘remove’ the non-stationarity, such as fitting a trend surface to the data and modeling the

variogram using the residuals and applying ordinary kriging to the residuals. The fitted trend surface is

then added back to the kriged values. Median polish has also been used to ‘remove’ the non-

stationarity, because of well-known problems with modeling the variogram using residuals from trend

surfaces. These alternative approaches to dealing with non-stationarities in space can be extended to

space–time.

13.2. The dual form of the universal kriging estimator in space–time

Although the form of the ordinary kriging estimator and the universal kriging estimator are the same,

in dual form they are not the same. The basis functions for the non-constant mean function will appear

in the dual form of the estimator. Moreover there is no simple way to use a moving search

neighborhood in Equation (62). It is therefore important to consider possible functional forms for a

non-constant mean for a function defined on Rk � T . Although polynomials in the spatial coordinates

are rather natural, for the temporal dependence a Fourier series is more plausible. E½Zðs; tÞ� might then

be a sum of a spatial mean component, a temporal mean component and perhaps a product of the two.

Dimitrakopoulos and Luo (1994) have shown that the unbiasedness conditions are much more

restrictive in the space–time case than in the purely spatial context.

13.3. The general form of the approximating function

The form of the equations is however dependent on an auxiliary assumption, i.e. E½Zðs; tÞ� is assumed

to be a function of t and/or the coordinates of s. For a purely spatial case the mean is usually written as
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a polynomial in the coordinates of s. While this can be extended space–time by using a polynomial in s
and t, it is perhaps more natural to include sin, cos terms (as functions of time) as well. When the

trigonometric terms are included the auxiliary equations are different from those for purely

polynomial functions, this has been discussed in Dimitrakopoulos and Luo (1994). For now the

representation of the mean will be given in slightly simpler form,

E½Zðs; tÞ� ¼
Xp

j¼0

fjðs; tÞ; ð63Þ

where the fjðs; tÞs are assumed to be linearly independent in space–time. Let the point ðsi; tiÞ be

abbreviated as simply Xi. Then in vector form the kriging estimator becomes

Z�ðs0; t0Þ ¼ ZK; ð64Þ

where

Z ¼ ½ZðX1Þ; . . . ; ZðXnÞ; 0; . . . ; 0�

and

K ¼ ½�1; . . . ; �n; �0; . . . ; �p�T :

K is of course the solution vector for the kriging equations. By simple linear algebra it is easily seen

that the Equation (61) can be re-written in the form (Matheron, 1973; Myers, 1988, 1992):

Z�ðs0; t0Þ ¼
Xn

i¼1

bi�ðs0 � si; t0 � tiÞ þ
Xp

j¼0

aj fjðs0; t0Þ ð65Þ

The coefficients bi; i ¼ 1; . . . ; n and aj; j ¼ 0; . . . ; p are also obtained from a linear system of

equations, the coefficient matrix is exactly the same as for the solution vector K; the right hand side of

the system, however, is ZT. In this form and in the numerical analysis literature Equation (65) is known

as the radial basis function interpolator (Myers, 1992, 1994). Thus the problems associated with

constructing the approximating function Equation (65) in the space–time context are entirely related to

choosing and fitting valid space–time variograms (or covariances).

14. PROPERTIES OF Z�ðs; tÞ

From the equations for the coefficients, it is easy to see that

Xn

i¼1

bi ¼ 0

Hence, if the variogram has a sill, then for points in space–time sufficiently far away from all the data

locations the variogram is a constant. This forces the first sum in Equation (65) to be zero. This is
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asymptotically true even if the variogram does not have a sill. Therefore, when extrapolating in time

and/or space, the values of Z� are determined only by the second sum. Even when the variogram is

unbounded (but it still must satisfy a growth condition) this property is asymptotically true. Moreover

the second sum is an unbiased estimator of the mean of Z.

14.1. Integrability

Some characteristics of the plume can be determined by integrating Zðs; tÞ, which in turn is

approximated by integrating Z�ðs; tÞ. It is well known in the geostatistics literature that one can use

‘block’ kriging to estimate the average value over a region. This requires computing average values of

the variogram (or covariance), so-called ‘point-to-block’ values. Normally this is done numerically in

the software. What may not be so well known is that the integral of Z�ðs; tÞ is the same as the ‘block’

kriging estimator. Note that, in a space–time context, there are at least three forms of the integral that

may be of interest: (i) the integral over a region in space–time; (ii) the integral over a region in space

(which will then be a function of time); (iii) the integral over an interval in time (which will then be a

function defined in space). These may be in cumulative form or in average form. Likewise ‘data’ may

be non-point in space–time, only in space or only in time. This means that one may have to consider

regularization in these three forms. A note of caution: averaging over space and then averaging over

time may not be the same as averaging in space–time. Note that integrability of Z�ðs; tÞ only requires

the continuity of the the variogram and the mean functions.

14.2. Differentiability

Rates of change are naturally expressed as derivatives, most often with respect to time. Again it can be

shown that a (partial) derivative of Z�ðs; tÞ is the estimator of the mean square derivative of Zðs; tÞ. It

may also be of interest to mix integrability and differentiability—for example, a time derivative of an

integral over space. Although integrability is a weak condition, the same is not true for differentia-

bility. Some variograms are differentiable at the origin and others are not. A Gaussian model is

infinitely differentiable at the origin but most of the other spatial models in common use are not

differentiable. It will also be seen that differentiability with respect to a spatial coordinate is not the

same as differentiability with respect to time. Finally note that the space–time variogram constructions

given in the preceding sections ‘separate’ the differentiability with respect to time and space, thus the

estimated plume function may be time differentiable but not differentiable with respect to spatial

coordinates.

15. COMPUTATIONAL ASPECTS AND CONCERNS

The usual geostatistical software does not incorporate either the space–time variogram estimation

algorithms described above nor the kriging, in its usual format, with the new space–time models.

De Cesare et al. (2000c) have addressed these problems by modifying the kriging and variogram

programs from the GSLIB package. A program for simultaneous fitting of the time series, to deal with

temporal non-stationarities, is also found in De Cesare et al. (2000c). More recently the same authors

have developed MATLAB codes for the dual form of space–time kriging.

For kriging in its usual form for spatial problems, it is common practice to use a moving search

neighborhood, thus limiting the size of the coefficient matrix and avoiding numerical problems in
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solving the linear system. The possibilities for introducing discontinuities as a result of using the

moving search neighborhood are largely hidden in this form. However, the use of a moving search

neighborhood with the dual form of kriging means that it would be necessary to construct a global

function by piecing together locally fitted functions. The alternative of using a unique neighborhood

may not be completely satisfactory when applied to space–time problems since the total number of

data locations (in space–time) may be very large. Faul and Powell (1999) have developed an iterative

algorithm for determining the coefficients in a radial basis function interpolator. Since the radial basis

function interpolator is the same as the dual form of the kriging estimator, their solution can be applied

to the dual form of the space–time kriging. Hence if the number of data locations is too large the

equation solver can be modified to incorporate the Faul and Powell algorithm.

16. SOME CONCLUDING REMARKS

16.1. Product models

While it was seen that the product model in space–time has some disadvantages, a spatial product

exponential model is often used in hydrology. This is of the form

Cðhx; hy; hzÞ ¼ C0 expð�ðjhxj=axÞ � ðjhyj=ayÞ � ðjhzj=azÞÞ: ð66Þ

hx; hy; hz are the increments in the three directions (3-dimensional Euclidean space). ax; ay; az are

usually referred to as the ‘correlation lengths’; these are proportional to the respective effective ranges

of dependence. This model is of course a zonal anisotropy, although that characteristic is often not

mentioned in the literature. C0 is the ‘sill’, and in variogram form the model is

�ðhx; hy; hzÞ ¼ C0½1 � expð�ðjhxj=axÞ � ðjhyj=ayÞ � ðjhzj=azÞÞ�: ð67Þ

16.2. The nugget effect and space–time variograms

For a variogram �ðhÞ defined on space, the nugget is a discontinuity at the origin. That is, it is

Limjhj!0�ðhÞ:

Of course, by definition, �ð0Þ ¼ 0. However, this limit may not have a unique value if the variogram is

allowed to incorporate a zonal anisotropy, i.e. the value of the limit may depend on the path as jhj ! 0.

In general a space–time variogram will be analogous to a zonal anisotropy.

The nugget effect is usually interpreted in one of two ways: (a) as a variance it incorporates the

variance of measurement error; (b) it appears because of short range variability, i.e. with a range of

dependence that is less than the shortest inter-data distance. Incorporating the nugget effect into the

variogram model is a ‘conservative’ decision; it decreases the amount of spatial dependence that is

modeled. This second interpretation is particularly relevant in the case of the marginal space and

marginal time variograms. As shown above these are naturally estimated as time and space

(respectively) averages of the space and time sample variograms. That is, the marginal space

variogram is estimated by averaging, over all data time points, the space sample variograms and
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analogously for the marginal time variogram. Hence the marginal space variogram incorporates short

(time) variability and the marginal time variogram incorporates short (spatial distance) variability.

These are still not quite the magnitudes of the discontinuities, however. The nugget effects, if any,

appearing in the models for the respective marginal variograms will be given by

1. Limhs!0�stðhs; 0Þ

and

2. Limht!0�stð0; htÞ

Note that in general

Limhs!0�stðhs; htÞ 6¼ �stð0; htÞ

and

Limht!0�stðhs; htÞ 6¼ �stðhs; 0Þ:

Thus there are several different possible concepts for ‘nugget effect’ for a space–time variogram.

Several of the above are special cases of

Limhs!0;ht!0�stðhs; htÞ

which will almost certainly depend on the path as ðhs; htÞ ! ð0; 0Þ:

17. SUMMARY

The dual kriging form of the kriging estimator can be used to model contaminant plumes by using

general space–time variogram models such as the product–sum or integrated product sum. These

variograms can be fitted to space–time data by using the space and time marginal variograms. By

fitting an analytic form of the function representing the plume concentrations in space–time, other

plume characteristics can be estimated.
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