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Spatial Statistics

DONALD E. MYERS

Spatial statistics and geographic information systems are
natural partners, especially for the analysis and modeling
of environmental data. The variety of problems that are
addressed by spatial statistics and ways in which geo-
graphic information systems can aid in the manipulation
of environmental data are amply illustrated in the chap-
ters presented in this section. Environmental data sets
have two characteristics that set them apart from many
other kinds. First they are nearly always multivariate; that
is, there is more than one variate or analyte of interest,
and these are correlated in some sense. Second, each data
value is associated with a location either by specific coor-
dinates or by association with some area or volume. This
positional association is also normally manifested in an-
other way, namely through some form of spatial correla-
tion. At least three perspectives on the way in which these
two characteristics are utilized are presented in this col-
lection. Subsequent sections of this introduction will
identify where these occur in the various chapters and
provide an overview.

SPATIAL STATISTICAL MODELS

The objective in constructing an environmental model
may vary considerably, but a model is most often used to
explain or predict. Cressie and Ver Hoef (Chapter 40)
point out that environmental models not only need to be
spatially based but should incorporate time and often
need to incorporate the relationship between an organism
and its environment. Spatial statistics seems to be a new
field, but in fact it has its roots in classical statistics and in
particular in the work of Fisher, Yates, and Whittle. Sev-
eral examples of models are given, especially in the con-
text of sampling design. In addition to an overall
discussion of the relevance of spatial statistics to environ-
mental modeling, several examples are given to illustrate
this relevance. The first example uses a random function
model and pertains to acid rain, that is, wet deposition of
hydrogen ions in the Eastern U.S. resulting from the
dispersal into the atmosphere of various sulfurous and
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nitrous pollutants produced by industry and transporta-
tion. This is linked to the identification and prediction of
ecological effects. The methods used in this example are
a part of what is known as geostatistics. A more complete
overview and description of geostatistics is provided in
Cressie’s Chapter 41. An example using data for the per-
cent vertical cover in a dolomite glade illustrates the use
of a spatial lattice model. Spatial point pattern methods
are illustrated using data from a census of longleaf pines
in southern Georgia. In this model, time is incorporated
into the birth, death, and growth process.

Geostatistics is based on the use of a random function
model wherein the data are viewed as a nonrandom sam-
ple from one realization of the random function. It had its
origins in applications to mining, hydrology, meteorology,
and forestry, although the developments in the latter two
areas proceeded in slightly different ways. Cressie de-
scribes the importance of the spatial correlation function,
which is most often given in the form of a variogram.
Difficulties pertaining to and methods for estimating the
variogram are described. The random function model
leads easily to a regression form for the estimator, known
as kriging, for spatial prediction or estimation. An exten-
sion useful in the presence of a nonstationarity, known as
universal kriging, includes the thin plate spline as a special
case. It is shown that nonpoint data are easily accommo-
dated by the model and the model is easily adaptable to
simulation. The final section is devoted to multivariate
geostatistics wherein both spatial and intervariable corre-
lation are incorporated in the model. Matheron and co-
workers derived a linear predictor for one variate utilizing
the spatial correlation for that variate and the inter-
correlation with other variates. The work of Myers, which
provides the general setting, shows that the single-variate
case is subsumed in the general case and provides the
natural extension of the single-variate case.

Geostatistical methods explicitly incorporate the posi-
tion coordinates into the random function model. Anselin
(Chapter 46) models spatial correlation in a manner that
does not explicitly utilize coordinates. A heuristic descrip-
tion might be that spatial correlation means that values at
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locations close together are more correlated than values
for locations far apart. In geostatistics this concept is used
to derive an estimator for the values at unsampled loca-
tions. Anselin uses the same concept to characterize clus-
ters or patterns. In the geostatistical model, spatial
correlation is quantified by the spatial correlation func-
tion, that is, the variogram or covariance. In the discrete
space autoregressive model, spatial correlation is quanti-
fied by contiguity or weight matrices. For the latter, the
data locations are considered to be a subset of a regular
or irregular grid or lattice. An example is given using data
from the Global Change Database (Chapter 36) from an
area around the border between the Central African Re-
public, Sudan, and Zaire. Four variables, GREEN (green-
ness vegetation index), TEMP (temperature), ELEV
(modal elevation), and PREC (precipitation), are used.
One part of the analysis is concerned with examination of
the clustering of GREEN versus the clustering of the
other variables, and the second part of the analysis con-
siders GREEN as the dependent variable in a spatial
regression using the remaining as explanatory variables.
Several statistics useful for testing for spatial correlation
are described, and there is a comparison between the use
of least squares and maximum likelihood for determining
the coefficients in the spatial regression equation. Anselin
has incorporated these methods into a software package
called SPACESTAT.

Conventional inference techniques are based on an
assumption that the sample is selected from a hypothetical
population and the inferences pertain to the parameters
or characteristics of this population. More realistically the
sample is commonly selected from a finite universe. Over-
ton (Chapter 47) describes the use of probability sam-
pling, which was incorporated into the National Surface
Water Survey (NSWS) and is an integral part of the cur-
rent EPA initiative, EMAP. As an example consider the
universe of lakes in the NSWS. A probability sample is a
subset of this universe selected in such a manner that for
each element of the sample the probability of its having
been selected is known and this probability is positive. A
representation of the universe, called a frame, is used to
select the sample. For example, a frame might simply be a
list of the elements of the universe or in a spatial context
it could be a map. The Horwitz-Thompson theorem pro-
vides assurance that certain population parameter estima-
tors based on probability samples are unbiased and
determines the variances of these estimators. It is shown
that in the case of model-based inferences the usual esti-
mators must be replaced by weighted estimators in order
to maintain consistency. In the design of EMAP, the use
of probability samples is extended to spatial problems by
first overlaying a triangular point grid on the map and then
perturbing the grid in a random manner. This provides a
sampling grid with the same configuration but randomly
positioned. Any small region of fixed area is equally likely
to contain a sample grid point.

APPLICATIONS

While most GIS include some routines or programs for
the analysis of data, their principal thrust as yet is in the
graphical manipulation and presentation of the data. In
particular, GIS do not as yet really incorporate any spatial
statistical components. Conversely the standard statistical
packages include neither spatial statistical routines nor
the capabilities of a GIS. The remaining chapters in this
section on spatial statistics illustrate the use of a GIS as
an aid to spatial statistical analyses or the use of spatial
statistics to complement the use of a GIS. These are
important because of the lack of an adequate interchange
in the literature pertaining to these two fields. Only one
of the papers explicitly uses a GIS in the analysis. In
general all the papers begin with a geostatistical perspec-
tive, and that significantly affects the way in which the
connection with a GIS is presented. Englund (Chapter 43)
is concerned with the use of simulation, whereas the other
chapters pertain to estimation and modeling.

The random function model in geostatistics can be
thought of as a collection of realizations together with a
probability assignment, although the data are a sample
from only one realization. The kriging estimator is a
smoother, and the variability exhibited by the data to-
gether with the estimated values is less than that of the
data. Simulation of additional realizations is a method for
reproducing the variability and hence is useful for
designing sampling plans and for planning in general. The
simulations can be conditioned to the data by kriging.
There are several different algorithms commonly used for
simulation; Englund has used the sequential Gaussian
method. Reproducing or characterizing this variability is
useful in determining the reliability of maps produced by
kriging. Englund illustrates this by considering two “lay-
ers” in a GIS that have been produced by sampling differ-
ent variates, followed by kriging. In this example neither
variate is of interest alone, but certain characteristics of
the intersection of the layers are of interest (for example,
areas where both variates have high values). If these layers
are produced only from the data and interpolated by
kriging or some other method, there is still the question
of the reliability of the resulting intersection map. En-
glund shows how to use simulation to quantify and char-
acterize the reliability.

Ver Hoef (Chapter 45) considers three different meth-
ods to predict spatial-cover abundance for a glade in the
Missouri Ozarks. The first approach is a classical regres-
sion with cover abundance as the response variable and
shade as the explanatory variable. In the second method,
abundance at one location is predicted using only the
values for abundance at nearby locations and incorporat-
ing the spatial correlation (kriging). The third method is
acombination of the other two. Residuals from the regres-
sion are used in kriging; that is, the method attempts to
separate the dependence on the explanatory variable and
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the spatial dependence of abundance on itself. The three
methods are compared by using cross-validation. Sequen-
tially, each data value for abundance is deleted and esti-
mated using only the remaining data. Then the
mean-square estimation error is computed, and this sta-
tistic is used to discriminate between the methods. Note
that the use of the term universal kriging, in this chapter,
is not quite the same as the usage in the geostatistical
literature. What is called universal kriging in this chapter
has been called kriging with external drift in the
geostatistical literature; it is related to but not the same
as co-kriging. The form of universal kriging used herein is
found to be superior to either regression or kriging alone
when predicting cover abundance.

A similar approach is used by Jager and Overton
(Chapter 42) in their study of spatial patterns for acid
neutralizing capacity (ANC) for lakes in the Adirondacks
of New York. The data are taken from the National Lake
Survey and constitute a probability sample. The lakes are
stratified according to alkalinity levels (low, medium, and
high). Using elevation and pH as explanatory variables,
two regression equations are obtained for LANC, where
LANC is the base 10 logarithm of (ANC + 150); one
regression is used for the low and medium alkalinity levels
and one for the high. In each case LANC is regressed on
precipitation pH and elevation. Using the regression re-
siduals, sample variograms for LANC were computed and
modeled. The authors then infer spatial patterns for
LANC using spatial patterns of the explanatory variables
and the regression equations.

Rhodes and Myers (Chapter 44) consider a different
application of geostatistics to lake survey data. The
Eastern Lake Survey-Phase I provided data on a number
of variates thought to be relevant to predicting the acidi-
fication of lakes as related to effects on marine life in the
lakes. Sampled lakes had been selected as a probability
sample with one water sample (6.2 liters) taken from each
lake irrespective of surface area (lakes smaller than 5
hectares were excluded from the sample). In a geostatisti-
cal analysis each data value is either associated with a
point or is the spatial average value over an area or
volume. Intralake variability is important both in the
estimation and modeling of the variogram as well as in the
subsequent kriging step. The limitation of one sample
location per lake prevents direct estimation of this in-
tralake variability and has a significant impact on the set
of sample locations in a kriging neighborhood. Short-
range variability will contribute to a nugget effect in the
sample variogram when there is a lack of sample pairs for
short distances. The magnitude of the nugget can at least
be used as a proxy for estimating the intralake variability.
The GIS package GRASS 3.1 was used to select pseudo
sample locations in some of the larger lakes. This was
done by using the GIS to overlay a grid on a map of the

lakes and thus to identify grid points within a given lake.
To simulate variability within the lakes, pseudo sample
locations within a given lake were assigned a value ob-
tained from the lake sample value by adding a random
multiple of the square root of the nugget of the variogram.
The effect of incorporating these additional sample loca-
tions, and thus simulating intralake variability, is evalu-
ated in several ways.

THE FUTURE

While there is clearly interest in merging spatial statistics
into GIS, there is little consensus on what techniques or
routines should be included or how they would be used.
Some interfaces have already been built, including one
between the statistical package S+ and the GIS GRASS.
Although S+ is not always viewed as a spatial statistics
package per se, it is possible to incorporate spatial statis-
tical functions, as well as to take advantage of other
graphical features. It is to be hoped that such connections
will encourage statistics departments to implement and
teach GIS software. Papers on spatial statistics are ap-
pearing more often in the statistical literature and at
statistics meetings.

One of the reasons for the delay in merging these tools .

is that GIS is as yet relatively unknown in the statistical
community at large and in much of the spatial statistics
community in particular. This is in part attributable to the
development of GIS in the context of geography and
particularly an emphasis on vector-based GIS and hence
on vector data. Many spatial statistical methods would
more naturally relate to raster data. One aspect of the way
statistics functions in an academic setting is pertinent to
these problems. Younger statistics faculty need to estab-
lish themselves in order to obtain promotion and tenure.
This frequently inveighs against significant collaboration
in other disciplines such as working in the interface be-
tween spatial statistics and GIS. Similarly, an established
statistician whose research has been limited to mathemat-
ical statistics does not have much incentive to become
involved in interdisciplinary work. These trends deserve
some attention in the statistical community.

A second possible reason is that spatial statistics, par-
ticularly geostatistics and probability sampling, are rela-
tively unknown in the GIS community. This is in part
attributable to the origins of GIS, which were principally
in geography and closely related fields rather than those
giving rise to geostatistics. This is reflected in the initial
emphasis on vector-based GIS. As the technology and the

software begin to blur the distinction between vector- and

raster-based systems, the base for applications will in-
crease. Environmental modeling needs will accelerate this
trend.



