
1. Introduction

Historically, the Water Conservation Area – 2A (WCA2A) is part of the Everglades wetlands
in south Florida, USA (Fig. 1). It receives agricultural runoff from the Everglades Agriculture
Area. Phosphorus-enriched agriculture runoff caused some significant changes in this phos-
phorus-limited wetland ecosystem. The most obvious change was the conversion of cattail
(Typha clomingensis) as the dominant species, near inlets of the runoff, instead of sawgrass
(Cladium jamaicense). The significant increase of the phosphorus level in the water of WCA2A
is considered a major threat to the Everglades National Park. In order to protect the park, the
South Florida Water Management District has proposed the use of constructed wetlands, marsh-
like buffer areas, to remove excess phosphorus before the water enters WCA2A.

Constructed wetlands have been used for wastewater treatment since the early 1950s.
However, most constructed wetlands are designed to remove organic pollutants rather than
phosphorus. Studies show that constructed wetlands are not always effective for phosphorus
removal (Howard-Williams, 1985).
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Phosphorus-enriched agriculture runoff is believed to be the leading cause of ecosystem changes of
Everglades wetlands. To study this effect, it is necessary to estimate the area of the affected region. In
this study, Bayesian kriging and universal kriging were used to estimate the area by analysing the data
collected by Reddy et al. (1991). The background level of the soil’s total phosphorus concentration is used
to determine whether the region is affected by the agriculture runoff, through an indicator function. The
area of the affected region was represented by the integration of the indicator function over the entire
wetland. The expected value of the affected area was calculated using the results derived from Bayesian
and universal kriging. The outcome indicates that universal kriging is sensitive to specification of the
covariance model. It was observed that universal kriging and Bayesian kriging yield comparable results,
if the specified covariance structures are of similar nature.
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Estimating the area of the phosphorus-affected region in WCA2A can help us in under-
standing how the Everglades wetlands respond to added phosphorus. Many studies (such as
that by Reckhow and Qian, 1994) have found that the unit area phosphorus mass loading rate
(in mass of phosphorus per unit area per unit time) is an important parameter in modelling
phosphorus in wetlands and lakes. The unit mass loading rate can be used to determine the
size of a constructed wetland. The unit area loading rate is usually calculated by measuring 
the influent mass loading rate (in mass of phosphorus per unit time) divided by the area of the
receiving wetland. Because WCA2A covers such a large region, not all parts are effective in
removing phosphorus carried by the agricultural runoff. (In other words, not all parts are
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Fig. 1. Map of south Florida and location of the study region.



affected.) If the entire WCA2A were taken as affected, we might underestimate the phosphorus-
assimilating capacity of the wetland.

In this paper, the area of the affected region was calculated by using universal kriging (Cressie,
1991) and Bayesian kriging (Handcock and Stein, 1993). Some relevant references for the basic
theory of kriging are Matheron (1965), Journel and Huijbregts (1978), and Ripley (1981). From
a Bayesian perspective, the difference between universal kriging and Bayesian kriging lies in
the methods of estimating the unknown spatial correlation structure. To shed light on how to
select the appropriate approach to this type of study, results of both universal and Bayesian
kriging are compared.

Applications of spatial statistics (or geostatistics) in environmental related areas are abun-
dant. For example, Verly et al. (1984) in natural resources; Brus and de Gruijter (1993), Laslett
et al. (1987), and Burgess et al. (1981) in soil science; Ahmed and Marsily (1987) and Black
and Freyberg (1987) in groundwater modelling; Cox et al. (1995) and Bogardi et al. (1985) in
environmental spatial sampling design. Cressie and ver Hoef (1993) presented an overview of
environmental and ecological applications of spatial statistical analysis.

A brief review of universal and Bayesian kriging is first presented in Section 2, with special
emphasis on the estimation of the spatial correlation structure. Section 3 presents the data used
in this paper and the method used for calculating the area of the affected region. The results
are presented in Section 4. The paper concludes with discussions on other estimations of the
affected area, additional sources of uncertainty of the methods, and future work.

2. Universal and Bayesian kriging

Suppose we are interested in modelling a real-valued Gaussian random field Z(x) using the
following model:

(1)

where X is the known design matrix containing the spatial coordinates and other predictor vari-
ables, b is a vector of unknown regression coefficients, and h is the error term. h is assumed
to be second-order stationary and normally distributed with mean 0 and covariance S. 
The covariance function is represented by cov {h(s1), h(s2)} = aKu (s1, s2) for any pair of spatial
coordinate points (s1, s2) of interest, where a > 0 is a scale parameter, and u is a vector of struc-
tural parameters which specify the shape of the covariance function. In the case of kriging, the
objective is to predict Z (s0) for a location with no observed data (s0) based on observations:
Z = {Z (s1), Z (s2), . . ., Z (sn)}′.

The universal kriging predictor, of the form Ẑu (s0) = l (u)′Z, is the best linear unbiased
predictor (BLUP, Ripley, 1981), where l(u)′ = bu′(X′Ku

–1X)–1X′Ku
–1 + ku′Ku

–1, Ku is the cor-
relation matrix of the model residuals, ku is the vector of correlations of the residuals 
between site s0 and sites si (i = 1, . . ., n), bu = X(s0) – X′Ku

–1ku , and X(s0) is the vector of predictor
variables for s0. Under the normality assumption, the distribution of the prediction error e(s0)
is N(0, aVu), and Vu = Ku(s0, s0) – ku′Ku

–1ku + bu′(X′Ku
–1X)–1bu . In other words, the distribution

of Z(s0) conditional on a, u, and Z is a normal distribution with mean of Ẑu(s0), and variance
of aVu:

(2)Z(s0) | a, u, Z ~ N(Ẑu (s0), aVu ) .

Z 5 Xb 1 h
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The covariance matrix aKu is usually unknown. It is often estimated by using the variogram,
var{h(s1) – h(s2)}, which is a function of h (the distance between the two sites) under the assump-
tion of second-order stationary and isotropic, i.e.

The empirical variogram, 2ĝ(h), is a non-parametric estimator of 2g(h), given by:

where S(h) = {(si, sj): |si – sj| = h} is the set of all pairs of data points separated by distance h,
and N(h) is the number of distinct pairs in S(h).

The covariance function is usually estimated by fitting the empirical variograms as a func-
tion of distance to a specific parametric form (or variogram model). The three commonly used
variogram models are:

1. Spherical with nugget:

0 if h = 0

g(h) = c0 + cs{
3⁄2(h/as) – 1⁄2(h/as)3} if 0 < h < as5

c0 + cs if h > as

2. Exponential with nugget:

0 if h = 0
g(h) = 5 c0 + ce (1 – e–h/ae) if h > 0 

3. Gaussian with nugget:

0 if h = 0
g(h) = 5 c0 + cg (1 – e–h2/ag

2) if h > 0 

Under a second-order stationary assumption, the variogram is:

where C(h) = cov{h(s + h), h(s)}, and C(0) = limh→∞g(h) when the three variogram models above
are used.

As one referee pointed out, the empirical variogram only estimates values of the variograms
which is not the same as estimating the variogram function; if the residuals are obtained by
fitting model (1) with a trend surface, then a bias is induced. The optimal kriging predictor,
l(u)′Z, is a kriging estimator which requires knowing the variogram. However, there are advan-
tages in estimating the variogram instead of the covariance function directly. One advantage is
that one need not separately estimate the (constant) mean; a second reason is that the empir-
ical covariance will not give evidence of a non-stationarity.

Selecting a variogram model from the above-mentioned three candidate models will certainly
introduce uncertainty to the optimal kriging predictor, in addition to the uncertainty of estim-
ating parameters using empirical variograms. Many studies have addressed the effect of using

2g(h) 5 2(C(0) 2 C(h))

2ĝ (h) 5 
o
S(h)

[h(si) 2 h(sj)]2

N(h)

var {h(s1) 2 h(s2)} 5 2 g(h)
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an incorrect covariance functions. For example, Warnes (1986) studied the sensitivity of the
fitted surface to perturbations in the covariance model. He found that the fitted surface is not
sensitive to the perturbation of covariance model parameter when the exponential model is
used, and is sensitive when the Gaussian model is used. Diamond and Armstrong (1984) studied
the robustness of variograms by defining the ‘closeness’ of two variograms. They found that
minor perturbations in the data may give rise to major effects in the final kriged values, and a
‘robust’ procedure for the estimation of experimental variogram is not a guarantee of the robust-
ness of the entire predictive algorithm. Stein (1988) and Stein and Handcock (1989) showed
that the impact on the kriging predictor from using the incorrect covariance function is asymp-
totically negligible, as long as the estimated variogram function is ‘compatible’ to the true
variogram. Yakowitz and Szidarovszky (1985) discussed some of the considerations of vario-
gram model selection, and they suggested that one should not select a variogram entirely
algorithmically, but should pay attention to past experience with similar geostatistical data. A
method was proposed by Zimmerman and Cressie (1992) for accounting for the uncertainty in
the estimated covariance parameters. Brooker (1986) studied the robustness of the spherical
variogram. However, in many environmental applications, once the variogram model is chosen,
the covariance function is taken as known, and the uncertainty in the selected model is often
ignored.

To include this uncertainty in the analysis, Handcock and Stein (1993) introduced Bayesian
kriging using the Matérn class of covariance functions, characterized by a parameter u =
(u1, u2). u1 > 0 is a scale parameter controlling the spatial range of correlation and u2 > 0 is a
smoothness parameter controlling the smoothness of the random field. Many commonly used
covariance functions are special cases of the Matérn class (e.g., u2 = 0.5 corresponds to the expo-
nential model and u2 → ∞ represents the Gaussian model). The general form of Ku for the
Matérn class is

where h is the distance between two points, u1’ = u1(2√u2), and Ku2
is the modified Bessel func-

tion of order u2 discussed by Abramowitz and Stegun (1964). Handcock and Stein (1993) and
Handcock and Wallis (1994) have demonstrated its flexibility in handling a variety of spatial
data sets.

The posterior predictive distribution for Z(s0) is derived by adapting a non-informative prior:

(3)

where p represents a probability density function.
Combining Equations (2) and (3), Handcock and Stein (1993) showed that the conditional

posterior distribution of Z(s0) is

(4)

where q is the number of regression coefficients in b.
The marginal posterior distribution of u is

(5)p(u | Z) ∝ p(u) | Ku |
–1/2 | X′Ku

–1X |–1/2â(u)–(n–q)/2 

Z(s0)| u, Z ~ tn–q1Ẑu (s0), 
n

n – q
 â(u)V0 (u)2

p(a, b, u) ∝  
p(u)

a

Ku(h) 5 
1

2u2–1G(u2)
 1 h

u′12
u2

K u2
 1 h

u′12
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Therefore, the Bayesian predictive distribution for Z(s 0) is

(6)

where Ẑu(s0) is the usual kriging point predictor, 

is the usual kriging prediction error variance, and tn–q is a Student’s t distribution with (n – q)
degrees of freedom. See Handcock and Stein (1993) for details.

Comparing expressions (2) and (6), it is easy to see that the difference between universal
and Bayesian kriging lies in the method used for estimating the unknown covariance function,
parametrized by a and u. In universal kriging, when the covariance function is unknown, it is
approximated by a specific variogram model and the parameters of the selected model are
estimated from the empirical variograms; in Bayesian kriging, the unknown covariance func-
tion is defined through the joint posterior distribution of the parameters of the Matérn class of
covariance function (expression 5). Theoretically, Bayesian kriging is ‘better’ since the uncer-
tainty of the covariance function is considered. However, because of a significantly increased
computation intensity, it is necessary to justify the use of Bayesian kriging over universal kriging
in the light of empirical evidence of improved performance.

3. WCA2A data and the area estimation

The data used in this paper were from Reddy et al. (1991), who collected soil core samples 
at 74 stations on seven north–south transects, spaced at 2 mile (3.22 km) intervals (Fig. 2). 
Soil core samples were sectioned in the laboratory into four increments of 10 cm in depth, and
16 different parameters were measured for each increment. The soil’s total phosphorus 
(STP) content, one of the 16 parameters measured by the Reddy study, was used in this paper.
Dr C.J. Richardson (personal communication, 1993), a leading expert in Everglades wetlands,
believes that the STP content would be fairly stable in the Everglades if there were no agri-
cultural runoff problem, and the background level of the STP content is about 500 mg of
phosphorus per gram of soil (mg/g) in the top 20 cm.

Accordingly, the mean STP contents in the first two increments (top 20 cm layer) of the
Reddy samples were used. The STP values were log-transformed to stabilize the variance. The
spatial coordinates were converted from latitude and longitude to the Universal Transverse
Mercator (UTM) grid system; therefore, the distances calculated from the data are in metres.
Figure 3 shows the data. The data used in this paper are available from the author upon request
(send e-mail to: bwsq@odin.cc.pdx.edu).

Bayesian and universal kriging were used to predict the phosphorus concentration over the
region. When the concentrations are larger than the background level mentioned above, the
corresponding regions were assumed to be affected by the agriculture runoff.

The area of the affected region Ap can be represented by

(7)Ap 5 E I(Z(X) > t | Z) dX

â (u) 5 
1

n – q
 (Z – Xb̂ )′Ku

–1(Z – Xb̂ ) ,   aV0(u)

p(Z(s0) | Z) ∝ E
u

 p(Z(s0) | u, Z) 3 p(u | Z) du
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Fig. 2. Locations of sampling sites in WCA2A.



where I (·) is an indicator function, X is the coordinate vector, and t = log10(500) is the back-
ground level of STP content.

Within a Bayesian framework, Ap is evaluated as a random variable. Therefore, the expected
value of the area is estimated:

(8)

where prob represents probability.
When universal kriging is used, the integrand in the right-hand side (RHS) of Equation (8)

is the upper tail of the predictive distribution, and it can be evaluated using the CDF of a
normal density defined in expression (2).

When Bayesian kriging is used,

(9)E(Ap) 5 E
XeR2

E
u

 prob(Z(X) > t | u, Z) 3 p(u | Z) du dX

E(Ap) 5 E3EI(Z(X) > t) dX4 3 p(Z(X) | Z) dZ 5 Eprob(Z(X) > t | Z) dX
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Fig. 3. The log-transformed data.



Note that the integrand in the RHS of Equation (9) is a product of two density functions:
the first one, prob(Z(X) > t | u, Z), is the upper tail of a t-distribution, and the second one, 
p (u | Z), is not a function of X. Therefore, switching the order of integration will improve the
speed of computing. (In fact, it took about 20 hours to integrate Equation (9) on a DEC5000
workstation, and about 40 minutes to integrate Equation (10), using the same Gaussian quad-
rature program written in C.) This switch results in

(10)

The uncertainty involved in the estimation of the affected area using Bayesian kriging is eval-
uated by using a Monte Carlo simulation method. The procedure is based on the fact that given
u, the area is

(11)

It can be approximated by sampling Z(X) and evaluating the integrand in Equation (11), and
the mean of these values is approximately equal to the proportion of the affected area over
the entire WCA2A. Samples of Z were taken from the joint predictive distribution of Z from
some unobserved locations s0 = {s1

0 , . . ., sn
0} randomly selected over entire WCA2A. The joint

predictive distribution is a multivariate t-distribution (see Appendix for details).
The following procedure is used:

1. Generate a sample of u according to Equation (5).
2. Using the u generated in (1), sample a value of Z(X) according to Equation (4), call it

Z(X1).
3. Generate Z(X) | Z(X1) according to Equations (A5) and (A8) in the Appendix, call it

Z(X2).
4. Generate Z(X) | Z(X1), Z(X2) according to Equations (A5) and (A8), call it Z(X3).
5. Continue to sample Z(X) | Z(X1), Z(X2), . . ., Z(Xi) for n times, we have Z(X1), Z(X2), 

. . . , Z(Xn), samples from the conditional predictive distribution defined in Equation (A5).
6. Compute the mean of I(Z(Xi) > t), i = 1, 2, . . . , n. This gives one value of Ap, as the

percentage of the affected region.
7. Repeat (1) – (6) m times to generate m samples of u and Ap.

Due to the cost of computing, m in this study is limited to 200 and n to 150. The sample size
may not be large enough to give a precise estimation of the variance; it is, nevertheless, indica-
tive of the quality of the estimate of the mean value of the area.

For Bayesian kriging, the prior distribution of covariance function parameters was chosen as:

(12)

This prior distribution assumes that smaller values are more likely to occur than larger ones.
This assumption is reasonable for both parameters. For the smoothness parameter u2 , this prior
poses, for example, a random field is more likely to be 2 or 3 times differentiable than, say, 
99 times differentiable. For the range parameter u1, the prior indicates that two closely-located
points are more likely to be correlated than two points farther apart.

p (u) 5 p (u1) 3 p (u2) 5 
1

(1 1 u1)
2(1 1 u2)

2

Ap 5 EI(Z(X) > t | Z, u) dX

E(Ap) 5 E
u

p(u | Z) 5E
XeR2

prob(Z(X) > t | u, Z) dX 6 du
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4. Results

The distribution of the residuals of model (1) is found to be close to Gaussian. Z in Equation
(1) is the log-transformed STP content; the predictor variables are the latitude, longitude, and
the distance to the nearest source of agricultural runoff. The residuals of the model (1) are
found to be intrinsically stationary and isotropic, through visual inspection of the variograms
in both the north–south and east–west directions (not shown in this paper). The results are
organized in three groups: covariance function, predictive distribution, and area estimation. For
universal kriging, four different covariance functions are used. One of these functions is the
Matérn covariance function using the maximum posterior estimate of u, hereby referred to as
UK-Matérn. The other three covariance functions correspond to the three commonly used vari-
ogram models: the exponential, the spherical, and the Gaussian. They are referred to as
UK-exponential, UK-spherical, and UK-Gaussian, respectively.

4.1 Covariance function

The covariance function used in Bayesian kriging can be studied through the posterior distri-
bution presented in Equation (5). The log-transformed posterior, as a function of the parameters,
u1 and u2, are computed based on the non-informative prior shown in Equation (12), and plotted
against the log-transformed (base 10) u1 and u2 as shown in Fig. 4. The values of the posterior
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Fig. 4. The posterior distribution of the parameters of the Matérn covariance function.



shown here are proportional to the log-posterior up to a constant. The posterior mode is at
(3.6515, –0.4697); i.e., the Maximum Posterior Estimates (MPE) of the parameters are (4482,
0.3391). The estimated a given the MPE of u is 0.032363.

The empirical variograms (2 ĝ) were calculated from the residuals of model (1) by using the
S-Plus program in Venables and Ripley (1994). The three commonly used variogram models
are fitted to the empirical variograms as a function of the distance, utilizing the weighted least
squares method (Cressie, 1991). The exponential model best fits the empirical variograms 
(based on R2); however, all three variogram models fit well, where the line labelled ‘Matérn’
(as shown in Fig. 5) is the Matérn covariance function using the MPE of u. Since the 
Matérn function is not fitted to the empirical variograms, it is understandable that the estim-
ated Matérn covariance function does not seem to fit the empirical variograms very well. 
Fig. 6 compares the covariance functions derived from the above. The Matérn covariance func-
tion in Figure 6 is very different from the exponential model, although the MPE of the
smoothness parameter u2 is very close to 0.5 (u2 = 0.5 represents the exponential model.)

4.2 Predictive distributions

The predictive distributions of the log-transformed STP for the 10th and 25th sampling sites
are estimated. Site 10 has the largest STP content, and the STP content of site 25 is below
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Fig. 5. The variogram models.
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Fig. 6. The covariance functions.

Table 1. Predictive distributions

Model Sampling Predicted Prob. > Measured 
site mean 500 mg/g STP

BK 25 2.49 0.08 2.4
UK-Matérn 25 2.48 0.05 2.4
UK-exponential 25 2.46 0.03 2.4
UK-Gaussian 25 2.18 0.00 2.4
UK-spherical 25 2.45 0.02 2.4
BK 10 2.83 0.79 3.1
UK-Matérn 10 2.85 0.85 3.1
UK-exponential 10 2.84 0.82 3.1
UK-Gaussian 10 2.81 0.74 3.1
UK-spherical 10 2.84 0.84 3.1



average. When the predictive distribution for that site was computed, the same was not included
in the data set. The density functions are shown in Figs 7 and 8. Table 1 compares the results
of both Bayesian kriging and universal kriging.

Comparing five predictive distributions for the 10th sampling site, we note that:

1. UK-exponential, UK-spherical, and UK-Matérn are nearly identical.
2. The Bayesian kriging model yields a similar mean value but slightly larger estimation

variance. A larger estimated variance from Bayesian kriging is to be expected owing to
the fact that the uncertainty in the covariance function is ignored in the universal kriging
analysis whereas it is considered in the Bayesian analysis.

3. The predictive distribution from UK-Gaussian has the largest variance.

For the 25th sampling site, comparable predictive distributions were observed from UK-
Matérn, UK-exponential, and UK-spherical. Bayesian kriging yields a similar mean and slightly
larger variance. The predictive distribution from UK-Gaussian is notably different from the
other four. As shown by Stein and Handcock (1989), Gaussian models with different range
parameters are not compatible, therefore a slight estimation error may yield a significantly
different predictive distribution. On the other hand, the Gaussian covariance function is equiv-
alent to the Matérn covariance function with u2 ® °; i.e. realizations from it are infinitely
differentiable. However, this representation may not be realistic in the natural world.
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Fig. 7. Predictive distributions for the 10th sampling site.



4.3 Area of the affected region

The expected area is calculated using Equations (8) and (10), where X is the spatial coordi-
nate vector, i.e. X = (Northing, Easting). Equation (8) is used for universal kriging , and Equation
(10) is used for Bayesian kriging. In Equation (8), the integrand is the upper tail of a normal
distribution. The integral is calculated using a Gauss–Legendre quadrature over a 30 3 30 grid.
In Equation (10), the integrand of the inner integral is the upper tail of a t-distribution, 
and the integral is calculated using Gauss–Legendre quadrature (Davis and Rabinowitz, 1984)
over a 30 3 30 grid. The outer integral of Equation (10) is calculated using Gauss–Hermite
quadrature, over a 20 3 20 grid. The results are listed in Table 2.
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Fig. 8. Predictive distributions for the 25th sampling site.

Table 2. Expected area

Model Affected area % of 
(km2) total area

BK 97.19 22.39
UK-Matérn 95.77 22.07
UK-spherical 89.4 20.6
UK-exponential 99.61 22.95
UK-Gaussian 76.59 17.65



In this study, the boundary of the affected region was not specified simply because the area
of the affected region (Ap) is treated as a random variable. However, the shape of the affected
region may be stable; therefore the contour lines of prob(STP > 500 mg/g) were plotted to indi-
cate the possible shape. Figure 9 shows contour lines using Bayesian kriging, and Figs 10–13
show the surfaces from the universal kriging analysis. The surface from the UK-Gaussian is
mostly flat but has sudden jumps (large slopes). The reason for this unnaturally shaped surface
is due to the fact that the Gaussian covariance function describes ‘super smooth’ surfaces of
the residuals in this case. A model with very smoothed residual surface must have a jumpy
mean surface.

From Table 2, we note that the estimated area using Bayesian kriging model is very close to
the estimated area using UK-Matérn and UK-exponential. This is expected since the Bayesian
kriging is based on the Matérn variogram and the estimated smoothness parameter is very close
to the value of 0.5, which is the value it takes for the exponential variogram. The estimate of
the area is sensitive to the specification of the covariance function. Bayesian kriging is seen as
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Fig. 9. Predicted probability that STP exceeds the background level using Bayesian kriging.



more appropriate in this study, since the uncertainty of the unknown covariance function is
taken into consideration.

The uncertainty of the covariance function is evaluated for Bayesian kriging, following the
procedure previously described. The random variates of u are generated from Equation (5),
using the adaptive rejection Metropolis sampling method presented in Gilks et al. (1994). 200
pairs of u were generated, and for each pair of u, a random vector of size 150 was generated
from the joint predictive distribution. The percentage of the generated Z0 = (Z0(s1

0), . . .,
Z0(s150

0)), larger than log10 (500), was recorded for each pair of u. These percentages are approx-
imately equal to the proportion of the polluted area of WCA2A. Figure 14 represents the
histogram of these percentages, which indicates that the variation of the estimated area may
be quite large. Since the sample size of the Monte Carlo simulation is small, it is not mean-
ingful in calculating the variance.
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Fig. 10. Predicted probability that STP exceeds the background level using UK-Matérn.



5. Discussion and Conclusion

In conclusion, it is seen that one significant difference between Bayesian kriging and universal
kriging is an increased computational intensity of Bayesian kriging. On a DEC5000 work-
station, it takes about 40 minutes to compute the affected area with Bayesian kriging, and 
under 1 minute with universal kriging. However, the results indicate that universal kriging is
sensitive to the specification of covariance function. The difference between two different covari-
ance functions may be significant even though variogram models of the two are fitted to
empirical variograms equally well. In this study the spherical model and the Gaussian model
fitted these empirical variograms equally well, but results from the universal kriging models
using these two covariance functions are significantly different. This sensitivity to the covari-
ance function justifies the use of Bayesian kriging.
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Fig. 11. Predicted probability that STP exceeds the background level using UK-exponential.



In terms of compatibility of a covariance function defined by Stein and Handcock (1989), the
sensitivity of universal kriging to the specification of covariance functions can be explained. In
their paper, it is shown that two exponential variograms with different range parameters are
compatible. The same is not true for the Gaussian variogram, which is not compatible with the
exponential variogram. Furthermore, Stein and Handcock showed that the spherical covariance
function is an inappropriate model for most three-dimensional fields. However, the problem of
recognizing the ‘true’ covariance function still exists; as stated in Stein and Handcock (1989)
there is a need for ‘a procedure that is able to distinguish strongly between variograms that
are not compatible and choose a variogram that is nearly compatible with the true variogram’.
On the other hand, although the effect of using an incorrect covariance function is negligible
asymptotically, it is not a guarantee that the effect under a limited number of observations is
also negligible.

There are very few studies which attempt to estimate the area of the affected region. One
of them is by Craft and Richardson (1993). In their study, the boundary of the affected region
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Fig. 12. Predicted probability that STP exceeds the background level using UK-Gaussian.



was delineated by using both the STP content and the phosphorus accumulation rate. The delin-
eated boundary is plotted on to a USGS topographic map, and the area is thus measured. They
estimated the affected area to be 115 km2. The STP data used in their study were also from
Reddy et al. (1991). Only the top 10 cm layer was used, which employed a background level
of 600 mg/g. The STP contour lines were produced using an ordinary kriging algorithm from a
commercial graphics software package (Surfer). The variogram model used was not reported.

Walker (1993) presented another method, largely based on the assumption that the flow of
water over the region was plug flow. His estimate was about 70 km2. However, the plug-flow
assumption is not valid. WCA2A is not a simple flat wetland. There are tree islands all over
the region, air-boat channels crisscross the densely vegetated area, and deep water sloughs are
scattered throughout the wetland.

It is more appropriate to estimate the affected area by using the STP content as an indicator
of the influence of the agricultural runoff. A spatial statistical approach accounts for the uncer-
tainty in the sample data. We believe that Walker’s estimate is not reliable on account of the
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Fig. 13. Predicted probability that STP exceeds the background level using UK-spherical.



unrealistic plug-flow assumption. Considering the high level of uncertainty involved in the esti-
mating process (Fig. 14), we feel that the area calculated by means of Bayesian kriging is
comparable to the result in Craft and Richardson (1993). The discrepancy between the estim-
ates may be caused by two factors: their use of a different covariance function and the
background level, without considering the error of measuring the area from a map.

The normality assumption of Equation (1) is not necessary for kriging methods in some
geostatistics studies. It is adopted in this study for two reasons:

1. Bayesian kriging of Handcock and Stein is based on the normality assumption, there-
fore, any comparison of the method without normality assumption is not warranted. 

2. The prediction of Z(s0) is not the objective of this study, rather the estimation of the
affected area is the objective. The predictive distribution of Z(s0) is used to calculate
the area, derived by using a Bayesian approach. Without normality assumption, it is diffi-
cult, if not impossible, to find the distribution. Because of this, the Bayesian kriging
model also incorporates uncertainty that is not quantified, namely the validity of the
multivariate normal assumption.

It seems impossible to account for all sources of uncertainty using any specific method. The
intention of this paper is to address the uncertainty in the covariance function when universal
and Bayesian kriging were applied to Gaussian data. This study used the linear form of the
universal kriging predictor E(Z(s0) | Z), which is optimal under squared-error loss only for a
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Fig. 14. Distribution of the phosphorus-affected area as percentage of the total area.



few exceptions (including Gaussian model) (Cressie, 1991, Section 5.1). For many non-Gaussian
models, the optimal predictor is not linear, and the linear predictor is only an approximation.
The Gaussian model is explicitly assumed for this purpose.

Many studies indicate that distributions of most water quality/resources related variables can
be approximated by a log-normal distribution (Helsel and Hirsch, 1992). Therefore, log-trans-
formation of the data will result in normally distributed variables.

There is no reason to believe that the background level is a constant. Field samples from the
region that is not affected by agriculture runoff show a considerable variation (Craft and
Richardson, 1993). The background level of STP content should be considered as a random
variable. If a constant background level is used, uncertainty about background level is not taken
into consideration. The author was not able to obtain enough data to evaluate the background
level distribution at the time of this project. This source of uncertainty will be ascertained in
a future study.
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Appendix

A.1 Conditional predictive distribution for several unobserved points

Le and Zidek (1992) used the conjugate prior distributions for the multivariate normal mean
and covariance matrix, and they found that the conditional posterior distribution of the unob-
served points is a multivariate t-distribution. In this study, we use the non-informative prior
(Equation 7) to derive the conditional posterior distribution.

Let s0 = (s1
0 , . . . , s r

0) be the vector of r unobserved points, and Z0 = (Z(s1
0), . . . , Z(s r

0))′. 
The covariance matrix of the unobserved points is denoted by Vx0, the covariance matrix of
the unobserved and observed points can be partitioned into four parts:

(A1)

where the matrix nu contains the covariances between the observed and unobserved points.
Based on the normality assumption, the conditional distribution of (Z0 | a, u, Z) is also normal:

(A2)

where:

x0 is the matrix of independent variables for s0

pr(Z0 | u, Z) is obtained by integrating the density of (A2) with respect to a:

Since G 2(u)/a has a x2 distribution, we know that

Therefore

(A3)3Ea–(n–q1r)/2 exp–1 52 
1

2a
 3G2(u) 1 (Z(s0) – Ẑ (s0))′V0

–1(u)(Z(s0 – Ẑ (s0))46 da

pr(Z0 | u, Z) ∝ | V0(u)|–1/2[G2(u)](n–q)/2 

pr(a | u, Z) ∝ [G2(u)](n–q)/2a–(n–q12)/2 exp 52 
G2(u)

2a 6

pr(Z0 | u, Z) 5 Epr(Z0 | a, u, Z) pr(a | u, Z) da

bu 5 x0 – X′K–1nu 

V0(u) 5 Vx0
 – nu′Ku

–1nu 1 bu′(X′Ku
–1X)–1bu 

Ẑ0(u) 5 nu′Ku
–1Z 1 bu′b̂

Z0 | a, u, Z ~ N(Ẑ0(u), aV0(u) )

o 5 a 1 Vx0
     nu′

nu     K(u)2
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Since the integrand of (A3) is proportional to an inverse Gamma distribution, (A3) can be
easily integrated out:

(A4)

It is recognized that pr(Z0 | u, Z) is a t-distribution:

(A5)

A2 Conditional density of a multivariate t-distribution

Let the p-dimensional vector 

be distributed as ta(m, S). The density function is:

Let 

be the mean and 

the variance. It can be shown that:

|S| = |S22| |S11 – S12S
–1
22S12| and

S 5 3S11  S12

S21  S22
4  

m 5 3m1

m2
4

pr(X) 5 
G(a1p)/2

|S|1/2(ap)p/2G(a/2)
 31 1 

1
a

 (X – m)′S–1(X – m)4
–(a1p)/2

X 5 3X1

X2
4

Z0 | u, Z ~ tn–q 1Ẑu (s0), 
n

n – q
  â (u) V0 (u), r2 

3 V0
–1(u) (Z(s0 – Ẑ (s0))6–(n–q1r)/2

∝ 3G2(u)
n – q 4

–r/2

|V0(u)|–1/251 1 
1

n – q
 

1
G2(u)/(n – q)

 1Z(s0) – Ẑ (s0)2′

3 3G2(u) 1 (Z(s0) – Ẑ (s0))′V0
–1(u)(Z(s0 – Ẑ (s0))4

(n–q1r)/2

pr(Z0 | u, Z) ∝ | V0(u)|–1/2[G2(u)](n–q)/2 
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and we know 

Let 

We have:

or

(A6) is equivalent to:

pr(X2) ∝ 3 a

a1p2
4

p1/2

 31 1 
R
a4

p1/2

 |S22|
–1/2 31 1 

R
a4

–(a1p11p2)/2

pr(X2) ∝ 31 1 
R
a4

–(a1p)/2| a

a1p1
 11 1 

R
a2 S*11|1/2

|S22|
–1/2|S*11|

–1/2

 E31 1 
1

a1p2
 · 

(X1–X*1)′(S*11)
–1(X1–X*1)

(a/[a1p2])(11(R/a]) 4
–(a1p21p1)/2

 dX1

pr(X2) 5 Epr(X) dX1 ∝ 31 1 
R
a4

(a1p)/2

 3

∝ |S22|
–1/231 1 

R
a4

(a1p)/2

31 1 
1

a1p2
 · 

(X1–X*1)′(S*11)
–1(X1–X*1)

(a/[a1p2])(11[R/a])
 4

–(a121p1)/2

pr(X) ∝ |S|–1/231 1 
R
a

 1 
1
a

 (X1 – X1*)′(S*11)
–1(X1 – X*1)4

–(a1p11p2)/2

S*11 5 S11 – S12 S–1
22 S21

X1* 5 m1 1 S12S22
–1(X2 – m2)

R 5 (X2 – m2)′ S–1
22(X2 – m2)

pr(X2) 5 Epr(X) dX1 .

pr(X1 | X2) 5 
pr(X)
pr(X2)

 ,
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(A7)

or

(A8)

In case of a bivariate t-distribution, that is 

and 

the conditional density is:
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X1|X2 ~ ta11 3m1 1 
s2

12

s22
 1X2 – m22, 

a

a11
 11 1 

(X2 – m2)
2

as22
2 1s11 – 

s2
12

s22
24 

S 5 3s11  s12

s21  s22
4  

m 5 3m1

m2
4

X1|X2 ~ ta1p2
 3X*1, 

a

a 1 p2
 11 1 

R
a2 S*114 

pr(X1|X2) ∝ |S*11|
–1/2 31 1 

R
a4

–p1/2

 31 1 
1

a1p2
 · 

(X1–X*1)′(S*11)
–1(X1–X*1)

(a/(a1p2))(11R/a) 4
–(a1p21p1)/2

pr(X1|X2) ∝ 
|S22|

–1/2 |S*11|
–1/2 31 1 

R
a4

–(a1p)/2

 31 1 
1

a1p2
 · 

(X1–X*1)′(S*11)
–1(X1–X*1)

(a/(a1p2))(11(R/a)) 4
–(a1p21p1)/2

|S22|
–1/231 1 R/a 4–(a1P2)/2

∝ |S22|
–1/2 31 1 

R
a4

–(a1p2)/2

    (or X2 ~ ta(m2, S22) )
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Discussion

DONALD E. MYERS

Mathematics Department, University of Arizona, Tucson, Arizona 85721, USA

The following comments are not so much a critique of the above paper but rather intended to
present some additional perspectives on the problem and some variations on the method of
analysis. The author considers the area within Water Conservation Area–2A (WCA2A) where
the phosphorus content exceeds a specified level. Determining or estimating the area affected
is judged to be useful in understanding how wetlands respond to added phosphorus. As noted
by the author, the area of the affected region of WCA2A is the same as the proportion of the
WCA2A that is affected. Unlike some soil or water contamination problems, the contemplated
remediation is designed to prevent phosphorus from flowing into WCA2A rather than removing
it from WCA2A. In particular the environment is not static and changes with time if there is
agricultural run-off. The data used in the analysis represents a snapshot in time.

The analysis considers only one ‘specified level’ but even then one additional question is of
interest, namely, the mean concentration of phosphorus in the affected area. As noted by the
author there is evidence that the concentration of phosphorus is not spatially constant, i.e. not
uniform, and hence not only the conditional mean but also the conditional variance would be
of interest. Estimating the area of the affected region for multiple cutoffs is similar to but not
quite equivalent to estimating the conditional mean. These areas could be estimated in the same
way as in the paper by repeating the analysis for each cutoff, however the author notes that
the analysis is computationally intensive when using Bayesian kriging. One disadvantage of
simply estimating the area of the affected region is that there is no assurance that the affected
region is contiguous nor where it is located within WCA2A. If it is not connected then knowing
the number of connected subregions would be of interest. One possible approach is to parti-
tion WCA2A into subregions and apply the analysis to each subregion separately. In that case
one of the crucial questions is the size and shape of the subregions. This is not unrelated to
the problem of optimum mining blocks in ore reserve estimation and in turn depends on the
partition of the variance, i.e. the variability of the phosphorus content within a subregion vs
the variability between subregions. This can be computed using the variogram or covariance
function.

The area of the affected region is computed as the integral of an indicator function, I(Z(X)
> 500) | Z) which would be the same as the integral of I(ln Z(X) > ln t | Z). However when
universal kriging is used the integral is numerically approximated by considering I(ln*Z(X) >
ln t | Z) where ln*Z(X) is the universal kriging estimate of ln Z (X). However this is not the
same as the integral of I(Z*(X) > t|Z) since it is well known that the lognormal kriging esti-
mator is biased and exp [ln*Z(X)] is not the same as Z*(X). If Z(X) is not second order
stationary, i.e. if the drift term in Equation (1) is not a constant then the log transformation
does not transform Z(X) into a similar decomposition of a deterministic component and a
random component. This question has not been addressed in the paper.

Finally, a word about ‘Bayesian kriging’. This term has been used by a number of authors
but the meanings are not all the same. Omre and Halvorsen ( 1989) used it to refer to using
Bayesian methods to estimate and model the drift term. O’Hagan (1992) uses it to model the
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drift term, Cui et al. (1995) use Bayesian updating of the variogram parameters. Abrahamsen
(1992) uses a Bayesian approach for incorporating additional information. Christakos (1990)
has an entirely different approach.

Additional references

Abrahamsen, P.(1992) Bayesian kriging for seismic depth conversion of a multi-layer reservoir. In
Geostatistics Troia ‘92, A. Soares (ed), Kluwer, Dordrecht, 385–98.

Christakos, G. (1990) A Bayesian/maximum-entropy view of the spatial estimation problem. Mathematical
Geology, 22, 763–78

Cui, H., Stein, A. and Myers, D.E. (1995) Extension of spatial information, Bayesian kriging and updating
of prior variogram parameters. Environmetrics, 6, 373–84

O’Hagan, A. (1991) Some Bayesian numerical analysis. In Bayesian Statistics 4, J.M. Bernado (ed.), Oxford
University Press, pp. 1–17

Omre, H. and Halvorsen, K.B. (1989) The Bayesian bridge between simple and universal kriging.
Mathematical Geology, 21, 767–86

Rejoinder

SONG S.  QIAN

I appreciate the comments of Dr Myers very much. I have only three brief remarks to make
in this rejoinder.

First, the data used in the paper is the total phosphorus content in the top 20 cm of the soil,
which represents the accumulation in the past 60 or so years. (The annual soil buildup in
WCA2A is slightly over 0.3 cm.) Because phosphorus does not have a gaseous phase, it cannot
be released into the atmosphere and can only be stored in the soil or remain in the water. For
the purpose of this study, that is to study the effects of agricultural runoff from the Everglades
Agricultural Area (EAA) which has been in existence for about 50 years, the data represent
the effect of the entire EAA history. If the water column phosphorus concentration were used,
the data would represent a snapshot in time.

Second, the proposed constructed wetlands are expected to be similar to WCA2A in terms
of ecological functions, but with better engineering control of water distribution. However, the
question under debate is how large the constructed wetlands should be in order to reduce the
phosphorus concentration in agricultural runoff to background level. Since the effluent water
column phosphorus concentration from WCA2A is the same as the background level, the
affected area of WCA2A indicates what the size of the proposed constructed wetlands should
be. This is why only the affected area is of interest. The conditional mean concentration of
phosphorus would indeed be of interest, especially in studies of how ecosystems respond to
elevated nutrient levels. For example, there are two mono-culture zones where respectively,
cattail and sawgrass are the dominant species, and a mixed cattail and sawgrass zone in WCA2A.
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Conditional mean phosphorus and other nutrient concentrations in the soil would provide useful
information on the optimal environment for different species.

Third, the lognormal kriging estimate is indeed biased. However, in this study the universal
kriging estimate is treated as a random variable and only the expected value of the integral 
of I(ln (Z(X)) > ln(t) | Z) is estimated. From a Bayesian perspective, the posterior distribu-
tion of Z(X) is normal with mean Ẑu and variance aVu (Equation 2). Since the integral of 
I(ln (Z(X)) > ln (t) | Z) is finite, its expectation with respect to Z(X) is equal to the integral 
of prob(ln (Z(X)) > ln(t) | Z), which is not biased. In other words, Equation (8) is an unbiased
estimate of the expected value of the affected area. It is nevertheless important to point out
the biased nature of the lognormal kriging estimator, since most variables related to water
resources are approximately of lognormal distribution, and log-transformation of data is often
a standard routine before data analysis. Inference should be made in terms of median and inter-
quartile range, which are more relevant to biological and environmental sciences than mean
and variance.
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