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AbstractwThere are at least three developments for interpolators that lead to the same functional 
form for the interpolstor; the thin plate spline, r a d ~  basis functions and the regressi~m method 
known as kriging. The key to the interre]atio~hip lies in the poaitlve de~mite~ees of the kernel 
function. Micchelli has shown that a weak form of pooltive definltenees is std~clent to emmure A 
unique solution to the system of equation- determln;n 5 the coefficients in the interpolator. Both the 
pceitive definiteness and the interpolator can be extended to vector valued functions via the kri~n- 
approach which is also independent of the dimension d the underlying space. The kriging spproach 
leads naturally to v~ious methods for simulation as we]]. 

1. I N T R O D U C T I O N  

Given da t a  locations z l , . . . ,  z ,  in k-dimensional Euclidean space and observed da ta  Z ( z l ) , . . . ,  
Z ( z , ) ,  Consider an interpolator  of the form 

- P 

z ' ( . )  = b, g(l l* ,  - *11) + ck lk(x) ,  
i=1 k=O 

(1) 

where the f k ( z ) ; k  = 0 , . . . ,  p are linearly independent monomials  in the position coordinates of  z. 
In the case where the  interpolator  is exact,  i.e., Z*(zd) - Z (z i )  for i - 1 , . . . , n ,  Micchelli [1] 
has shown tha t  conditional positive definiteness of  an appropr ia te  order of  the function g(z)  is 
a sufficient condition for uniquely determining the weights in the interpolator.  This  interpolator  
as well as Micchelli 's results will be generalized in several ways. 

Alternatively, consider an interpolator cum est imator  of  the form 

/=1 
(1 ' )  

These two interpolators represent two different approaches to the same problem and in certain 
special cases they are equivalent. This has been noted by Kimeldorf  and Wahba  [2], Matheron 
[3-5], Watson [6], Myers [7] and Cressie [8]. The  form given by (1) can be derived, as in the case 
of  the thin plate  and smoothing spline, by imposing a smoothness condition on the  interpolating 
function. Alternatively this form can be assumed as in Micchelli. I t  can also be obtained indirectly 
by assuming an interpolator  as in (1')  satisfying certain conditions such as unbiasedness and 
minimal  est imation variance then showing its equivalence with tha t  in (1). The  form given 
in (1')  of  the interpolator  is easily generalized. By exploiting the equivalence between the two 
forms, generalizations or extensions of one form can be extended to the other form. For the 
sake of clarity we digress to delineate and emphasize the use of the te rms "multidimensional" 
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and "multivariate" since some authors have used these terms interchengeably. In the following, 
mullidimensiona] will refer to the dimension of the domain of the interpolated/interpolat/ng 
function whereas mu/tivar/ate will refer to the dimension of the range of these functions. It would 
seem to be desirable for the definition as well as the derivation of an interpolator to independent 
of both of these dimensions, this is clearly not the case for either type of spline in their usual 
formulations. 

2. POSITIVE DEFINITENESS 

It was noted above that positive definiteness plays a central role with respect to the uniqueness 
of the coefficients in the interpolatom (1) and (1~). In order to generalize the interpolators, it is 
necessary to consider more general forms of positive definiteness, although these could have been 
stated for the complex valued case only real valued functions will be considered herein. 

DEFINITION 1. Let f0 , . . .  ,fp be linearly independent real valued functions defined on R ~, and 
g(z , y )  be a function from R ~ x R k into the rin K of  m x m real symmetric matrices. Then, g is 
said to be positive de[inite with respect to the f0 , . . .  ,fp f f  for all sets o f  points :c l , . . . ,  zn in R ~ 

(a) ~ E ~ = I  E~=I rTg(z,,x~)r~ > 0 for all ~n x m real valued matrices r l , . . . , r , ( n o t  all 
identically sero) such that 

(b) E}'=~ /,(z#)r# = 0 for i = 0,... ,p. 

LEMMA 1. Let fo, . . . , fp and g(x, y) be as m Definition 1 above. Then, g is positive definite with 
respect to the f0 , . . .  ,fp i f  and only iffor all sets ofpoints El , . . .  ,xn in R t 

(a') EL- ,  E~--, rTg(x,,  ~ j ) r j  > 0 for all ~ x I real ~ . e d  vecto~ r ~ , . . ,  r~ (not all identi- 
cally zero) such that 

(b') E~=~ f~(~)r~ = 0 for k = 0,...,p. 

Clearly, if g is positive definite in the sense of Definition 1, then it suffices to consider weight 
matrices which have all zeros except in one column in which case the value of the trace is the 
same as the value of (a') when using those columns. Conversely, if (a ~) and (b') are satisfied, then 
the trace from Definition 1 can be written as a sum using the columns of the weight matrices as 
the vectors satisfying (a ~) and (b~). 

As will be seen later, it is more natural to define positive definiteness as in Definition 1, but 
it is also convenient to have the equivalent form given in Lemma 1. In conformity with usual 
definition, we say that g is strictly positive definite if the expression in (a) (respectively (a~)) is 
positive for all r j ' s  satisfying (b) (respectively (b~)) and not all are zero matrices. In the case 
where the set of f t ' s  is empty, we consider condition (b) to be vacuously satisfied, in which case 
the definition would coincide with the usual definition of positive definiteness albeit for matrix 
valued functions. It is also easy to see that Definition 1 is a matrix valued generalization of 
conditional positive definiteness as given in [1,9]. The importance of this definition is seen in the 
following theorem. 

THEOREM 1. Let g ( z , y )  be strictly positive definite as in Definition 1 and E l , . . .  ,X n points in 
R t ,  then the following matrix is invertible: 

"g(zl,xl) ... g(zl,z,) fo(x~)x ... /p(x~)x 
: " . .  : : ' . .  : 

g ( ~ . , ~ l )  . . .  g ( z . , ~ . )  ] o ( x . ) x  . . .  / , ( ~ , ) x  
/o(~)I ... /o(x,)x 0 ... 0 

: " . .  : : " . .  : 

l , ( ~ ) z  . . .  l , ( x . ) I  o . . .  o 

PROOF. The proof is completely analogous to the proof of the counterpart theorem given in [1]. 
For simplicity, consider the above matrix to be written in the form 
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and suppose by way of contradiction that the matrix is not invertible. Then there is a vector 
[uTVT] T not identically zero such that 

[° :]["] [°1 F T V 0 

or GU + F V  = 0 and FTU = 0. The latter equation is the same as the set of conditions 
given in (b) of Definition 1, except where the matrices F1, . . .  , r ,  are simply column vectors. 
Clearly, FTU = 0 implies UTF = 0 and hence, U T F V  -- 0. This implies that UTGU = 0 which 
contradicts the strict positive definiteness of G unless U is the zero vector. If U is the zero vector, 
then GU = 0 and hence, F V  = 0, but the scalar matrix functions are linearly independent and 
hence, F V  = 0 implies that V = 0. Since both U, V are zero vectors, the original matrix must 
be  invertible. 

LEMMA 2. Let g(x, y) be positive definite in the sense of  Definition I and A an m x 1 column 
vector (not the zero vector) then h(z, y) = ATg(z, y)A is tea/va/ued positive definite with respect 
to fo,... ,/p. 

3. L INEAR ESTIMATORS 

It will be seen that initially it is easier to generalize the estimator given in (1 e) than it is to 
generalize the interpolator in (1), although these are essentially equivalent. As a way of modeling 
or quantifying the uncertainty, associated with the lack of knowledge about the function to be 
interpolated, the data will he considered to be a finite (non-random) sample of a vector valued 
random function ~ (z )  with values in R "  defined in R k such that Z ( , )  = ~ (z )  + M ( , )  where 

(i) E ~ ( z ) ]  = ~ ( z )  = Lf0(z),..., •(z)]M. f0, . . . ,  b are known real valued linearly indepen- 
dent functions defined in R ~, M is an unknown (p + 1) x rn matrix of constants. 

(ii) ~(h) = 0.5 E[~(~  + h) - Y(-)]TrT(,  + h) - 7(~)]  e ~ t s  and depends only on h. When 
m > 1 ~(h) is matrix valued, then the diagonal entries (variograms) quantify the spa- 
tial correlation of each component of ~ (z )  with itself, the off diagonal entries (cross- 
variogrsms) quantify the intercomponent spatial correlation. Condition (ii) could be re- 
placed by the following 
(ii e) C(h) = E { ~ ( ~  + h)]T[z(,)]} emsts and depends only on h. 

The use of (ii ~) implies an assumption of second order stationarity but does not require that C(h) 
be symmetric. In contrast, ~(h) is symmetric by construction but requires only a weaker form 
of stationarity. In the case that the components of Z(z)  are second order stationary, the matrix 
variogram function ~(h) can be expressed in terms of the matrix covariance function, namely 

?(h) = c(0)  - C(h). 

Although a matrix covariance function should be positive definite, it is the negative of a matrix 
variogram function that should be positive definite. This distinction has no real effect with 
respect to Theorems 1 and 2. 

TtlEOREM 2. Let -Z(z) be a random function satisfying (i), (ii) above, then ~ven data Z (x l ) ,  . . . , 
Z.(zn), the unbiased, minimum variance linear estimator of Z(z),  is given by 

f t  

where 

~ ' ( - )  = ~ ~ ( x , ) r , ( ~ ) ,  
i---1 

n 

i~-I  b----0 
n 

/~(x,) r,(~) =/~(x), 
i---1 

and "variance" means the sum of the respective error variances when m > 1. 

j = l , . . . , n ,  

k = 0 , . . . , p ,  

(r,) 

(2) 

~ttlZ~ 
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The case of m : 1 is given in [10-12], each with slight vafiationa. The general case of m > 1, 
more comn~nly known as cokriging, was given in [13]. A limited farm of ~ amociated 
with the "undersarnpled problem" is given in [14] and was subsequently shown in [15,16] to be a 
special case of the above general form. A program implementing cokriging and incorporating the 
adjustment for the undersampled case was given in [17]. The system of equations given in (2) 
requires that q(h) be known. Of course in practice this is usually not the case and the entries in 
q(h) must usually be estimated/modelled f~om the data. There is also an implied presumption 
that the random function and the ~(h) are unique (up to certain equivalence relations). This 
may not quite be the appropriate viewpoint, since any valid vatiogxam will produce an unbiased, 
minima] variance linear estimator. However, the minimized estimation variance only pertains 
to the choice of the weights in the estimator relative to that particular variogram and does not 
serve as a discriminator between variograms, i.e., between estimators obtained with different 
valid variogram models. Moreover, once the variogram is known, i.e, modeled, the minimized 
estimation variance is really a characteristic of the data location pattern more than it is a true 
quantification of the error. Note also that no distributional assumptions are invoked although 
only in the case of multivariate Normality is the interpolator the conditional mean. 

The system of equations (2) corresponds to a point estimator rather than to an estimator of 
a spatial average such as the average grade of a block but the extension to spatial averages is 
relatively easy in the kriging form of the estimator. 

A. Radial Basis Functions 

For the case of m = 1, Powell [18], 
interpolator of the form 

Micchelli [I] and others have proposed the use of an 

n p 

Z*(z)  = ~-~b,g(llzo - z[[) + ~ c~ f~(z), (1) 
i = 1  k----O 

where the f t ' s  are linearly independent functions as in the kriging estimator above and g is 
a kernel function satisfying an appropriate positive definiteness condition. By requiring that 
Z*(z i )  - Z(z~) for i -- 1 , . . . ,  n, i.e., the interpolator is exact, a set of linear equations is 
obtained for the unknown coefficients. Hardy [19] utilized a simpler form of (1), namely without 
the second summation and chose g to be a bihxrmonic function since in that case the coefficient 
matrix was invertible without additional restrictions. Micchelli showed that in the case where 
the f t ' s  axe monomials in the position coordinates and the interpolator is required to be exact 
then conditional positive definiteness of g is a sufficient condition for obtaining a unique choice 
of the coefficients in (3). As noted in [7], isotropy is not necessary and a more general form 
of positive definiteness may be used that is still sufficient for obtaining unique solutions for the 
coefficients in (3). In fact, by using the "dual" form of the cokriging estimator as given in [15,16], 
it is seen that the radial basis function interpolator can easily be extended to the case of m > 1. 
This extension is dependent on the equivalence of several formulations of positive definiteness for 
matrix valued functions as given in [16]. 

B. 8plines 

In the case of k = 1 (and of course m = I), the simplest form of a spline, the thin plate spline, 
is obtained as follows. Given data Z(xI),..., Z(z,) which are the values of an unknown function 
at the points zl,..., zn then the spline on the interval [a,b] containing these points is a function 
Z*(z) having a continuous second derivative on [a,b] and satisfying two conditions 

• z°(z~) = z(x,) ,  i -  1 , . . . , , ,  

• f f d ' Z ' ( x ) } '  t ~ dz is ndnimal. 

The first condition is the exactness and the second condition is of course a smoothness character- 
istic. The spline can also be characterized in a more abstract way. Let H1,//2 be Hilbert spaces 
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of scalar valued functions defined on R t and B a bounded linear operator from H1 to / /2 .  For 
the interpolation/estimation of a linear functional of the function g(z) ,  the spline is the function 
g in H1 such that Bg has minimum norm in/ /2  and such that given continons linear functionals 
L1, . . .  ,L ,  have prescribed values when applied to g. For example, B could be the second order 
differential operator and the linear functionals could be point evaluations, i.e., the prescribed 
values of the functionals are then the known values of Z(z) at data locations. In this case, the 
usual thin plate spline is obtained although for k > 1 there is some ambiguity in the choice of 
the second order differential operator. 

C. The (Near) Equivalence in the Case m = 1 

To see the equivalence between the three formulations it is essentially sufficient to re-write (1) 
and (2) in the so-called dual form which is completely equivalent to the original 

n p 

Z*(z) -- ~ b i  =r(z - x,) 4- ~ a~ f~(z), (1) 
i----1 k = 0  

where 
n p 

~(~,- ~)b, + ~ f~(x~) a~ = z ( ~ ) ,  
i----1 k----0 

n 

/k (z,) b~ = 0, 

j - "  1 1 . . . I n l  

k = 0 ,  . . . .  p. 
i--1 

This form is obtained by solving the system (2), writing the estimator (1') in matrix form as 

(21 ) 

[z (~) , . . . ,  z ( ~ ) ,  o,. . . ,  ol[r~(~),..., r,(~), ~o,..., g~lT, 

substituting the solution into this form and taking the transpose. That is, the interpolator (1 '1 ) 
is of the form 

0, 0 

- {[G0 T FoTIT[B T AT1} T, 

where 

[; [=01 
This link between interpolator formulations was called "near" equivalence because the thin plate 
spline corresponds to a specific generalized covariance, whereas the kriging estimator or the radial 
basis function interpolator only require the use of a kernel with appropriate positive definiteness 
properties. This allows adapting the kernel function to a particular data set. This adaptability 
is discussed in [8,20,21]. 

When the estimator is written in the form (1), it is easy to see that the effect of the second 
summation is largely to determine the behavior of the interpolator when it is used as an EXtrap- 
olator, i.e., outside the convex hull of the sample locations. If the variogram is constant beyond 
a certain distance (called the range) it is easy to show that the sum of the bi's is zero assuming 
that one of t he /~ ' s  is a constant function and hence the first summation is zero when all the 
distances z - z~ exceed the range. More generally it can be shown that even if the variogram does 
not become constant the first summation in (1 ~) will go to zero asymptotically. In comparing the 
two forms of the equations (2) and (2~), we see that the first set of equations in (2) corresponds to 
the requirement that Coy {Z*(z), Z(zj)} - C o v  {Z(z), Z(zj)} for each sample location and the 
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corresponding equations in (T) are the conditions Z* (z j)  = g(z$). The second set of equations 
in (2) is sufficient to ensure unbiasednem whereas the equstiom in (2*) top the r  with the positive 
definiteness of the kernel function are sufficient to ensure that the coefficient matrix is invertible. 

Conditionally positive definite functions provide the link between the three formulations, these 
functions are either induced by a particular scalar product in an appropriate Hiibert space or 
induce that product. In the formulation of the interpolator given by (1), positive definiteness 
of an appropriate form is required to ensure that the variance of the error of estimation is 
non-negative and hence has a non-negative minimum. In contrast, the positive definiteness in 
the reformulation (1 ~) and (2 ~) is imposed solely to ensure the existence and uniqueness of the 
solution of the system of equations. Matheron linked weaker forrns of positive definiteness to the 
representation of the variance of certain linear combinations that behave as generalized increments 
and hence would filter out polynomials of a given order. The radial basis formulation, as is 
clearly shown in [1], defines weaker forms of positive definiteness in terms of the non-negativity 
of certain quadratic forms which are related to the existence and uniqueness of solutions of 
linear systems. By bringing these together, a slightly more general form of positive definiteness 
can be defined and such kernel functions are still appropriate for representing the interpolator. 
Matheron [9] gives a generalization of the Bochner Theorem to characterize conditionally positive 
definite functions of a given order. There is a subset that are polynomials, Matheron then 
obtains the conditions on the coefficients in these polynomials. Alternatively, one may use the 
complete monotonicity characterization given in [1]. Because of the connection between the weak 
form of positive definiteness and the variances of generalized increments, Matheron refers to 
these kernels as generalized covsriances. Conditionally positive definite functions appear in a 
number of contexts and are closely related to (strongly) positive definite functions. For example, 
conditionally positive definite functions are related to the exchangeability of random variables 
and as shown in [22] that they are essentially the logarithms of positive definite functions. 

The "weight" matrices F1, . . . ,  Fn in Definition 1 are taken to be m × m because that is the 
natural interpretation when deriving the cokriging estimator, i.e., one minimizes the sum of the 
estimation variances for the components of ~ (z )  and this sum arises as the trace of a quadratic 
form like (a). 

4. THE GENERALIZATION 

Consider now a vector valued estimator/interpolator of the form 

n p 

= + (I "1) 
i = 1  k = 0  

where B1, . . . ,Bn  and A0, . . . ,Ap are m × m matrices, g(z,y) is an appropriate kernel and the 
Fk(z)'s are of the form f j (z) I .  Given data Z ( z l ) , . . .  ,~v(zn) and the requirement that the 
interpolator is exact, i.e., ~"(z i )  - Z(zi)  for i - 1 , . . . ,  n, a linear system of matrix equations is 
obtained. Unless the kernel function is positive definite in the strong sense, then the coefficient 
matrix for this system may not be invertible. However, by imposing additional conditions on the 
B1, . . . ,  Bn, a unique solution is obtained. As is the case of m - 1, the term, ~'~=0 A~ F~(z), is 
seen to determine the behavior of the estimator outside of the convex hull of the sample/data 
locations. The form of the estimator given by (1 I") is also seen to be a slight generalization of 
the dual form of the cokriging estimator as given in [15]. 

THEOltEM 3. Let g(z ,y)  be positive definite with respect to fo , . . .  ,fv be as in the de/~n/tion 
preceding; B I , . . . ,  Bn and A0, . . . ,  A v as/n ( l l ' ) ,  then the following system has a unique solution 
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and (I") will be an exact interpolator 

... gCx,.,.) Fo(,,) . . .  

: ".. : : ".. 

... Fo(,.) . . .  

Fo(Zl) " ' "  Fo(z , )  

: "'. : 0 
Fv(zl ) " "  Fp(z.) 

"BT] 

l 

.AT J 

z ( x l ) T  - 

Z ( . . )  T 

0 

0 

The uniqueness of the solution of this system of equations is a direct consequence of Theorem 1 
and the first n (matrix) equations are simply the exactness conditions. 

If as was assumed above, the identity matrix is one of the linearly independent matrix functions 
then the sum of the B's is the zero matrix (i.e., this is one of the equations in (b)); hence, if g(z,  y) 

• • ~ . • 

is a constant matrix for the distances between z and y sufficiently large, then Z (z) is determined 
only by the second summation in (1")  when the minimum of the distances z -  zi is large enough. 
The upper portion of the system in Theorem 2 is obtained by imposing the exactness condition and 
the lower part corresponds to the unbiasedness conditions if formulated in the context of cokriging. 
However, the estimator given by (1")  can be obtained without the stochastic formulation and 
provides a natural generalization of a spline. From the geostatistical/cokriging perspective g is 
assumed to be "uniquely" determined by the data and the principal problem is one of adequately 
estimating/modeling the kernel function as well as determining the appropriate order of the 
polynomial functions whereas from the perspective of splines or radial basis functions the choice 
of the linearly independent functions and the kernel function is more arbitrary and determined 
by external conditions such as the smoothness of the interpolating surface(s). 

5. A P P L I C A T I O N S  

Even in the case of m > 1, there are many examples of the use of linear interpolators in the 
earth sciences beginning with the problem of ore reserve estimation in mining. For the case of 
m = 1 the kriging estimator is seen to be a form of a generalization of well-known techniques such 
as nearest neighbor, inverse distance weighting which even yet are used by some practitioners. 
The case of m > 1 arises rather naturally in mining as well as in hydrology, soil physics and 
environmental assessment. In most metal mining operations there is a primary metal and one 
or more secondary metals, that is, the mine is established to extract a primary metal but the 
extraction process also produces by-products. For example, in the case of copper, secondary 
metals may include molybdenum, zinc, gold, silver• The "value" of a block of ore then is a 
function of the respective grades and the market prices of all the metals or minerals extracted, 
the value is a linear combination of the grades and in some cases such an "equivalent" grade is 
used in lieu of actual grades. However, these grades are not only spatially correlated but they are 
also intercorrelated. As shown in [23] estimation of linear combinations is suboptimal in general 
as compared with joint estimation. Both in the case of mining and in other applications one 
variable may serve as a proxy for another, one being easier or cheaper to sample. Most of the 
earliest examples of cokriging were for this "undersampled" problem where in the second variable 
was only of interest to enhance the estimation of the primary variable. As was shown in [24] the 
system of equations corresponding to the undersampled case is a special case of the full-sampled 
case and as shown in [16] the set of equations is the same whether all variables are estimated 
or only a primary variable, the positive definiteness condition is the same in both cases. Since 
kriging and cokriging are smoothing operations, they are potentially applicable to image analysis 
problems as discussed in [25-27]. 
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6. SIMULATION 

In the geostatistical formulation of the problem and the interpolator, the data is viewed as a 
non-random sample from one realization of a random function for which some form of second 
moment function is known. In this context, it is natural to attempt to generate additional 
realizations as well as to interpolate across the one realization. Simulation is a useful tool for 
many purposes such as mine planning, evaluation of potential waste repositories, etc. While 
it would in general not be possible generate an entire realization, generation of the values of 
a realization at grid points is quite reasonable. Simulation could mean different things but in 
geostatistics is usually interpreted to mean that the first and second moments are preserved as is 
the marginal distribution of Z(z). EssentiAny all interpolation methods result in some degree of 
smoothing. For some purposes however, it may be desirable to preserve or enhance the variability, 
hence the need for simulation. It may still be desirable to generate a realization that conforms 
to the given data, i.e., to condition the simulation to the given data. Let Z*(z) denote the 
interpolated value at the point z and let Zs(z) denote the simulated value. If the interpolator is 
exact and we write Zs(z) = Z*(z) + {Z(z) - Z*(z)}, then it would be sufficient to simulate the 
mean zero differences { Z ( z ) -  Z*(z)}. 

At least two different simulation methods have been used for simulating Z(z), z in R K. One 
method reduces the problem of simulation in higher dimensional space to the problem of k -- 1. 
Several methods are well-known in the times series context. For example, the Box-Jenkins moving 
average can be used. Matheron [9] showed that simulations in higher dimensional space could be 
generated by linear combinations of independent simulations in 1-space. Variations on the method 
utilize a spectra] density function. Fast Fourier transforms can also be used. Alternatively, Z(z) 
can be simulated at a finite number of points by the use of an L - U decomposition of the 
covariance matrix as shown by Davis [28,29]. This method has the advantage that it does not 
depend on k but i t  requires manipulation of very large matrices. Carr and Myers [30] extended 
the Turning Bands method to the case where Z(z) is vector valued and Myers [31] showed that 
the covariance matrix decomposition method extends to the vector valued case as well. 

As seen above, the link between the interpolators (1) and (1') is in the kernel function which in 
the case of (1') is interpreted as a generalized covariance. Since this same function appears in (1), 
there should be a corresponding form of simulation for the radial basis function representation. 
Certainly one way to do it is to utilize the correspondence, that is, transform the representation 
from the radial basis function form to the linear combination of data form, simulate and then 
re-transform. The difference in the approaches is fundamental and easily shows why simulation 
is not as naturally related to (1). If the number of data points is finite and the number of points 
to be interpolated is finite then there are two choices for interpreting the random function Z(z). 
First, it can he considered to be analogous to a random variable but one whose values are 
functions rather than numbers. Second, for the finite collection of points of interest, one can 
consider only the collection of jointly distributed random variables. The latter is sufficient for 
the interpolator (1') but for (1). One possible approach is to consider the coefficients in (1) 
as jointly distributed random variables and hence one could simulate Z(z) by simulating those 
random variables. However, examination of the correspondence between (1) and (1') shows that 
the coefficients in (1) depend on the kernel function. It would not be sufficient to jointly simulate 
the coefficients in order to preserve properties of Z(z). In the case of the smoothing spline, there 
is a natural form of simulation for (1), namely to add a random noise term to each interpolated 
value. If however the noise terms were assumed correlated, then the most natural form is that 
given by (I'). 

7. VARIOGRAM MODELING 

It is perhaps more evident in the alternative form (I') than in the original form (I) that the 
variogrsm must be estimated/modeled as a function and not just at a few points. Because the 
var io~sm must satisfy an appropriate positive definiteness property, the practical approach is 
to begin with known valid models (with perhaps unknown parameters) and form positive linear 
combinations; these are known as nested models. In practice, only a few model types are used 
although others can be generated by averaging with respect to a parameter. There is extensive 
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geostatistical literature on the problem of estimating and modeling variograms; for a review 
see [32]. Briefly, the data is used to generate a sample variogram using distance clmmes and angle 
windows, the plot of the sample variogram is compared with the plots of known valid models. 
The parameters to be determined correspond to characteristics of the plots. The problem is more 
difficult in the case of cross-variograms since a function is not a valid cross variogram except 
in the context of an associated pair of variograms. While it is possible to compute and plot a 
sample cross-variogram it is not as simple to know what the plot of a cross-variogram must look 
like. As shown in [15], this problem can be resolved by the introduction of new ~variables," the 
sum and the difference for each pair. By modeling the variograms of these the cross variogram 
can be determined and ensure the positive definiteness property. 

As a practical matter, the biggest problem in modeling cross variograms is insufficient data. 
In order to form the sum and difference of two variables, it is necessary to have data for both 
variables at the same locations. In one of the common applications, the undersampled problem, 
one variable is significantly undersampled compared to the other. If only data locations are used 
where both are sampled, there may be too few data points to provide for adequate estimation 
and modeling of the cross variogram(s). Clark, Basinger and Harper [33] proposed a pseudo-cross 
variogram as follows 

= 0 . 5  + h )  - 

They also showed that it was possible to derive the equations for a linear estimator using this 
pseudo-cross variogram although they only considered the case of the estimation of one com- 
ponent. Second order stationarity is sufficient for this function to exist and be dependent only 
on h but weaker conditions are also adequate. This pseudo-cross variogram is not a variograrn 
nor is it in general a true cross variogram. For example, it is non-negative valued whereas a 
cross-variogram could be negative, it's value at zero need not be zero whereas a croas-variogram 
can have a jump discontinuity but is zero at zero. A cross variogram is symmetric with respect to 
h - 0, but the pseudo-cross variogram need not be. Myers [34] has shown the relationship to the 
usual cross variograms and ways to model them as well as characterizing the positive definite- 
ness property. Only slight modifications in software are necessary in order to use pseudo-cross 
variograms in the set of cokriging equations. 

8. O P E N  P R O B L E M S  

As is pointed out above, any kernel function, i.e., radial basis function or generalized covariance, 
that satisfies the appropriate positive definiteness condition will result in an exact interpolator. 
It is known of course that only one of these corresponds to the smoothness condition on the 
interpolating function. Since smoothness may not always be the relevant condition to impose in 
all cases, it would be useful to establish a link between the choice of this kernel function and 
the properties of the interpolating function. In turn, there should be a link between the choice 
of a bounded linear operator between appropriate Hilbert spaces and the choice of this kernel 
function. 

It is easy to show empirically that in some cases it makes little difference in the interpolated 
values when the parameters in the kernel function are changed. In particular, this is true for 
certain sample location patterns (points in space where the values of the function are known). 
This suggests the defining a topology on the space of valid kernel functions in such a way that 
the map to the interpolating function is continuous. As pointed out in [34], there are at least 
three natural ways to define neighborhoods for the kernel functions but no one choice seems best. 

In the development of the cokriging estimator, it is easy to use intervariable correlation as the 
characterization of the interdependence of the components of the vector valued random function. 
It seems less obvious how to invoke a form of interdependence of the components of vector valued 
function when using either the spline or radial basis function approach although there is one 
implied via the duality or equivalence between the different forrrm of the interpolator. 
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