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Abstract--Radial basis functions are “isotropic”; i.e., under a rotation, the basis function is left 
unchanged and is obtained as a function of a distance on the space. For Euclidean space this is not a 
problem since there is a natural metric. To extend radial basis functions to space-time, i.e., Rm x T, 

either a aonal anisotropy has to be incorporated or a metric must be defined on space-time. While 
the sum of two valid radial basis functions defined on different dimensional spaces is generally only 
semidefinite on the product space, the product of two positive definite functions on lower dimensional 
spaces is positive definite on the product space. This construction can be extended in several ways 
including a product-sum, integrated product, and the integrated product-sum. Examples are given for 
each construction and an application is given. The constructions are equally applicable to extending 
from space to space-time or for splitting higher-dimensional Euclidean spaces into the product of 
several lower-dimensional spaces. @ 2002 Elsevier Science Ltd. All rights reserved. 

Keywords-Space-time covariances, Integrated product-sum covariance models, Radial basis 
functions, Positive definite functions. 

1. INTRODUCTION 

The basis functions in a radial basis function interpolator are isotropic; i.e., the values of these 

kernel functions depend only on the length of the separation vectQr and not on its direction. To 

interpret the values of the basis functions, one must distinguish between the positive definite case 

and the conditionally positive definite cases (of various orders). In the case of a positive definite 
function which will have its maximum value at zero, the values might be interpreted as measures 
of similarity-that is, as measures of the similarity of the values of the unknown function at 

pairs of points separated by a vector increment. In the case of conditionally positive definite 
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functions, the values of the basis functions might be interpreted as measures of dissimilarity. 

In either case, it is plausible that the similarity or dissimilarity is dependent not only on the 

length of the separation vector, but also on its direction. There are at least two different schemes 

for incorporating direction: one corresponds to the use of a modified metric, and the other 

corresponds to splitting the space into several lower-dimensional subspaces and separating the 

dependence of the radial basis function on these lower-dimensional subspaces. In the sense that 

the splitting emphasizes the orthogonality of the subspaces, this might be considered as a limiting 

case of the directionally dependent metric, but the radial basis function on the split space cannot 

be constructed from the one obtained from a modified metric. 

Let u be a point, i.e., a vector in m-dimensional Euclidean space, R”, and ]]u]] the usual 

metric or norm. Let Q be an m x m positive definite matrix. Then U~QU is another metric or 

distance and can be used in a radial basis function interpolator in lieu of the usual Euclidean 

metric. Q can be thought of as corresponding to an affine transformation, e.g., a rotation and a 

stretching/shrinking. Thus, a given length vector in one direction will correspond to an increased 

or decreased length vector after rotation to a new direction-that is, the measure of similarity or 

dissimilarity changes with direction even for a fixed length vector. One difficulty of using such a 

transformation is in choosing Q. 

The change in the measure of similarity or dissimilarity might also be thought of as a separation 

of the dependence in one direction from that of another direction. An extreme case of this 

separation is appropriate when the interpolating functions are defined on Rm x T where T is 

the time axis. While one might define a metric or distance function on this space to be of the 

form []]u]]~ + ~~]t]~]‘.~, th ere is the critical question of how to choose the constant c. The choice 

of such a constant should reflect a realistic relationship between space and time. Such a metric 

corresponds to considering the time axis as being “orthogonal” to all of the space axes but with 

a change of units. 

Instead of relying on a space-time metric or on a positive definite matrix to define a quadratic 

form, a more general form is used as the starting point, and then several methods are given that 

will result in valid radial basis functions. That is, rather than considering radial basis functions 

in the form g(u) = d(]]~]]), th y e are considered to be of the form g(u,t). In this form there 

is no assumed geometrical relationship between the space axes and the time axis. The various 

constructions described subsequently can easily lead to models that are differentiable with respect 

to time but not space and vice-versa. Most of the functions described in the following sections are 

not “radial”, but are still to be used in an interpolator of the same form as “radial” basis function 

interpolator. For simplicity the terminology will be retained even for “nonradial” functions. 

2. OVERVIEW 

2.1. Preliminaries and Notation 

If g satisfies the appropriate positive definiteness condition, then the general form of the radial 

basis function interpolator is 

z*(u) = k hg(u - 4 + f: akfk(‘U), 
i=l k=O 

(1) 

where Z(u) is the function to be interpolated and the Ui, i = 1,. . . , n, are the data locations. 

The 6(U), k = 0,. . . , p, are linearly independent functions, usually taken to be monomials in the 

coordinates of u. Micchelli [l] has shown that coefficients are determined, given the condition 

on g and on the fks. Neither this form nor the system of equations to determine the coefficients 

are dimension dependent. Nor are they dependent on the assumption that g(u) = ~(]]zJ]]). The 

definition of positive definiteness (conditional positive definiteness) is not dependent on the use 



Radial Basis Functions 541 

of a metric. Moreover, the interpolator is easily extended to vector-valued functions as shown by 
Myers [2]. The construction of Madych and Nelson [3] can be extended to the space-time context. 

Hence, the radial basis function interpolator will be considered to be of the form 

z*(u, t) = 2 big(u - ui, t - ti) + f: Ukfk(‘1LY a 
i=l k=O 

(2) 

where Z(U, t) is the function to be interpolated and the (ui, t,), i = 1, . . . , n, are the data locations. 
Thefk(u,t), k=O,... ,p, are linearly independent functions. Although it would be possible to 
simply choose these to be monomials in the coordinates of (u, t), it is more realistic to also 
incorporate sin, cos functions of time as well; see (41. 

The problem is how to construct a function of the form g(u,t) with the appropriate positive 
definiteness condition. The standard models are all isotropic, i.e., are functions of length only. 
The obvious choice would be to construct a function g(u,t) = F(g,(u),gt(t)) where gs(u), gt(t) 
are valid radial basis functions on Rm and T, respectively. The two simplest choices for F are the 
sum and the product. While the sum of two valid radial basis functions defined on R* is again 
a radial basis function on Rm, that property does not extend to gs(u) + gt (t). Such a function 
will be only semidefinite as shown in [5,6]. If g9(u), gt (t) are positive definite on R” and T, 
respectively, then gs(u) x gt(t) is positive definite on R” x T. If one or the other of the two 
factors is only conditionally positive definite, then the product may not be conditionally positive 
definite. However, the sum and product constructions can be combined for a more general form. 
Kyriakidis and Journel [7] have given a general overview of the construction of space-time models. 

It is well known that if the gj (u) ( in space or time) are positive definite (or conditionally 
positive definite) and cj are positive numbers, then the linear combination is again of the same 
form. This can be extended to integrals. Let e(a) be a probability density function on R and 
suppose that g(u; a) is positive definite (or conditionally positive definite) for each a in R. Then 

s 4% UP(a) da 
R 

is of the same form. In some instances, g(u; a) need only be semidefinite. For example, let m = 1, 
g(u;u) = COS(UU), and g(a) the uniform probability density on the unit interval. Then the 
integrated form is 

G(u) = 1 _ q if ]u] > 0, and is zero otherwise. 

For other examples, see [8]. This result will be extended to valid space-time radial basis functions. 

2.2. Positive Definiteness, Conditional Positive Definiteness, 
and Conditional Negative Definiteness 

Let G(u) be a positive definite function defined on Rm. Letting 

Y(U) = G(O) - G(.L~), 

then y(u) is conditionally negative definite; moreover, y(O) = 0. Thus, there is a subclass of 
conditionally negative definite functions that correspond to positive definite functions. If g(u) 
is conditionally negative definite and asymptotically bounded, then there is a corresponding 
positive definite function. A number of the standard radial basis functions are conditionally 
negative definite instead of being conditionally positive definite. This has no effect on either the 
form of the interpolator or on the system of equations used to determine the coefficients in the 
interpolator. As an example, y(u) = ]]u]]~, 0 < o < 2, is conditionally negative definite but it is 
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not asymptotically bounded. The normalization condition, g(0) = 0, does not affect either the 

interpolator or the system of equations. The multiquadric 

g(u) = [c2 + 11u112]o.5 

could be replaced by 

y(u) = [c2 + ]]U]]2]o.5 - ICI. 

In the geostatistics literature, normalized conditionally negative definite functions are known as 

variograms and can be modeled from the data [9,10]. 

Letting Z(s) be a second-order stationary random function defined on Rm, then the covariance 

function C(h,) = Cov [Z(s + h,), Z( )] s exists and is only a function of the separation vector h,. 

The covariance function is positive definite, and conversely any positive definite function can be 

associated with a second-order stationary random function. As noted above, covariance functions 

(which are positive definite) determine an associated conditionally negative definite function; this 

conditionally negative definite function is usually called the variogrum. In the following sections, 

the emphasis will be almost entirely on covariance functions and the associated variograms. At 

the very end it is shown that the constructions can be extended to include conditionally positive 

definite functions of higher order (or conditionally negative definite). 

2.3. Dimension Splitting 

While there is a natural split between space and time in R” x T, the methodology will work 

equally well for splitting R” into the product of several lower-dimensional spaces. That is, 

let R”‘, . . . , R”” be Euclidean spaces of dimensions ml,. . , md. Let iv,. . . ,d v be in the respec- 

tive spaces. Then consider a function on Rml x . . x R”” which is not based on a metric on the 

product space. Let gi(iv), i = 1,. . . , d, be positive definite on the respective spaces R”l. Then 

will be positive definite on the product space. Products of fewer factors may be only semidefinite 

but can be added to the above product and hence, very general positive definite product-sums 

can be generated. 

2.4. Differentiability and Integrability 

One of the advantages of separating the dependence of the radial basis function on the space 

coordinates from that on the time coordinate is that the differentiability and integrability prop- 

erties are then also separated. For example, in using a radial basis function representation in 

solving a partial differential equation, differentiability must be considered for each coordinate 

separately. Many standard radial basis functions are not differentiable, but by constructing a 

radial basis function using dimension splitting, differentiability can be obtained for some coordi- 

nates and not for others. This could be especially important in the case of radial basis functions 

defined on space-time; metric models do not provide this option. 

In the case of problems set in space-time, there is a crucial difference between averaging in 

space and averaging in time. Hence, separability of dependence is very important. 

3. SPATIAL TEMPORAL MODELS 

3.1. Metric Models 

Let 4(.) be a conditionally positive definite function defined on R, and let Q be an m x m 

positive definite matrix. For any such choice of Q, 4(sTQs) will b e conditionally positive definite 
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of the same order on Rm. This construction would extend equally well to Rm x T by letting Q 

be an (m + 1) x (m + 1) positive definite matrix. For example, let Q be diagonal with all 

diagonal entries equal to one except the last, set that entry equal to c2, and then (s, t)TQ(s, t) = 

]]s]]~ + c2]t12, ]]s]]~ being the usual Euclidean norm. Hence, any known valid radial basis function 

on Rm can be extended to a basis function on Rm x T by an appropriate choice of Q. This 

construction may be useful in other contexts. Covariance functions are not only bounded; most 

models asymptotically tend to zero. If they are of compact support, then the radius of this 

compact set is called the range. For other models such as the exponential and the Gaussian, there 

is an effective range. For a covariance function C, C(0) is not only the variance of the random 

function, but it is also a bound on the associated variogram. In the geostatistics literature this 

value is referred to as the sill of the variogram. When a covariance or variogram is obtained in the 

form C(hzQb), r(h%Qb), th e covariance or variogram is said to have a geometric anisotropy. 

The extension of radial basis functions from space to space-time by the use of a metric corresponds 

to a space-time model with a geometric anisotropy. 

The variogram can be defined for a random function independently of the covariance and under 

weaker conditions. If 

E[Z(s + h,) - Z(s)] = 0, v’s, h,, 

and 

0.5Var [Z(s + h,) - Z(s)] exists, ‘d s, h, and depends only on h,, 

the random function is said to be intrinsic stationary. Then 

y(h,) = 0.5Var [Z(s + h,) - Z(s)] 

is the variogram and will satisfy the above relationship with the covariance if the covariance 

exists. Brownian motion is an example of a random function for which the variogram exists but 

the covariance does not; i.e., it is not second-order stationary. 

The covariance function might be interpreted as quantifying similarity, and the variogram 

quantifies dissimilarity. The variance of higher-order differences will lead to conditionally positive 

definite functions of higher orders; the coefficients in the generalized increments must satisfy 

certain conditions, however. For general discussion on geostatistics, see [11,12]. 

3.2. Product Space-Time Models 

Let C, be a positive-definite function in Rm and Ct be a positive-definite function on T; then 

the product model [13-181 

C&h,, ht) = C,(h,)Ct(ht) (5) 

can be rewritten in terms of variograms as follows: 

dhs, ht) = G(O)ydhs) + G(Oht(ht) - +i4h,)yt(ht). (6) 

There are several advantages to writing the product model in terms of the variograms: 

l although the sum of two variograms, i.e., conditionally negative definite functions, is 

generally semidefinite and the product of two such functions will not be of the same type, 

when the sum and product are combined one can obtain a valid model; 

l the “marginal” variograms are of interest. 

Since for any variogram, y(O) = 0, there are important special cases of (6): 

(1) ^Ist(h,,O) = Ct(O)y,(h,), and 

(2) ~40, ht) = C,(OMht). 
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Moreover, Ct(0) is the sill of yt(ht) and Cs(0) is the sill of y,(h,), and hence the two variograms 
completely determine the product model. If data is used to “model” these components separately, 

then the product model is fully determined. 

EXAMPLE 1. Given the following variograms: 

b > 0, 

yt(ht; c, d) = 1 - e+lc cos , c,d > 0, 

one obtains a nonmetric space-time variogram, i.e., a space-time radial 

“Ist(h,, h,) = 1 - 
llhJ12 

1 + llhsl12/b 
EXAMPLE 2. Let 

basis function 

yt(ht; c) = 
c > 0, ht 5 c, 

I 1, ht > c. 

For both of these variograms, the sill is one. Note that the covariance corresponding to the time 

variogram has compact support. 

In both of these examples, the space variogram is isotropic but a geometric anisotropy could 

still be introduced into the space variogram. Neither of these examples corresponds to the use of 
a metric on space-time. 

3.3. Product-Sum Space Time Models 

The form of the product covariance and the corresponding variogram suggests the use of a 

more general form, namely the product-sum [19,20]. As before, let C, (h,) be a spatial covariance 

and Ct ( ht ) a temporal covariance. Then 

Cst(h,, ht) = kiC,(h,)Ct(h,) + kC,(h,) + Wt(ht) (IO) 

is a space-time covariance for any ICI > 0 and k2 2 0, k3 2 0. Rewritten in terms of variograms, 
it becomes 

Yst(hs, ht) = [kz + kiC,(O)lrs(h,) + [ks + hG(O)lrt(ht) - hy,(h,)yt(h,). 
In this case, the marginal variograms are 

-r,t(hs,O) = [kz + kiC,(O)ly,(h,) 

and 

(11) 

-Y&O, h,) = [ka + kiC,(O)lrt(W. 

Thus, only the proportionality constants are changed. By fitting the marginals to the data, the 
coefficients and the two component variograms can be determined. 

For an example of a product-sum model applied to environmental data, see [21-231. 

EXAMPLE 3. Let 

y,(h,;b,cu)=l- (l+!+$-oI cr>O, b>O, 

t 

ht 
Mb; c) = -F’ c > 0, ht 5 c, 

(12) 

I 1, ht > c. 

Note that the time model is only valid in one dimension, and hence, it could be used for a time 

model but not for a general radial basis function. 
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3.4. The Cressie-Huang Construction 

If C(h,, h,) is integrable, then it can be written in the form [24] 

C(h,, ht) = 
I 

eih&(w; h@(w) dw, 
Rk 

(13) 

where p(w, .) is a continuous autocorrelation function for each w in R’“, 

J p(w;ht)dht < m, R+ (14) 

(15) k(w) > 0, and J k(w)G!w <cm. R" 
EXAMPLE 4. Let 

and 
k(w) = e-+Jll. 

This results in a space-time covariance model of the form 

3.5. Integrated Product-Sum Models 

As noted above, given a family of variograms or covariances, i.e., radial basis functions, depen- 
dent on a parameter and a probability density function, then the integral is again a function of 
the same type. This construction can be extended to both the product and the product-sum con- 
struction. The integrated product is almost a generalization of the Cressie-Huang construction. 
The following theorem is found in [25]. 

THEOREM 1. Let ~(a) be a positive measure over U G !R, and let C,(h,; a) and Ct(h,; a) be valid 
covariance functions, respectively, in D c R” and T C R+, for each a E V C U. 

(a) If C, (h,; u) .Ct ( ht ; c~) is integrable with respect to the measure n over V for each h, and ht , 
given k > 0, then 

C&h,, ht) = J ~Cs(h,;a)Ct(ht;a)dCL(a) (16) 
V 

is a valid covariance function in D x T. 

(b) Likewise, if k,C,(h,; a)C,(ht; a) + kzC,(h,; a) + k3Ct(ht; a) is integrable with respect to 
the measure /1 over V for each h, and ht, given kl > 0, k2 2 0, and k3 2 0, then 

Cs,t(L ht) = s v hCs(ha; aPt(ht; a) + k&s(hs; a) + W’t(h; ~11 G(a) (17) 

is a valid covariance function in D x T. 

Since the product and the product-sum covariance models can be written in terms of the 
associated variograms, it follows that 

x,t(hsr ht) = 
s 

Wt(Q ahdh,; a) + C&k aht(ht; a) - ys(hs; aht(ht; a)] c&(a) (18) 
V 
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and 

Ys,t(hs, ht) = 
s 

” [(k2 + bCt(O; a))%(&; a) 
(19) 

+(k3 +hG(O;a)ht(h;a) -kly,(h,;a)yt(ht;a)ld~u(a) 

are valid space-time variograms assuming that rS(h,; a) and yt (ht ; a) are valid spatial and tem- 

poral variogram models for each choice of a E V, and C,(O; a) and Ct (0; a) are the corresponding 

sill values. 

The following example is taken from [25]. 

EXAMPLE 5. Let 

C,(h,; a, b, a) = e-a”hJ”‘b, lI(Y<2, u>o, b>O, 

ct (h,; a, c, 6) = I@+ 15652, c > 0, 

P nfl 

4(U,%P) = n -pa 
r(n+l)” e ’ 

72 L 0, p > 0. 

Since C, (h,; a, b, (.y) and Ct (ht ; a, c, b) are, respectively, valid spatial and temporal covariance 

models for each choice of a over the interval V = [ 0; +cm[, the integrability conditions are 

satisfied. Two new classes of nonseparable space-time covariances can be obtained 

I P n+l 

C,,t(h,, ht; 01) = 
~e-4Wlb. e-&/c . 

r(n + 1) a 
n -@da 

e V 

kp”+’ 

s 
une-a(llh.ll”/b+h:/c+P) da = 

= r(n + 1) v 

where 81 = (b, c, n, k, a, p, 6); 

S[ kle-ailh.X-/b. e-ah’tlc + k2e-aiihxii”/b + k3e-“h:/Cj P n+l 

Cs,t(hs, h; 02) = n -&da v 
r(n+l)’ e 

n+l 
= kl 

P 

(Ilh,ll”/b+ h;/c+ P)“+’ + k2 (,,h.Ja;i: N‘+’ 
(21) 

n+l 

+ k3 (hfl:+ ,LI)n+l ’ 

where 02 = (b, c, n, kl, k2, k3, CY, ,B, 6). 

Note that, when a = 6 = 1 and n = 0, ((lh,ll/b + ht/c) in (20) and (21) might correspond to a 

space-time metric and P/(~~hs~~“/b+ ht/c+ P) would belong to a well-known family of covariance 

models. namelv 

C(h;w,w) = w2 ;l,/h,,’ 

3.6. A More General Construction 

Let +yst(hs, ht) be any valid space-time variogram, obtained by whatever construction. More- 

over, let ySi (h,) be any valid space variogram and Tti (ht) any valid temporal variogram. If Ki > 0, 

Kz 2 0, Ks 2 0, then 

Kry,t(h,, ht) + Kzysl(hs) + &m(h) 

is a valid space-time variogram. Although all of the constructions described above result in 

space-time variograms that correspond to covariances (and hence, are bounded), neither -ySi (h,) 

nor ytl(ht) has to be bounded in this general construction. Obviously, the product of any two 

space-time covariances is again a valid space-time covariance. 
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To illustrate the differences in the different constructions for space-time radial basis functions, 

a metric and a nonmetric space-time model has been used to interpolate a function defined in 

space-time. The function to be interpolated is 

F(x, Y, t) = l (1+&). 
(x2 + y2 + 1) 

Note that F is the product of a function Fl(t) in one-space and a function Fz(x, y) in two-space. 
A regular grid A in (x, y, t) of 13 x 13 x 49 data points has been selected, where 

A={(xi,yj,ttlc), i,j=l,..., 13; k=l,..., 49}, 

with 

xi = (i - 1) x 0.1, i = 1,. . . ) 13, 

yj = (j - 1) x 0.1, j = 1,. . . ) 13, 

tl, = (k - 1) x 0.025, k = 1,. . . ,49. 

Two subsets of A, denoted as B and C, have been also been selected, 

B={(zi,yj,tlc), i,j=l,..., 7; k=l,..., 25}, 

with 

xi = (i - 1) x 0.2, i=1,...,7, 

yj = (j - 1) x 0.2, j = 1,...,7, 

tk = (k - 1) X 0.05, k=1,...,25, 

and 

with 

C={(5i,yj,tk), i,j=l,..., 5; k=l,..., 49}, 

xi = (i - 1) x 0.3, i = 1,...,5, 

yj = (j - 1) x 0.3, j = 1,...,5, 

t,, = (k - 1) x 0.025, k=1,...,49. 

The subsets B and C are considered as “control” data sets, while D = A - B and E = A - C are 

the “test” data sets. The functional values at the points in B, C will be used to interpolate the 

function at the points in D, E, respectively. Two different space-time models will be used-one 

a metric model and one a product model. By comparing the interpolated values at the points 

in D, E with the computed values, one obtains a measure of the efficacy of the different space-time 
models. The two space-time radial basis functions are 

yr(h) = (1 -e-“““) ) 

72(hry, IL,) = (1 - e-li’*Vll> (1 - eehr) , 

PII = j/GFgFj, (22) 

(23) 
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4.0.1. Using yz and set D 

The maximum absolute error was 0.0545, the mean error was 0.0031, and the standard deviation 

of the errors was 0.0047. When the errors were normalized by the true value, the maximum 

normalized error was 0.0499, the mean normalized error was 0.0037, and the standard deviation 

of the normalized errors was 0.0065. 

4.0.2. Using 72 and set E 

The maximum absolute error was 0.0367, the mean error was 0.0065, and the standard deviation 

of the errors was 0.0064. When the errors were normalized by the true value, the maximum 

normalized error was 0.0204, the mean normalized error was 0.0067, and the standard deviation 

of the normalized errors was 0.0048. 

4.0.3. Using y1 and set D 

The maximum error was 0.0516, the mean error was 0.002, and the standard deviation of the 

errors was 0.0065. When the errors were normalized by the true value, the maximum normal- 

ized error was 0.0585, the mean normalized error was 0.004, and the standard deviation of the 

normalized errors was 0.0095. 

4.0.4. Using y1 and set E 

The maximum error was 0.0586, the mean error was 0.0055, and the standard deviation of the 

errors was 0.0032. When the errors were normalized by the true value, the maximum normalized 

error was 0.0715, the mean normalized error was 0.0075, and the standard deviation of the 

normalized errors was 0.0122. 

5. SUMMARY AND CONCLUSIONS 

Neither the form of the radial basis function interpolator nor the equations that determine 

the coefficients in the interpolator require that the basis function be “radial”. By allowing zonal 

anisotropies in the basis function, it is possible to either split the higher-dimensional Euclidean 

space into independent lower-dimensional spaces or to allow for nonmetric space-time radial basis 

functions. The difficulty in generating nonmetric radial basis functions is to ensure that they are 

definite and not simply semidefinite. For example, the sum of a multiquadratic in space and 

a multiquadratic in time would only be semidefinite. There are two general constructions for 

generating nonmetric space-time radial basis functions; one is based on the sum and product of a 

positive definite function defined on space and one delined on time, and the second construction 

is an integral form of the first construction. Several examples of these constructions have been 

given. There is a numerical example contrasting the use of a metric and a nonmetric model for 

the radial basis function. 

The use of cross-validation to choose the radial basis function, as described in [26], is directly 

extendable to the use of space-time radial basis functions. The generalization of the radial basis 

function interpolator to allow for filtering noise in the data, as described in [27,28], is likewise 

directly extendable to space-time radial basis functions. 
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